llama-cloud 0.1.21__py3-none-any.whl → 0.1.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +16 -12
- llama_cloud/client.py +3 -3
- llama_cloud/resources/__init__.py +2 -2
- llama_cloud/resources/admin/client.py +78 -0
- llama_cloud/resources/jobs/client.py +10 -2
- llama_cloud/resources/llama_extract/client.py +50 -6
- llama_cloud/resources/organizations/client.py +12 -2
- llama_cloud/resources/parsing/client.py +30 -0
- llama_cloud/resources/pipelines/client.py +8 -0
- llama_cloud/resources/retrievers/client.py +14 -0
- llama_cloud/types/__init__.py +14 -10
- llama_cloud/types/cloud_s_3_data_source.py +1 -0
- llama_cloud/types/{data_sink_definition.py → document_block.py} +6 -15
- llama_cloud/types/document_chunk_mode.py +17 -0
- llama_cloud/types/extract_config.py +4 -0
- llama_cloud/types/extract_mode.py +4 -0
- llama_cloud/types/extract_models.py +33 -0
- llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py +11 -0
- llama_cloud/types/{data_source_definition.py → llm_config_result.py} +6 -15
- llama_cloud/types/llm_config_result_llm_type.py +33 -0
- llama_cloud/types/llm_configs_response.py +33 -0
- llama_cloud/types/pipeline_create.py +1 -3
- llama_cloud/types/struct_parse_conf.py +2 -1
- llama_cloud/types/supported_llm_model_names.py +4 -4
- llama_cloud/types/user_organization_role.py +1 -0
- {llama_cloud-0.1.21.dist-info → llama_cloud-0.1.22.dist-info}/METADATA +1 -1
- {llama_cloud-0.1.21.dist-info → llama_cloud-0.1.22.dist-info}/RECORD +30 -29
- {llama_cloud-0.1.21.dist-info → llama_cloud-0.1.22.dist-info}/WHEEL +1 -1
- llama_cloud/resources/component_definitions/client.py +0 -189
- llama_cloud/types/configurable_transformation_definition.py +0 -48
- llama_cloud/types/configurable_transformation_names.py +0 -41
- llama_cloud/types/transformation_category_names.py +0 -17
- /llama_cloud/resources/{component_definitions → admin}/__init__.py +0 -0
- {llama_cloud-0.1.21.dist-info → llama_cloud-0.1.22.dist-info}/LICENSE +0 -0
|
@@ -295,6 +295,8 @@ class RetrieversClient:
|
|
|
295
295
|
self,
|
|
296
296
|
retriever_id: str,
|
|
297
297
|
*,
|
|
298
|
+
project_id: typing.Optional[str] = None,
|
|
299
|
+
organization_id: typing.Optional[str] = None,
|
|
298
300
|
mode: typing.Optional[CompositeRetrievalMode] = OMIT,
|
|
299
301
|
rerank_top_n: typing.Optional[int] = OMIT,
|
|
300
302
|
rerank_config: typing.Optional[ReRankConfig] = OMIT,
|
|
@@ -306,6 +308,10 @@ class RetrieversClient:
|
|
|
306
308
|
Parameters:
|
|
307
309
|
- retriever_id: str.
|
|
308
310
|
|
|
311
|
+
- project_id: typing.Optional[str].
|
|
312
|
+
|
|
313
|
+
- organization_id: typing.Optional[str].
|
|
314
|
+
|
|
309
315
|
- mode: typing.Optional[CompositeRetrievalMode]. The mode of composite retrieval.
|
|
310
316
|
|
|
311
317
|
- rerank_top_n: typing.Optional[int].
|
|
@@ -341,6 +347,7 @@ class RetrieversClient:
|
|
|
341
347
|
urllib.parse.urljoin(
|
|
342
348
|
f"{self._client_wrapper.get_base_url()}/", f"api/v1/retrievers/{retriever_id}/retrieve"
|
|
343
349
|
),
|
|
350
|
+
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
344
351
|
json=jsonable_encoder(_request),
|
|
345
352
|
headers=self._client_wrapper.get_headers(),
|
|
346
353
|
timeout=60,
|
|
@@ -692,6 +699,8 @@ class AsyncRetrieversClient:
|
|
|
692
699
|
self,
|
|
693
700
|
retriever_id: str,
|
|
694
701
|
*,
|
|
702
|
+
project_id: typing.Optional[str] = None,
|
|
703
|
+
organization_id: typing.Optional[str] = None,
|
|
695
704
|
mode: typing.Optional[CompositeRetrievalMode] = OMIT,
|
|
696
705
|
rerank_top_n: typing.Optional[int] = OMIT,
|
|
697
706
|
rerank_config: typing.Optional[ReRankConfig] = OMIT,
|
|
@@ -703,6 +712,10 @@ class AsyncRetrieversClient:
|
|
|
703
712
|
Parameters:
|
|
704
713
|
- retriever_id: str.
|
|
705
714
|
|
|
715
|
+
- project_id: typing.Optional[str].
|
|
716
|
+
|
|
717
|
+
- organization_id: typing.Optional[str].
|
|
718
|
+
|
|
706
719
|
- mode: typing.Optional[CompositeRetrievalMode]. The mode of composite retrieval.
|
|
707
720
|
|
|
708
721
|
- rerank_top_n: typing.Optional[int].
|
|
@@ -738,6 +751,7 @@ class AsyncRetrieversClient:
|
|
|
738
751
|
urllib.parse.urljoin(
|
|
739
752
|
f"{self._client_wrapper.get_base_url()}/", f"api/v1/retrievers/{retriever_id}/retrieve"
|
|
740
753
|
),
|
|
754
|
+
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
741
755
|
json=jsonable_encoder(_request),
|
|
742
756
|
headers=self._client_wrapper.get_headers(),
|
|
743
757
|
timeout=60,
|
llama_cloud/types/__init__.py
CHANGED
|
@@ -63,23 +63,21 @@ from .composite_retrieved_text_node import CompositeRetrievedTextNode
|
|
|
63
63
|
from .composite_retrieved_text_node_with_score import CompositeRetrievedTextNodeWithScore
|
|
64
64
|
from .configurable_data_sink_names import ConfigurableDataSinkNames
|
|
65
65
|
from .configurable_data_source_names import ConfigurableDataSourceNames
|
|
66
|
-
from .configurable_transformation_definition import ConfigurableTransformationDefinition
|
|
67
|
-
from .configurable_transformation_names import ConfigurableTransformationNames
|
|
68
66
|
from .credit_type import CreditType
|
|
69
67
|
from .data_sink import DataSink
|
|
70
68
|
from .data_sink_component import DataSinkComponent
|
|
71
69
|
from .data_sink_create import DataSinkCreate
|
|
72
70
|
from .data_sink_create_component import DataSinkCreateComponent
|
|
73
|
-
from .data_sink_definition import DataSinkDefinition
|
|
74
71
|
from .data_source import DataSource
|
|
75
72
|
from .data_source_component import DataSourceComponent
|
|
76
73
|
from .data_source_create import DataSourceCreate
|
|
77
74
|
from .data_source_create_component import DataSourceCreateComponent
|
|
78
75
|
from .data_source_create_custom_metadata_value import DataSourceCreateCustomMetadataValue
|
|
79
76
|
from .data_source_custom_metadata_value import DataSourceCustomMetadataValue
|
|
80
|
-
from .data_source_definition import DataSourceDefinition
|
|
81
77
|
from .data_source_update_dispatcher_config import DataSourceUpdateDispatcherConfig
|
|
82
78
|
from .delete_params import DeleteParams
|
|
79
|
+
from .document_block import DocumentBlock
|
|
80
|
+
from .document_chunk_mode import DocumentChunkMode
|
|
83
81
|
from .document_ingestion_job_params import DocumentIngestionJobParams
|
|
84
82
|
from .edit_suggestion import EditSuggestion
|
|
85
83
|
from .edit_suggestion_blocks_item import EditSuggestionBlocksItem
|
|
@@ -115,6 +113,7 @@ from .extract_job_create import ExtractJobCreate
|
|
|
115
113
|
from .extract_job_create_data_schema_override import ExtractJobCreateDataSchemaOverride
|
|
116
114
|
from .extract_job_create_data_schema_override_zero_value import ExtractJobCreateDataSchemaOverrideZeroValue
|
|
117
115
|
from .extract_mode import ExtractMode
|
|
116
|
+
from .extract_models import ExtractModels
|
|
118
117
|
from .extract_resultset import ExtractResultset
|
|
119
118
|
from .extract_resultset_data import ExtractResultsetData
|
|
120
119
|
from .extract_resultset_data_item_value import ExtractResultsetDataItemValue
|
|
@@ -171,11 +170,15 @@ from .llama_index_core_base_llms_types_chat_message import LlamaIndexCoreBaseLlm
|
|
|
171
170
|
from .llama_index_core_base_llms_types_chat_message_blocks_item import (
|
|
172
171
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem,
|
|
173
172
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Audio,
|
|
173
|
+
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Document,
|
|
174
174
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Image,
|
|
175
175
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Text,
|
|
176
176
|
)
|
|
177
177
|
from .llama_parse_parameters import LlamaParseParameters
|
|
178
178
|
from .llama_parse_supported_file_extensions import LlamaParseSupportedFileExtensions
|
|
179
|
+
from .llm_config_result import LlmConfigResult
|
|
180
|
+
from .llm_config_result_llm_type import LlmConfigResultLlmType
|
|
181
|
+
from .llm_configs_response import LlmConfigsResponse
|
|
179
182
|
from .llm_model_data import LlmModelData
|
|
180
183
|
from .llm_parameters import LlmParameters
|
|
181
184
|
from .load_files_job_config import LoadFilesJobConfig
|
|
@@ -323,7 +326,6 @@ from .text_node import TextNode
|
|
|
323
326
|
from .text_node_relationships_value import TextNodeRelationshipsValue
|
|
324
327
|
from .text_node_with_score import TextNodeWithScore
|
|
325
328
|
from .token_chunking_config import TokenChunkingConfig
|
|
326
|
-
from .transformation_category_names import TransformationCategoryNames
|
|
327
329
|
from .usage_and_plan import UsageAndPlan
|
|
328
330
|
from .usage_metric_response import UsageMetricResponse
|
|
329
331
|
from .usage_response import UsageResponse
|
|
@@ -399,23 +401,21 @@ __all__ = [
|
|
|
399
401
|
"CompositeRetrievedTextNodeWithScore",
|
|
400
402
|
"ConfigurableDataSinkNames",
|
|
401
403
|
"ConfigurableDataSourceNames",
|
|
402
|
-
"ConfigurableTransformationDefinition",
|
|
403
|
-
"ConfigurableTransformationNames",
|
|
404
404
|
"CreditType",
|
|
405
405
|
"DataSink",
|
|
406
406
|
"DataSinkComponent",
|
|
407
407
|
"DataSinkCreate",
|
|
408
408
|
"DataSinkCreateComponent",
|
|
409
|
-
"DataSinkDefinition",
|
|
410
409
|
"DataSource",
|
|
411
410
|
"DataSourceComponent",
|
|
412
411
|
"DataSourceCreate",
|
|
413
412
|
"DataSourceCreateComponent",
|
|
414
413
|
"DataSourceCreateCustomMetadataValue",
|
|
415
414
|
"DataSourceCustomMetadataValue",
|
|
416
|
-
"DataSourceDefinition",
|
|
417
415
|
"DataSourceUpdateDispatcherConfig",
|
|
418
416
|
"DeleteParams",
|
|
417
|
+
"DocumentBlock",
|
|
418
|
+
"DocumentChunkMode",
|
|
419
419
|
"DocumentIngestionJobParams",
|
|
420
420
|
"EditSuggestion",
|
|
421
421
|
"EditSuggestionBlocksItem",
|
|
@@ -447,6 +447,7 @@ __all__ = [
|
|
|
447
447
|
"ExtractJobCreateDataSchemaOverride",
|
|
448
448
|
"ExtractJobCreateDataSchemaOverrideZeroValue",
|
|
449
449
|
"ExtractMode",
|
|
450
|
+
"ExtractModels",
|
|
450
451
|
"ExtractResultset",
|
|
451
452
|
"ExtractResultsetData",
|
|
452
453
|
"ExtractResultsetDataItemValue",
|
|
@@ -500,10 +501,14 @@ __all__ = [
|
|
|
500
501
|
"LlamaIndexCoreBaseLlmsTypesChatMessage",
|
|
501
502
|
"LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem",
|
|
502
503
|
"LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Audio",
|
|
504
|
+
"LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Document",
|
|
503
505
|
"LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Image",
|
|
504
506
|
"LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Text",
|
|
505
507
|
"LlamaParseParameters",
|
|
506
508
|
"LlamaParseSupportedFileExtensions",
|
|
509
|
+
"LlmConfigResult",
|
|
510
|
+
"LlmConfigResultLlmType",
|
|
511
|
+
"LlmConfigsResponse",
|
|
507
512
|
"LlmModelData",
|
|
508
513
|
"LlmParameters",
|
|
509
514
|
"LoadFilesJobConfig",
|
|
@@ -643,7 +648,6 @@ __all__ = [
|
|
|
643
648
|
"TextNodeRelationshipsValue",
|
|
644
649
|
"TextNodeWithScore",
|
|
645
650
|
"TokenChunkingConfig",
|
|
646
|
-
"TransformationCategoryNames",
|
|
647
651
|
"UsageAndPlan",
|
|
648
652
|
"UsageMetricResponse",
|
|
649
653
|
"UsageResponse",
|
|
@@ -18,6 +18,7 @@ class CloudS3DataSource(pydantic.BaseModel):
|
|
|
18
18
|
supports_access_control: typing.Optional[bool]
|
|
19
19
|
bucket: str = pydantic.Field(description="The name of the S3 bucket to read from.")
|
|
20
20
|
prefix: typing.Optional[str]
|
|
21
|
+
regex_pattern: typing.Optional[str]
|
|
21
22
|
aws_access_id: typing.Optional[str]
|
|
22
23
|
aws_access_secret: typing.Optional[str]
|
|
23
24
|
s_3_endpoint_url: typing.Optional[str] = pydantic.Field(alias="s3_endpoint_url")
|
|
@@ -4,7 +4,6 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .configurable_data_sink_names import ConfigurableDataSinkNames
|
|
8
7
|
|
|
9
8
|
try:
|
|
10
9
|
import pydantic
|
|
@@ -15,20 +14,12 @@ except ImportError:
|
|
|
15
14
|
import pydantic # type: ignore
|
|
16
15
|
|
|
17
16
|
|
|
18
|
-
class
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
description="The label field will be used to display the name of the component in the UI"
|
|
25
|
-
)
|
|
26
|
-
json_schema: typing.Dict[str, typing.Any] = pydantic.Field(
|
|
27
|
-
description="The json_schema field can be used by clients to determine how to construct the component"
|
|
28
|
-
)
|
|
29
|
-
sink_type: ConfigurableDataSinkNames = pydantic.Field(
|
|
30
|
-
description="The name field will act as the unique identifier of DataSinkDefinition objects"
|
|
31
|
-
)
|
|
17
|
+
class DocumentBlock(pydantic.BaseModel):
|
|
18
|
+
data: typing.Optional[str]
|
|
19
|
+
path: typing.Optional[str]
|
|
20
|
+
url: typing.Optional[str]
|
|
21
|
+
title: typing.Optional[str]
|
|
22
|
+
document_mimetype: typing.Optional[str]
|
|
32
23
|
|
|
33
24
|
def json(self, **kwargs: typing.Any) -> str:
|
|
34
25
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class DocumentChunkMode(str, enum.Enum):
|
|
10
|
+
PAGE = "PAGE"
|
|
11
|
+
SECTION = "SECTION"
|
|
12
|
+
|
|
13
|
+
def visit(self, page: typing.Callable[[], T_Result], section: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
+
if self is DocumentChunkMode.PAGE:
|
|
15
|
+
return page()
|
|
16
|
+
if self is DocumentChunkMode.SECTION:
|
|
17
|
+
return section()
|
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .document_chunk_mode import DocumentChunkMode
|
|
7
8
|
from .extract_mode import ExtractMode
|
|
8
9
|
from .extract_target import ExtractTarget
|
|
9
10
|
|
|
@@ -26,6 +27,9 @@ class ExtractConfig(pydantic.BaseModel):
|
|
|
26
27
|
system_prompt: typing.Optional[str]
|
|
27
28
|
use_reasoning: typing.Optional[bool] = pydantic.Field(description="Whether to use reasoning for the extraction.")
|
|
28
29
|
cite_sources: typing.Optional[bool] = pydantic.Field(description="Whether to cite sources for the extraction.")
|
|
30
|
+
chunk_mode: typing.Optional[DocumentChunkMode] = pydantic.Field(
|
|
31
|
+
description="The mode to use for chunking the document."
|
|
32
|
+
)
|
|
29
33
|
invalidate_cache: typing.Optional[bool] = pydantic.Field(
|
|
30
34
|
description="Whether to invalidate the cache for the extraction."
|
|
31
35
|
)
|
|
@@ -9,6 +9,7 @@ T_Result = typing.TypeVar("T_Result")
|
|
|
9
9
|
class ExtractMode(str, enum.Enum):
|
|
10
10
|
FAST = "FAST"
|
|
11
11
|
BALANCED = "BALANCED"
|
|
12
|
+
PREMIUM = "PREMIUM"
|
|
12
13
|
MULTIMODAL = "MULTIMODAL"
|
|
13
14
|
ACCURATE = "ACCURATE"
|
|
14
15
|
|
|
@@ -16,6 +17,7 @@ class ExtractMode(str, enum.Enum):
|
|
|
16
17
|
self,
|
|
17
18
|
fast: typing.Callable[[], T_Result],
|
|
18
19
|
balanced: typing.Callable[[], T_Result],
|
|
20
|
+
premium: typing.Callable[[], T_Result],
|
|
19
21
|
multimodal: typing.Callable[[], T_Result],
|
|
20
22
|
accurate: typing.Callable[[], T_Result],
|
|
21
23
|
) -> T_Result:
|
|
@@ -23,6 +25,8 @@ class ExtractMode(str, enum.Enum):
|
|
|
23
25
|
return fast()
|
|
24
26
|
if self is ExtractMode.BALANCED:
|
|
25
27
|
return balanced()
|
|
28
|
+
if self is ExtractMode.PREMIUM:
|
|
29
|
+
return premium()
|
|
26
30
|
if self is ExtractMode.MULTIMODAL:
|
|
27
31
|
return multimodal()
|
|
28
32
|
if self is ExtractMode.ACCURATE:
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class ExtractModels(str, enum.Enum):
|
|
10
|
+
GPT_4_O = "gpt-4o"
|
|
11
|
+
GPT_4_O_MINI = "gpt-4o-mini"
|
|
12
|
+
GPT_41 = "gpt-4.1"
|
|
13
|
+
GPT_41_MINI = "gpt-4.1-mini"
|
|
14
|
+
O_3_MINI = "o3-mini"
|
|
15
|
+
|
|
16
|
+
def visit(
|
|
17
|
+
self,
|
|
18
|
+
gpt_4_o: typing.Callable[[], T_Result],
|
|
19
|
+
gpt_4_o_mini: typing.Callable[[], T_Result],
|
|
20
|
+
gpt_41: typing.Callable[[], T_Result],
|
|
21
|
+
gpt_41_mini: typing.Callable[[], T_Result],
|
|
22
|
+
o_3_mini: typing.Callable[[], T_Result],
|
|
23
|
+
) -> T_Result:
|
|
24
|
+
if self is ExtractModels.GPT_4_O:
|
|
25
|
+
return gpt_4_o()
|
|
26
|
+
if self is ExtractModels.GPT_4_O_MINI:
|
|
27
|
+
return gpt_4_o_mini()
|
|
28
|
+
if self is ExtractModels.GPT_41:
|
|
29
|
+
return gpt_41()
|
|
30
|
+
if self is ExtractModels.GPT_41_MINI:
|
|
31
|
+
return gpt_41_mini()
|
|
32
|
+
if self is ExtractModels.O_3_MINI:
|
|
33
|
+
return o_3_mini()
|
|
@@ -7,6 +7,7 @@ import typing
|
|
|
7
7
|
import typing_extensions
|
|
8
8
|
|
|
9
9
|
from .audio_block import AudioBlock
|
|
10
|
+
from .document_block import DocumentBlock
|
|
10
11
|
from .image_block import ImageBlock
|
|
11
12
|
from .text_block import TextBlock
|
|
12
13
|
|
|
@@ -20,6 +21,15 @@ class LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Audio(AudioBlock):
|
|
|
20
21
|
allow_population_by_field_name = True
|
|
21
22
|
|
|
22
23
|
|
|
24
|
+
class LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Document(DocumentBlock):
|
|
25
|
+
block_type: typing_extensions.Literal["document"]
|
|
26
|
+
|
|
27
|
+
class Config:
|
|
28
|
+
frozen = True
|
|
29
|
+
smart_union = True
|
|
30
|
+
allow_population_by_field_name = True
|
|
31
|
+
|
|
32
|
+
|
|
23
33
|
class LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Image(ImageBlock):
|
|
24
34
|
block_type: typing_extensions.Literal["image"]
|
|
25
35
|
|
|
@@ -40,6 +50,7 @@ class LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Text(TextBlock):
|
|
|
40
50
|
|
|
41
51
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem = typing.Union[
|
|
42
52
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Audio,
|
|
53
|
+
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Document,
|
|
43
54
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Image,
|
|
44
55
|
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Text,
|
|
45
56
|
]
|
|
@@ -4,7 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
7
|
+
from .llm_config_result_llm_type import LlmConfigResultLlmType
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
import pydantic
|
|
@@ -15,20 +15,11 @@ except ImportError:
|
|
|
15
15
|
import pydantic # type: ignore
|
|
16
16
|
|
|
17
17
|
|
|
18
|
-
class
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
label: str = pydantic.Field(
|
|
24
|
-
description="The label field will be used to display the name of the component in the UI"
|
|
25
|
-
)
|
|
26
|
-
json_schema: typing.Dict[str, typing.Any] = pydantic.Field(
|
|
27
|
-
description="The json_schema field can be used by clients to determine how to construct the component"
|
|
28
|
-
)
|
|
29
|
-
source_type: ConfigurableDataSourceNames = pydantic.Field(
|
|
30
|
-
description="The name field will act as the unique identifier of DataSourceDefinition objects"
|
|
31
|
-
)
|
|
18
|
+
class LlmConfigResult(pydantic.BaseModel):
|
|
19
|
+
llm_type: LlmConfigResultLlmType
|
|
20
|
+
is_enabled: bool
|
|
21
|
+
valid: bool
|
|
22
|
+
error_message: typing.Optional[str]
|
|
32
23
|
|
|
33
24
|
def json(self, **kwargs: typing.Any) -> str:
|
|
34
25
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class LlmConfigResultLlmType(str, enum.Enum):
|
|
10
|
+
OPENAI = "openai"
|
|
11
|
+
ANTHROPIC = "anthropic"
|
|
12
|
+
GEMINI = "gemini"
|
|
13
|
+
AWS_BEDROCK = "aws_bedrock"
|
|
14
|
+
AZURE_OPENAI = "azure_openai"
|
|
15
|
+
|
|
16
|
+
def visit(
|
|
17
|
+
self,
|
|
18
|
+
openai: typing.Callable[[], T_Result],
|
|
19
|
+
anthropic: typing.Callable[[], T_Result],
|
|
20
|
+
gemini: typing.Callable[[], T_Result],
|
|
21
|
+
aws_bedrock: typing.Callable[[], T_Result],
|
|
22
|
+
azure_openai: typing.Callable[[], T_Result],
|
|
23
|
+
) -> T_Result:
|
|
24
|
+
if self is LlmConfigResultLlmType.OPENAI:
|
|
25
|
+
return openai()
|
|
26
|
+
if self is LlmConfigResultLlmType.ANTHROPIC:
|
|
27
|
+
return anthropic()
|
|
28
|
+
if self is LlmConfigResultLlmType.GEMINI:
|
|
29
|
+
return gemini()
|
|
30
|
+
if self is LlmConfigResultLlmType.AWS_BEDROCK:
|
|
31
|
+
return aws_bedrock()
|
|
32
|
+
if self is LlmConfigResultLlmType.AZURE_OPENAI:
|
|
33
|
+
return azure_openai()
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .llm_config_result import LlmConfigResult
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class LlmConfigsResponse(pydantic.BaseModel):
|
|
19
|
+
llm_configs: typing.List[LlmConfigResult]
|
|
20
|
+
last_validated_at: str
|
|
21
|
+
|
|
22
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
24
|
+
return super().json(**kwargs_with_defaults)
|
|
25
|
+
|
|
26
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
27
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
+
return super().dict(**kwargs_with_defaults)
|
|
29
|
+
|
|
30
|
+
class Config:
|
|
31
|
+
frozen = True
|
|
32
|
+
smart_union = True
|
|
33
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -40,9 +40,7 @@ class PipelineCreate(pydantic.BaseModel):
|
|
|
40
40
|
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
41
41
|
description="Eval parameters for the pipeline."
|
|
42
42
|
)
|
|
43
|
-
llama_parse_parameters: typing.Optional[LlamaParseParameters]
|
|
44
|
-
description="Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline."
|
|
45
|
-
)
|
|
43
|
+
llama_parse_parameters: typing.Optional[LlamaParseParameters]
|
|
46
44
|
status: typing.Optional[str]
|
|
47
45
|
metadata_config: typing.Optional[PipelineMetadataConfig]
|
|
48
46
|
name: str
|
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .extract_models import ExtractModels
|
|
7
8
|
from .prompt_conf import PromptConf
|
|
8
9
|
from .schema_relax_mode import SchemaRelaxMode
|
|
9
10
|
from .struct_mode import StructMode
|
|
@@ -22,7 +23,7 @@ class StructParseConf(pydantic.BaseModel):
|
|
|
22
23
|
Configuration for the structured parsing agent.
|
|
23
24
|
"""
|
|
24
25
|
|
|
25
|
-
model: typing.Optional[
|
|
26
|
+
model: typing.Optional[ExtractModels] = pydantic.Field(description="The model to use for the structured parsing.")
|
|
26
27
|
temperature: typing.Optional[float] = pydantic.Field(
|
|
27
28
|
description="The temperature to use for the structured parsing."
|
|
28
29
|
)
|
|
@@ -15,7 +15,7 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
15
15
|
AZURE_OPENAI_GPT_4 = "AZURE_OPENAI_GPT_4"
|
|
16
16
|
CLAUDE_3_5_SONNET = "CLAUDE_3_5_SONNET"
|
|
17
17
|
BEDROCK_CLAUDE_3_5_SONNET = "BEDROCK_CLAUDE_3_5_SONNET"
|
|
18
|
-
|
|
18
|
+
VERTEX_AI_CLAUDE_3_5_SONNET_V_2 = "VERTEX_AI_CLAUDE_3_5_SONNET_V2"
|
|
19
19
|
|
|
20
20
|
def visit(
|
|
21
21
|
self,
|
|
@@ -27,7 +27,7 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
27
27
|
azure_openai_gpt_4: typing.Callable[[], T_Result],
|
|
28
28
|
claude_3_5_sonnet: typing.Callable[[], T_Result],
|
|
29
29
|
bedrock_claude_3_5_sonnet: typing.Callable[[], T_Result],
|
|
30
|
-
|
|
30
|
+
vertex_ai_claude_3_5_sonnet_v_2: typing.Callable[[], T_Result],
|
|
31
31
|
) -> T_Result:
|
|
32
32
|
if self is SupportedLlmModelNames.GPT_4_O:
|
|
33
33
|
return gpt_4_o()
|
|
@@ -45,5 +45,5 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
45
45
|
return claude_3_5_sonnet()
|
|
46
46
|
if self is SupportedLlmModelNames.BEDROCK_CLAUDE_3_5_SONNET:
|
|
47
47
|
return bedrock_claude_3_5_sonnet()
|
|
48
|
-
if self is SupportedLlmModelNames.
|
|
49
|
-
return
|
|
48
|
+
if self is SupportedLlmModelNames.VERTEX_AI_CLAUDE_3_5_SONNET_V_2:
|
|
49
|
+
return vertex_ai_claude_3_5_sonnet_v_2()
|
|
@@ -25,6 +25,7 @@ class UserOrganizationRole(pydantic.BaseModel):
|
|
|
25
25
|
updated_at: typing.Optional[dt.datetime]
|
|
26
26
|
user_id: str = pydantic.Field(description="The user's ID.")
|
|
27
27
|
organization_id: str = pydantic.Field(description="The organization's ID.")
|
|
28
|
+
project_ids: typing.Optional[typing.List[str]]
|
|
28
29
|
role_id: str = pydantic.Field(description="The role's ID.")
|
|
29
30
|
role: Role = pydantic.Field(description="The role.")
|
|
30
31
|
|