llama-cloud 0.1.19__py3-none-any.whl → 0.1.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (52) hide show
  1. llama_cloud/__init__.py +166 -26
  2. llama_cloud/resources/__init__.py +41 -2
  3. llama_cloud/resources/data_sinks/__init__.py +18 -2
  4. llama_cloud/resources/data_sinks/client.py +2 -94
  5. llama_cloud/resources/data_sinks/types/__init__.py +18 -2
  6. llama_cloud/resources/data_sinks/types/data_sink_update_component.py +65 -7
  7. llama_cloud/resources/data_sources/__init__.py +30 -2
  8. llama_cloud/resources/data_sources/types/__init__.py +28 -1
  9. llama_cloud/resources/data_sources/types/data_source_update_component.py +2 -23
  10. llama_cloud/resources/data_sources/types/data_source_update_component_one.py +122 -0
  11. llama_cloud/resources/files/client.py +18 -4
  12. llama_cloud/resources/parsing/client.py +8 -0
  13. llama_cloud/resources/pipelines/client.py +11 -11
  14. llama_cloud/types/__init__.py +146 -28
  15. llama_cloud/types/cloud_jira_data_source.py +0 -4
  16. llama_cloud/types/data_sink_component.py +65 -7
  17. llama_cloud/types/data_sink_create_component.py +65 -7
  18. llama_cloud/types/data_source_component.py +2 -23
  19. llama_cloud/types/data_source_component_one.py +122 -0
  20. llama_cloud/types/data_source_create_component.py +2 -23
  21. llama_cloud/types/data_source_create_component_one.py +122 -0
  22. llama_cloud/types/{base_prompt_template.py → data_source_update_dispatcher_config.py} +9 -7
  23. llama_cloud/types/{node_parser.py → delete_params.py} +7 -9
  24. llama_cloud/types/document_ingestion_job_params.py +43 -0
  25. llama_cloud/types/job_record.py +2 -2
  26. llama_cloud/types/job_record_parameters.py +111 -0
  27. llama_cloud/types/{page_splitter_node_parser.py → l_lama_parse_transform_config.py} +5 -10
  28. llama_cloud/types/legacy_parse_job_config.py +189 -0
  29. llama_cloud/types/llama_parse_parameters.py +1 -0
  30. llama_cloud/types/load_files_job_config.py +35 -0
  31. llama_cloud/types/parse_job_config.py +134 -0
  32. llama_cloud/types/pipeline.py +2 -4
  33. llama_cloud/types/pipeline_create.py +2 -2
  34. llama_cloud/types/pipeline_data_source_component.py +2 -23
  35. llama_cloud/types/pipeline_data_source_component_one.py +122 -0
  36. llama_cloud/types/pipeline_file_update_dispatcher_config.py +38 -0
  37. llama_cloud/types/{configured_transformation_item.py → pipeline_file_updater_config.py} +13 -12
  38. llama_cloud/types/pipeline_managed_ingestion_job_params.py +37 -0
  39. llama_cloud/types/pipeline_metadata_config.py +36 -0
  40. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.20.dist-info}/METADATA +4 -2
  41. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.20.dist-info}/RECORD +43 -40
  42. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.20.dist-info}/WHEEL +1 -1
  43. llama_cloud/types/character_splitter.py +0 -46
  44. llama_cloud/types/code_splitter.py +0 -50
  45. llama_cloud/types/configured_transformation_item_component.py +0 -22
  46. llama_cloud/types/llm.py +0 -60
  47. llama_cloud/types/markdown_element_node_parser.py +0 -51
  48. llama_cloud/types/markdown_node_parser.py +0 -52
  49. llama_cloud/types/pydantic_program_mode.py +0 -41
  50. llama_cloud/types/sentence_splitter.py +0 -50
  51. llama_cloud/types/token_text_splitter.py +0 -50
  52. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.20.dist-info}/LICENSE +0 -0
@@ -0,0 +1,37 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .delete_params import DeleteParams
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class PipelineManagedIngestionJobParams(pydantic.BaseModel):
19
+ """
20
+ Schema for the parameters of a managed pipeline ingestion job.
21
+ """
22
+
23
+ should_delete: typing.Optional[bool]
24
+ delete_info: typing.Optional[DeleteParams]
25
+
26
+ def json(self, **kwargs: typing.Any) -> str:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().json(**kwargs_with_defaults)
29
+
30
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
+ return super().dict(**kwargs_with_defaults)
33
+
34
+ class Config:
35
+ frozen = True
36
+ smart_union = True
37
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,36 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class PipelineMetadataConfig(pydantic.BaseModel):
18
+ excluded_embed_metadata_keys: typing.Optional[typing.List[str]] = pydantic.Field(
19
+ description="List of metadata keys to exclude from embeddings"
20
+ )
21
+ excluded_llm_metadata_keys: typing.Optional[typing.List[str]] = pydantic.Field(
22
+ description="List of metadata keys to exclude from LLM during retrieval"
23
+ )
24
+
25
+ def json(self, **kwargs: typing.Any) -> str:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().json(**kwargs_with_defaults)
28
+
29
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
30
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
+ return super().dict(**kwargs_with_defaults)
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.1.19
3
+ Version: 0.1.20
4
4
  Summary:
5
5
  License: MIT
6
6
  Author: Logan Markewich
@@ -13,7 +13,6 @@ Classifier: Programming Language :: Python :: 3.9
13
13
  Classifier: Programming Language :: Python :: 3.10
14
14
  Classifier: Programming Language :: Python :: 3.11
15
15
  Classifier: Programming Language :: Python :: 3.12
16
- Classifier: Programming Language :: Python :: 3.13
17
16
  Requires-Dist: certifi (>=2024.7.4)
18
17
  Requires-Dist: httpx (>=0.20.0)
19
18
  Requires-Dist: pydantic (>=1.10)
@@ -27,3 +26,6 @@ To publish:
27
26
  - update the version in `pyproject.toml`
28
27
  - run `poetry publish --build`
29
28
 
29
+ Credentials:
30
+ - run `poetry config pypi-token.pypi <my-token>`
31
+
@@ -1,4 +1,4 @@
1
- llama_cloud/__init__.py,sha256=ek0T4C2t2jQzRaagVuKndSzFXXwuS_AY6J6pvsiay_s,23165
1
+ llama_cloud/__init__.py,sha256=s-lFAxrFhNEl37oyxblJHYULm3ZnnKhHbtNokZccy4s,29239
2
2
  llama_cloud/client.py,sha256=L8gEXB8nVlGVgfncfdLaS1j4b-1wExV4TqElUwayvtQ,5759
3
3
  llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
@@ -9,21 +9,22 @@ llama_cloud/core/remove_none_from_dict.py,sha256=8m91FC3YuVem0Gm9_sXhJ2tGvP33owJ
9
9
  llama_cloud/environment.py,sha256=feTjOebeFZMrBdnHat4RE5aHlpt-sJm4NhK4ntV1htI,167
10
10
  llama_cloud/errors/__init__.py,sha256=pbbVUFtB9LCocA1RMWMMF_RKjsy5YkOKX5BAuE49w6g,170
11
11
  llama_cloud/errors/unprocessable_entity_error.py,sha256=FvR7XPlV3Xx5nu8HNlmLhBRdk4so_gCHjYT5PyZe6sM,313
12
- llama_cloud/resources/__init__.py,sha256=HtolWK2lPTVGGUPiblTNksYZW1bR6oBIlYJezusxg-4,4067
12
+ llama_cloud/resources/__init__.py,sha256=saw8nMiWXuaipSh_oS2Y2W42Vqh2bRV-JWEVhRGMk-4,5551
13
13
  llama_cloud/resources/beta/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
14
14
  llama_cloud/resources/beta/client.py,sha256=eRB3mGmNxbhVGTtUpp-j-2APkHUoCbUckIz9coYjCsM,14666
15
15
  llama_cloud/resources/chat_apps/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
16
16
  llama_cloud/resources/chat_apps/client.py,sha256=orSI8rpQbUwVEToolEeiEi5Qe--suXFvfu6D9JDii5I,23595
17
17
  llama_cloud/resources/component_definitions/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
18
18
  llama_cloud/resources/component_definitions/client.py,sha256=YYfoXNa1qim2OdD5y4N5mvoBZKtrCuXS560mtqH_-1c,7569
19
- llama_cloud/resources/data_sinks/__init__.py,sha256=ZHUjn3HbKhq_7QS1q74r2m5RGKF5lxcvF2P6pGvpcis,147
20
- llama_cloud/resources/data_sinks/client.py,sha256=GpD6FhbGqkg2oUToyMG6J8hPxG_iG7W5ZJRo0qg3yzk,20639
21
- llama_cloud/resources/data_sinks/types/__init__.py,sha256=M1aTcufJwiEZo9B0KmYj9PfkSd6I1ooFt9tpIRGwgg8,168
22
- llama_cloud/resources/data_sinks/types/data_sink_update_component.py,sha256=EWbsPt3k_w_vySf01iiFanyN7UVNzSOM3weHzx-Y_rk,809
23
- llama_cloud/resources/data_sources/__init__.py,sha256=McURkcNBGHXH1hmRDRmZI1dRzJrekCTHZsgv03r2oZI,227
19
+ llama_cloud/resources/data_sinks/__init__.py,sha256=g-_jaeCcwtdsWxI1KoY4DUYeV0RutNbsPF_hvxI3C1U,641
20
+ llama_cloud/resources/data_sinks/client.py,sha256=i3EK_f-66V9pL9XWQY7A6prFVzQ_4DbesaJlm_MbT4M,17753
21
+ llama_cloud/resources/data_sinks/types/__init__.py,sha256=PoNjdY3qDCnID3y00dVKy0B_nOgKt80uBE8rifJSr4Y,662
22
+ llama_cloud/resources/data_sinks/types/data_sink_update_component.py,sha256=jSMVBQWeMw2BJQA-rviqC6a4PexBulmFg8IdzkqKVvQ,2284
23
+ llama_cloud/resources/data_sources/__init__.py,sha256=o3JSGGw1IGSLg_E219fFVlVCCzBuTqlnAl-yoQS3nME,1235
24
24
  llama_cloud/resources/data_sources/client.py,sha256=SZFm8bW5nkaXringdSnmxHqvVjKM7cNNOtqVXjgTKhc,21855
25
- llama_cloud/resources/data_sources/types/__init__.py,sha256=Cd5xEECTzXqQSfJALfJPSjudlSLeb3RENeJVi8vwPbM,303
26
- llama_cloud/resources/data_sources/types/data_source_update_component.py,sha256=u9sYcs3A4ZDzKjWCH3W9xIXCcLkZkVZxwoFOhEluqJU,1173
25
+ llama_cloud/resources/data_sources/types/__init__.py,sha256=DW9OPbY-rJpvUbwqexHDheHnxCdHbxAnYcy3N14J2S8,1348
26
+ llama_cloud/resources/data_sources/types/data_source_update_component.py,sha256=8MoJgdjYmN5WqntDpMXX34WJsf-Wsn0gYw_0t9SOTTA,257
27
+ llama_cloud/resources/data_sources/types/data_source_update_component_one.py,sha256=BeXgQB9aRR88S_pRlU5Ru5HBVorumM1oTq-zer0uCyE,3742
27
28
  llama_cloud/resources/data_sources/types/data_source_update_custom_metadata_value.py,sha256=3aFC-p8MSxjhOu2nFtqk0pixj6RqNqcFnbOYngUdZUk,215
28
29
  llama_cloud/resources/embedding_model_configs/__init__.py,sha256=cXDtKKq-gj7yjFjdQ5GrGyPs-T5tRV_0JjUMGlAbdUs,1115
29
30
  llama_cloud/resources/embedding_model_configs/client.py,sha256=2JDvZJtSger9QJ8luPct-2zvwjaJAR8VcKsTZ1wgYTE,17769
@@ -32,7 +33,7 @@ llama_cloud/resources/embedding_model_configs/types/embedding_model_config_creat
32
33
  llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
33
34
  llama_cloud/resources/evals/client.py,sha256=v2AyeQV0hVgC6xoP2gJNgneJMaeXALV1hIeirYGxlPw,3242
34
35
  llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
35
- llama_cloud/resources/files/client.py,sha256=7VmhrE5fbftB6p6QUQUkGM5FO48obF73keq86vGFyhE,49676
36
+ llama_cloud/resources/files/client.py,sha256=oPwDQAkf0zN1mxP_vT6Songp4scOq5k0jcfHo-zfCtY,50560
36
37
  llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
37
38
  llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py,sha256=Wc8wFgujOO5pZvbbh2TMMzpa37GKZd14GYNJ9bdq7BE,214
38
39
  llama_cloud/resources/files/types/file_create_permission_info_value.py,sha256=KPCFuEaa8NiB85A5MfdXRAQ0poAUTl7Feg6BTfmdWas,209
@@ -53,9 +54,9 @@ llama_cloud/resources/llama_extract/types/extract_schema_validate_request_data_s
53
54
  llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
54
55
  llama_cloud/resources/organizations/client.py,sha256=OGSVpkfY5wu8-22IFWVmtbYSDiy0-KqA3Lc1E_jNHvg,55889
55
56
  llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
56
- llama_cloud/resources/parsing/client.py,sha256=M3w5xLx8SZdvfh0Op7TI0CDwdF0YNcjk6E9qEfbZTf0,76377
57
+ llama_cloud/resources/parsing/client.py,sha256=QoRN6Zie7jSY3qAhRa6OnCdYg4e62SkunFQ3NJWLWcs,76711
57
58
  llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
58
- llama_cloud/resources/pipelines/client.py,sha256=x6MjLVwA6bQfDZmelc364tXmSoJeMUj6xPadjermpGQ,129010
59
+ llama_cloud/resources/pipelines/client.py,sha256=tbsu83f8uTLv0jzGl9Y4gPL04deLkKUrWjLgxJOekBo,128812
59
60
  llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
60
61
  llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py,sha256=trI48WLxPcAqV9207Q6-3cj1nl4EGlZpw7En56ZsPgg,217
61
62
  llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=c8FF64fDrBMX_2RX4uY3CjbNc0Ss_AUJ4Eqs-KeV4Wc,2874
@@ -68,7 +69,7 @@ llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwH
68
69
  llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
69
70
  llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
70
71
  llama_cloud/resources/retrievers/client.py,sha256=T7fu41wXAYUTGh23ZWlKPM4e8zH7mg5MDa8F1GxNYwQ,31502
71
- llama_cloud/types/__init__.py,sha256=eWj70ScNb8UwFMtLJTGsuhD3nqPBNssVT3qh1iEyh7s,27476
72
+ llama_cloud/types/__init__.py,sha256=NoadYHc7InM-kcueq3Q0RCdpRmK35JA1m1rCciYmFSA,32301
72
73
  llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
73
74
  llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
74
75
  llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
@@ -81,7 +82,6 @@ llama_cloud/types/base_plan.py,sha256=5DZi20EOciTc5okLAxQDqyGylsW-DflTy14dcvQb2f
81
82
  llama_cloud/types/base_plan_metronome_plan_type.py,sha256=I3g_dVoWWztbmpWpYmseDqQSbwtlLUl2vS01tfgMjEA,499
82
83
  llama_cloud/types/base_plan_name.py,sha256=keHQaw9YV9ghsWnGfnHrLtB4qNz0v4TWX4_MoO3flRM,1926
83
84
  llama_cloud/types/base_plan_plan_frequency.py,sha256=idUZlDaSdMrMZ2lQ1ytBWM4QyduIZu6Gt2eLU0LVqH4,684
84
- llama_cloud/types/base_prompt_template.py,sha256=Cw3887tnytHZ5bJBSlniyU9k5ASidv9VYR86--IbNqo,1248
85
85
  llama_cloud/types/batch.py,sha256=C8320qAjzQGYHiAvUOUzYsT9Ba7OYiHfA9T9_H8_wCY,2235
86
86
  llama_cloud/types/batch_item.py,sha256=ea0efWurrduelCg3wG4bhQOLiWTH1NJfd7So3j_HEbg,1574
87
87
  llama_cloud/types/batch_paginated_list.py,sha256=p25r9oyidy-Cd2D8xt_KLiTn7eMFvAVnzmvXfvKsOsw,1262
@@ -91,7 +91,6 @@ llama_cloud/types/bedrock_embedding_config.py,sha256=32dMhoA2cLx1jeogDnCl9WPVb83
91
91
  llama_cloud/types/billing_period.py,sha256=_BvznHPiB101hKeFmP0ZIRkBnGboxNvNgJD0BhegvN4,1002
92
92
  llama_cloud/types/box_auth_mechanism.py,sha256=EwEdpWYytw_dRtSElfSMPhh5dxalYH8mGW3UAUpkUfY,502
93
93
  llama_cloud/types/character_chunking_config.py,sha256=2ooAnrlVVbKj4nDi_lR66x5E6nWOmj5YDWhSMQD0ubc,1035
94
- llama_cloud/types/character_splitter.py,sha256=Jm6ie7c9JmMqIqLfAN-96sYvNUaIyLzCPBjNUx29VUw,1896
95
94
  llama_cloud/types/chat_app.py,sha256=fLuzYkXLq51C_Y23hoLwfmG-OiT7jlyHt2JGe6-f1IA,1795
96
95
  llama_cloud/types/chat_app_response.py,sha256=WSKr1KI9_pGTSstr3I53kZ8qb3y87Q4ulh8fR0C7sSU,1784
97
96
  llama_cloud/types/chat_data.py,sha256=ZYqVtjXF6qPGajU4IWZu3InpU54TXJwBFiqxBepylP0,1197
@@ -103,7 +102,7 @@ llama_cloud/types/cloud_confluence_data_source.py,sha256=ok8BOv51SC4Ia9kX3DC8LuZ
103
102
  llama_cloud/types/cloud_document.py,sha256=Rg_H8lcz2TzxEAIdU-m5mGpkM7s0j1Cn4JHkXYddmGs,1255
104
103
  llama_cloud/types/cloud_document_create.py,sha256=fQ1gZAtLCpr-a-sPbMez_5fK9JMU3uyp2tNvIzWNG3U,1278
105
104
  llama_cloud/types/cloud_google_drive_data_source.py,sha256=jf5k7SY8scR-8_X27ShYSh1vOiFteqIH6cNcG7xZGLE,1304
106
- llama_cloud/types/cloud_jira_data_source.py,sha256=9R20k8Ne0Bl9X5dgSxpM_IGOFmC70Llz0pJ93rAKRvw,1458
105
+ llama_cloud/types/cloud_jira_data_source.py,sha256=yZ5Nfo07SfWy136a8JPDqvkjFT9oM3x-SGrdqMcxiiA,1390
107
106
  llama_cloud/types/cloud_milvus_vector_store.py,sha256=CHFTJSYPZKYPUU-jpB1MG8OwRvnPiT07o7cYCvQMZLA,1235
108
107
  llama_cloud/types/cloud_mongo_db_atlas_vector_search.py,sha256=CQ9euGBd3a72dvpTapRBhakme-fQbY2OaSoe0GDSHDo,1771
109
108
  llama_cloud/types/cloud_notion_page_data_source.py,sha256=DxYullFctkpd0A75lfTmPzf-9EjBlusMTtNs3RbmIag,1230
@@ -114,7 +113,6 @@ llama_cloud/types/cloud_qdrant_vector_store.py,sha256=F-gjNArzwLWmqgPcC-ZxRqSrhT
114
113
  llama_cloud/types/cloud_s_3_data_source.py,sha256=LG19EMOfIfm14XLbMaUC25BKzdL5u_Mb5GwgF7cB9Kw,1376
115
114
  llama_cloud/types/cloud_sharepoint_data_source.py,sha256=iJtlgb4hsj8CP2IJ7TxdK1GOb3MdyKr7_jsOlY3kFiE,1609
116
115
  llama_cloud/types/cloud_slack_data_source.py,sha256=tlsNj-hDj1gWmM0Q2A1BeyolfaPg_wfvSlJGTETknAo,1374
117
- llama_cloud/types/code_splitter.py,sha256=8MJScSxk9LzByufokcWG3AHAnOjUt13VlV2w0SCXTLc,1987
118
116
  llama_cloud/types/cohere_embedding.py,sha256=wkv_fVCA1WEroGawzPFExwmiJ75gPfzeeemty7NBlsM,1579
119
117
  llama_cloud/types/cohere_embedding_config.py,sha256=c0Kj1wuSsBX9TQ2AondKv5ZtX5PmkivsHj6P0M7tVB4,1142
120
118
  llama_cloud/types/composite_retrieval_mode.py,sha256=PtN0vQ90xyAJL4vyGRG4lMNOpnJ__2L1xiwosI9yfms,548
@@ -125,21 +123,24 @@ llama_cloud/types/configurable_data_sink_names.py,sha256=0Yk9i8hcNXKCcSKpa5KwsCw
125
123
  llama_cloud/types/configurable_data_source_names.py,sha256=mNW71sSgcVhU3kePAOUgRxeqK1Vo7F_J1xIzmYKPRq0,1971
126
124
  llama_cloud/types/configurable_transformation_definition.py,sha256=LDOhI5IDxlLDWM_p_xwCFM7qq1y-aGA8UxN7dnplDlU,1886
127
125
  llama_cloud/types/configurable_transformation_names.py,sha256=N_YhY8IuQxsqBteCibaQwEaY0zd6Ncb6jW69d9mjrdU,1898
128
- llama_cloud/types/configured_transformation_item.py,sha256=9caK5ZOKgGCZc6ynJJIWwpxpScKHOHkZwHFlsBy-Fog,1826
129
- llama_cloud/types/configured_transformation_item_component.py,sha256=VEwtkbnImKGtzaSaIb9q46xu7ZPZliqK7oMh_-ftiq8,712
130
126
  llama_cloud/types/credit_type.py,sha256=nwSRKDWgHk_msdWitctqtyeZwj5EFd6VLto6NF2yCd4,971
131
127
  llama_cloud/types/data_sink.py,sha256=PeexYHHoD8WkVp9WsFtfC-AIWszcgeJUprG1bwC8WsQ,1498
132
- llama_cloud/types/data_sink_component.py,sha256=uvuxLY3MPDpv_bkT0y-tHSZVPRSHCkDBDHVff-036Dg,749
128
+ llama_cloud/types/data_sink_component.py,sha256=BBNQIHaOogJQYAHScChrpeklUO3d9tvIsKr-sM35iQA,2152
133
129
  llama_cloud/types/data_sink_create.py,sha256=dAaFPCwZ5oX0Fbf7ij62dzSaYnrhj3EHmnLnYnw2KgI,1360
134
- llama_cloud/types/data_sink_create_component.py,sha256=8QfNKSTJV_sQ0nJxlpfh0fBkMTSnQD1DTJR8ZMYaesI,755
130
+ llama_cloud/types/data_sink_create_component.py,sha256=C3JCvAiAxAJcjnJQaeMjP3b1-P4k2DkulnPyHpWysQM,2230
135
131
  llama_cloud/types/data_sink_definition.py,sha256=5ve_pq02s8szc34-wWobMe6BAPj_c7e9n9FFsfDqEQ0,1561
136
132
  llama_cloud/types/data_source.py,sha256=4_lTRToLO4u9LYK66VygCPycrZuyct_aiovlxG5H2sE,1768
137
- llama_cloud/types/data_source_component.py,sha256=yfXHoeHaqUMum7fIs3tZB0pOFMhDbAq7oCJtnob0gWY,1077
133
+ llama_cloud/types/data_source_component.py,sha256=xx1-6EJUtfr2A6BgkOtFM4w5I_3zSHqO1qnRRHSNcTc,232
134
+ llama_cloud/types/data_source_component_one.py,sha256=TRYXPzpIt79ZcwIJn0RKnozeS7IgDyxkLiALo7jpSFM,3526
138
135
  llama_cloud/types/data_source_create.py,sha256=s0bAX_GUwiRdrL-PXS9ROrvq3xpmqbqzdMa6thqL2P4,1581
139
- llama_cloud/types/data_source_create_component.py,sha256=-P4FGv9Xg951n-77_bb-2_CF-33ZXcUkw52LPQNunBY,1083
136
+ llama_cloud/types/data_source_create_component.py,sha256=xY1zUoKBH6LRwka54a1w5zFrB3vUYIiEGhBZv7yi7Oc,257
137
+ llama_cloud/types/data_source_create_component_one.py,sha256=HE2afkjNfnI3xwWoVbS3GXZEAEQa2tt4Wl0fs2RqfAs,3652
140
138
  llama_cloud/types/data_source_create_custom_metadata_value.py,sha256=ejSsQNbszYQaUWFh9r9kQpHf88qbhuRv1SI9J_MOSC0,215
141
139
  llama_cloud/types/data_source_custom_metadata_value.py,sha256=pTZn5yjZYmuOhsLABFJOKZblZUkRqo1CqLAuP5tKji4,209
142
140
  llama_cloud/types/data_source_definition.py,sha256=HlSlTxzYcQJOSo_2OSroAE8vAr-otDvTNBSEkA54vL8,1575
141
+ llama_cloud/types/data_source_update_dispatcher_config.py,sha256=Sh6HhXfEV2Z6PYhkYQucs2MxyKVpL3UPV-I4cbf--bA,1242
142
+ llama_cloud/types/delete_params.py,sha256=1snPrd3WO9C1bKf0WdMslE2HQMF0yYLI3U7N53cmurM,1285
143
+ llama_cloud/types/document_ingestion_job_params.py,sha256=33xTAl-K-m1j_Ufkj7w2GaYg9EUH5Hwsjn869X-fWMk,1524
143
144
  llama_cloud/types/edit_suggestion.py,sha256=uzXSZYJiU3FaNN-TvEd3EXdaXvjQIe7Mf4kntKkyB2I,1202
144
145
  llama_cloud/types/edit_suggestion_blocks_item.py,sha256=ojTk4lh0IHmrWP5wLPTIlsc2jAUDoHvdjJ5sm2uMut0,236
145
146
  llama_cloud/types/element_segmentation_config.py,sha256=QOBk8YFrgK0I2m3caqV5bpYaGXbk0fMSjZ4hUPZXZDI,959
@@ -191,27 +192,27 @@ llama_cloud/types/ingestion_error_response.py,sha256=8u0cyT44dnpkNeUKemTvJMUqi_W
191
192
  llama_cloud/types/input_message.py,sha256=Ym6-tX6CMWKuHfxRtyM2y16kqSS3BzHged9rFRFkX0g,1346
192
193
  llama_cloud/types/job_name_mapping.py,sha256=2dQFQlVHoeSlkyEKSEJv0M3PzJf7hMvkuABj3vMY7ys,1617
193
194
  llama_cloud/types/job_names.py,sha256=WacongwoJygg_gCyYjPsOVv3cmVtRaX633JNgFxy-d8,3915
194
- llama_cloud/types/job_record.py,sha256=r2WzLQXSOFogNMN2rl10rAlYI9OTCmVn06QaZXxa0rQ,2058
195
+ llama_cloud/types/job_record.py,sha256=7hdDPZU11EG8g6_9iq6vy-zqLEryeC7i8fZ-CkUB_xQ,2084
196
+ llama_cloud/types/job_record_parameters.py,sha256=Oqxp5y0owPfjLc_NR7AYE8P3zM2PJo36N9olbyNl7AA,3425
195
197
  llama_cloud/types/job_record_with_usage_metrics.py,sha256=iNV2do5TB_0e3PoOz_DJyAaM6Cn9G8KG-dGPGgEs5SY,1198
198
+ llama_cloud/types/l_lama_parse_transform_config.py,sha256=YQRJZvKh1Ee2FUyW_N0nqYJoW599qBgH3JCH9SH6YLo,1249
199
+ llama_cloud/types/legacy_parse_job_config.py,sha256=kVBdiSLraI9rKQOPf0Ci9RtbNLkco0byBJC42uE_PCI,11698
196
200
  llama_cloud/types/llama_extract_settings.py,sha256=IQFxtKa4GtHKc9w-fLwsH0LSKDWzR9_vZ_cTFJ9cGBI,2288
197
201
  llama_cloud/types/llama_index_core_base_llms_types_chat_message.py,sha256=NelHo-T-ebVMhRKsqE_xV8AJW4c7o6lS0uEQnPsmTwg,1365
198
202
  llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py,sha256=JTU5EDoZB_1vcUixiWDCEbCj3-09GhYC3RDDSc0aqBU,1216
199
- llama_cloud/types/llama_parse_parameters.py,sha256=zgA133oDF0QYS2E4r8CtvKPi0nOTq0K5jBRaZmXJGT4,5718
203
+ llama_cloud/types/llama_parse_parameters.py,sha256=DNhVZm3YQ_3xZiz7WUrwH7E6jqW2fZ7YGFsdfsYalUk,5773
200
204
  llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9FbsH50mGBUiyWTIXQjHFl739uAyaQw,11207
201
- llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
202
205
  llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
203
206
  llama_cloud/types/llm_parameters.py,sha256=RTKYt09lm9a1MlnBfYuTP2x_Ww4byUNNc1TqIel5O1Y,1377
207
+ llama_cloud/types/load_files_job_config.py,sha256=R5sFgFmV__0mqLUuD7dkFoBJHG2ZLw5px9zRapvYcpE,1069
204
208
  llama_cloud/types/managed_ingestion_status.py,sha256=3KVlcurpEBOPAesBUS5pSYLoQVIyZUlr90Mmv-uALHE,1290
205
209
  llama_cloud/types/managed_ingestion_status_response.py,sha256=rdNpjNbQswF-6JG1e-EU374TP6Pjlxl0p7HJyNmuxTI,1373
206
- llama_cloud/types/markdown_element_node_parser.py,sha256=NUqdU8BmyfSFK2rV6hCrvP6U1iB6aqZCVsvHWJQ49xU,1964
207
- llama_cloud/types/markdown_node_parser.py,sha256=GchDnlADMRiYREFOO6o_3LoiCXwUrrhms2CQkbP8sMo,1924
208
210
  llama_cloud/types/message_annotation.py,sha256=n4F9w4LxwmGvgXDk6E8YPTMu_g0yEjZhZ_eNFXdS_bc,1017
209
211
  llama_cloud/types/message_role.py,sha256=9MpXT9drR33TyT1-NiqB3uGbuxvWwtoOdSmKQE9HmJI,1359
210
212
  llama_cloud/types/metadata_filter.py,sha256=dVdXY6i0aCkvJrs7ncQt4-S8jmBF9bBSp2VuWrmAVfI,1440
211
213
  llama_cloud/types/metadata_filter_value.py,sha256=ij721gXNI7zbgsuDl9-AqBcXg2WDuVZhYS5F5YqekEs,188
212
214
  llama_cloud/types/metadata_filters.py,sha256=uSf6sB4oQu6WzMPNFG6Tc4euqEiYcj_X14Y5JWt9xVE,1315
213
215
  llama_cloud/types/metadata_filters_filters_item.py,sha256=e8KhD2q6Qc2_aK6r5CvyxC0oWVYO4F4vBIcB9eMEPPM,246
214
- llama_cloud/types/node_parser.py,sha256=rqZTQ_9GnCHOvSpXuAZoezxQCOgxHo-hmQv0s7pnEFc,1380
215
216
  llama_cloud/types/node_relationship.py,sha256=2e2PqWm0LOTiImvtsyiuaAPNIl0BItjSrQZTJv65GRA,1209
216
217
  llama_cloud/types/none_chunking_config.py,sha256=D062t314Vp-s4n9h8wNgsYfElI4PonPKmihvjEmaqdA,952
217
218
  llama_cloud/types/none_segmentation_config.py,sha256=j3jUA6E8uFtwDMEu4TFG3Q4ZGCGiuUfUW9AMO1NNqXU,956
@@ -224,12 +225,12 @@ llama_cloud/types/page_figure_metadata.py,sha256=iIg6_f2SwJg6UcQo9X4MoSm_ygxnIBm
224
225
  llama_cloud/types/page_screenshot_metadata.py,sha256=lobrq0AsOr8sDwMgA9ytop8lRmRFvJW2oiql3yLvbjM,1328
225
226
  llama_cloud/types/page_screenshot_node_with_score.py,sha256=EdqoXbmARCz1DV14E2saCPshIeII709uM4cLwxw_mkM,1232
226
227
  llama_cloud/types/page_segmentation_config.py,sha256=VH8uuxnubnJak1gSpS64OoMueHidhsDB-2eq2tVHbag,998
227
- llama_cloud/types/page_splitter_node_parser.py,sha256=rQgS1CDk18UKA0r9OPvjdtM570jzFArdLCTxYAtZny8,1424
228
228
  llama_cloud/types/paginated_extract_runs_response.py,sha256=NNeVcgBm0mYTAsumwQBO_YrxvkgUqwsvZo3xs8QjVCc,1423
229
229
  llama_cloud/types/paginated_jobs_history_with_metrics.py,sha256=Bxy6N0x0FARJhgwNKKPkNpXx8YLRHvth23G14f5Fuk4,1136
230
230
  llama_cloud/types/paginated_list_cloud_documents_response.py,sha256=MsjS0SWlT0syELDck4x2sxxR3_NC1e6QTdepgVmK9aY,1341
231
231
  llama_cloud/types/paginated_list_pipeline_files_response.py,sha256=2TKR2oHSQRyLMqWz1qQBSIvz-ZJb8U_94367lwOJ2S4,1317
232
232
  llama_cloud/types/paginated_report_response.py,sha256=o79QhQi9r0HZZrhvRlA6WGjxtyPuxN0xONhwXSwxtcs,1104
233
+ llama_cloud/types/parse_job_config.py,sha256=KLBhRRGziH4eU2sZgab24c8-L9b8M9on1Dg0nVnObGc,6254
233
234
  llama_cloud/types/parse_plan_level.py,sha256=GBkDS19qfHseBa17EXfuTPNT4GNv5alyPrWEvWji3GY,528
234
235
  llama_cloud/types/parser_languages.py,sha256=Ps3IlaSt6tyxEI657N3-vZL96r2puk8wsf31cWnO-SI,10840
235
236
  llama_cloud/types/parsing_history_item.py,sha256=_MVzf43t84PbmjOzsMLZ_NBoyiisigLWz-fr0ZxU63g,1183
@@ -244,13 +245,14 @@ llama_cloud/types/permission.py,sha256=LjhZdo0oLvk7ZVIF1d6Qja--AKH5Ri0naUhuJvZS6
244
245
  llama_cloud/types/pg_vector_distance_method.py,sha256=U81o0ARjPR-HuFcVspHiJUrjIDJo3jLhB46vkITDu7M,1203
245
246
  llama_cloud/types/pg_vector_hnsw_settings.py,sha256=-RE59xUgHwNEyAwRYmOQ8SHeAqkSYBfCAROw7QomxUU,1758
246
247
  llama_cloud/types/pg_vector_vector_type.py,sha256=VwOohN566zw42UMlnuKTJopYJypsSnzWjCFmKRoU-bo,952
247
- llama_cloud/types/pipeline.py,sha256=eVNfQjfQTArB3prPeDkfDK6PtfhhBxW7-_VhH9MzlsE,2789
248
+ llama_cloud/types/pipeline.py,sha256=IRkXjv4HiLQbM08Zsk_KSBB4cvWoErkMJXiFu9LikUg,2640
248
249
  llama_cloud/types/pipeline_configuration_hashes.py,sha256=7_MbOcPWV6iyMflJeXoo9vLzD04E5WM7YxYp4ls0jQs,1169
249
- llama_cloud/types/pipeline_create.py,sha256=pS1Lc5Ihh2OXMgRmaO_597a_6ddJEJL-m57efyRsgzw,2687
250
+ llama_cloud/types/pipeline_create.py,sha256=kF9lOu4Kgwgg26Kj3VsAeHoi59jga6ka4oYkIzVy25M,2645
250
251
  llama_cloud/types/pipeline_create_embedding_config.py,sha256=PQqmVBFUyZXYKKBmVQF2zPsGp1L6rje6g3RtXEcdfc8,2811
251
252
  llama_cloud/types/pipeline_create_transform_config.py,sha256=HP6tzLsw_pomK1Ye2PYCS_XDZK_TMgg22mz17_zYKFg,303
252
253
  llama_cloud/types/pipeline_data_source.py,sha256=g8coq6ohp09TtqzvB3_A8Nzery3J5knIfxGWzUtozmg,2381
253
- llama_cloud/types/pipeline_data_source_component.py,sha256=c_R2aBl7XXsfJ_ZuK_-PXzzL2nDI4jrbJ0BStlzp87Y,1085
254
+ llama_cloud/types/pipeline_data_source_component.py,sha256=Pk_K0Gv7xSWe5BKCdxz82EFd6AQDvZGN-6t3zg9h8NY,265
255
+ llama_cloud/types/pipeline_data_source_component_one.py,sha256=7GnJ1tPFIPjpL949T56pFYHhbvdRPw5VTMHmuOmVV8c,3694
254
256
  llama_cloud/types/pipeline_data_source_create.py,sha256=wMsymqB-YGyf3jdQr-N5ODVG6v0w68EMxGBNdQXeJe0,1178
255
257
  llama_cloud/types/pipeline_data_source_custom_metadata_value.py,sha256=8n3r60sxMx4_udW0yzJZxzyWeK6L3cc2-jLGZFW4EDs,217
256
258
  llama_cloud/types/pipeline_data_source_status.py,sha256=BD4xoftwp9lWC8EjJTnf3boIG_AyzjLPuP4qJxGhmcc,1039
@@ -264,6 +266,10 @@ llama_cloud/types/pipeline_file_custom_metadata_value.py,sha256=ClFphYDNlHxeyLF5
264
266
  llama_cloud/types/pipeline_file_permission_info_value.py,sha256=a9yfg5n9po0-4ljGx8DtJoeLBwWFpaEk9ZQUN195BXg,211
265
267
  llama_cloud/types/pipeline_file_resource_info_value.py,sha256=s3uFGQNwlUEr-X4TJZkW_kMBvX3h1sXRJoYlJRvHSDc,209
266
268
  llama_cloud/types/pipeline_file_status.py,sha256=7AJOlwqZVcsk6aPF6Q-x7UzjdzdBj4FeXAZ4m35Bb5M,1003
269
+ llama_cloud/types/pipeline_file_update_dispatcher_config.py,sha256=PiJ1brbKGyq07GmD2VouFfm_Y3KShiyhBXJkwFJsKXw,1222
270
+ llama_cloud/types/pipeline_file_updater_config.py,sha256=KMHBYpH3fYDQaDVvxVgckosiWz0Dl3v5dC53Cgnmtb8,1761
271
+ llama_cloud/types/pipeline_managed_ingestion_job_params.py,sha256=ahliOe6YnLI-upIq1v5HZd9p8xH6pPdkh2M_n_zM9TA,1180
272
+ llama_cloud/types/pipeline_metadata_config.py,sha256=yMnPu6FnhagjuJ_rQ756WbIvVG5dzyXT1fmCYUAmCS0,1291
267
273
  llama_cloud/types/pipeline_transform_config.py,sha256=zMr-ePLKGjbaScxbAHaSwYBL7rrNibVlnn0cbgElDfU,824
268
274
  llama_cloud/types/pipeline_type.py,sha256=tTqrhxHP5xd7W2dQGD0e5FOv886nwJssyaVlXpWrtRo,551
269
275
  llama_cloud/types/plan_limits.py,sha256=WAbDbRl8gsQxvhmuVB0YT8mry-0uKg6c66uivyppdQU,2056
@@ -277,7 +283,6 @@ llama_cloud/types/progress_event_status.py,sha256=yb4RAXwOKU6Bi7iyYy-3lwhF6_mLz0
277
283
  llama_cloud/types/project.py,sha256=4NNh_ZAjEkoWl5st6b1jsPVf_SYKtUTB6rS1701G4IQ,1441
278
284
  llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
279
285
  llama_cloud/types/prompt_conf.py,sha256=6vhUFOBL5MUUJ_ucyvFfmyNCaiPOWepviEawChu0enI,1550
280
- llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
281
286
  llama_cloud/types/re_rank_config.py,sha256=mxRWwrC5BLg3DP1yEyRwW2lIpv5BuXZfTy8f4RbcOp0,1262
282
287
  llama_cloud/types/re_ranker_type.py,sha256=qYItMEHrf80ePBp7gNGBSL67mkTIsqco92WJaJiYweo,1123
283
288
  llama_cloud/types/recurring_credit_grant.py,sha256=19qI3p5k1mQ1Qoo-gCQU02Aa42XpEsmwxPF1F88F-Yg,1517
@@ -307,7 +312,6 @@ llama_cloud/types/role.py,sha256=SCi2TyFbc68RJuNB-OdcP8ut03Uv5zPZk84QMmf17w8,138
307
312
  llama_cloud/types/schema_relax_mode.py,sha256=v4or6dYTvWvBBNtEd2ZSaUAb1706I0Zuh-Xztm-zx_0,635
308
313
  llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Ztd-l-YrHII7U-yM-k,1053
309
314
  llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
310
- llama_cloud/types/sentence_splitter.py,sha256=GbC3KE20Nd85uzO4bqJttjqJhQ_1co2gKnSQxzfOAiM,2140
311
315
  llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDPvx0,1018
312
316
  llama_cloud/types/struct_mode.py,sha256=ROicwjXfFmgVU8_xSVxJlnFUzRNKG5VIEF1wYg9uOPU,1020
313
317
  llama_cloud/types/struct_parse_conf.py,sha256=kKmxsfllbXlRVVDmJtL3Uto9B340row00mYXCzF5tX4,2245
@@ -318,7 +322,6 @@ llama_cloud/types/text_node.py,sha256=Tq3QmuKC5cIHvC9wAtvhsXl1g2sACs2yJwQ0Uko8GS
318
322
  llama_cloud/types/text_node_relationships_value.py,sha256=qmXURTk1Xg7ZDzRSSV1uDEel0AXRLohND5ioezibHY0,217
319
323
  llama_cloud/types/text_node_with_score.py,sha256=k-KYWO_mgJBvO6xUfOD5W6v1Ku9E586_HsvDoQbLfuQ,1229
320
324
  llama_cloud/types/token_chunking_config.py,sha256=XNvnTsNd--YOMQ_Ad8hoqhYgQftqkBHKVn6i7nJnMqs,1067
321
- llama_cloud/types/token_text_splitter.py,sha256=0o3dml94ub5KLy3E5MjxfK4IwVAn0-VTE4zVWG1fUZE,2048
322
325
  llama_cloud/types/transformation_category_names.py,sha256=Wb7NBB0f-tEtfEZQis-iKy71SUKmmHFcXf6XLn6g0XU,545
323
326
  llama_cloud/types/usage_and_plan.py,sha256=bclc7TE7CTBu7RLiTHG426dziyj--I8m5NVu86I2AV4,1065
324
327
  llama_cloud/types/usage_metric_response.py,sha256=ukvtNZLeLacv-5F0-GQ5wTBZOPUPEjAeurgYPc4s7nA,1047
@@ -334,7 +337,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
334
337
  llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
335
338
  llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
336
339
  llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
337
- llama_cloud-0.1.19.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
338
- llama_cloud-0.1.19.dist-info/METADATA,sha256=1VcJf7tzF1bifeNhTbBaRxN5STLYpLydLOJJJ7Os6ck,902
339
- llama_cloud-0.1.19.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
340
- llama_cloud-0.1.19.dist-info/RECORD,,
340
+ llama_cloud-0.1.20.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
341
+ llama_cloud-0.1.20.dist-info/METADATA,sha256=4N_-LHDxytmW1s5FT3A3Sojg4BNUSt4OucZ-ChdDLAw,914
342
+ llama_cloud-0.1.20.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
343
+ llama_cloud-0.1.20.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.1
2
+ Generator: poetry-core 1.9.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,46 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class CharacterSplitter(pydantic.BaseModel):
18
- """
19
- A splitter that splits text into characters.
20
- """
21
-
22
- include_metadata: typing.Optional[bool] = pydantic.Field(
23
- description="Whether or not to consider metadata when splitting."
24
- )
25
- include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
26
- callback_manager: typing.Optional[typing.Any]
27
- id_func: typing.Optional[str]
28
- chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
29
- chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
30
- separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
31
- paragraph_separator: typing.Optional[str] = pydantic.Field(description="Separator between paragraphs.")
32
- secondary_chunking_regex: typing.Optional[str]
33
- class_name: typing.Optional[str]
34
-
35
- def json(self, **kwargs: typing.Any) -> str:
36
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
37
- return super().json(**kwargs_with_defaults)
38
-
39
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
40
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
41
- return super().dict(**kwargs_with_defaults)
42
-
43
- class Config:
44
- frozen = True
45
- smart_union = True
46
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,50 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class CodeSplitter(pydantic.BaseModel):
18
- """
19
- Split code using a AST parser.
20
-
21
- Thank you to Kevin Lu / SweepAI for suggesting this elegant code splitting solution.
22
- https://docs.sweep.dev/blogs/chunking-2m-files
23
- """
24
-
25
- include_metadata: typing.Optional[bool] = pydantic.Field(
26
- description="Whether or not to consider metadata when splitting."
27
- )
28
- include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
29
- callback_manager: typing.Optional[typing.Any]
30
- id_func: typing.Optional[str]
31
- language: str = pydantic.Field(description="The programming language of the code being split.")
32
- chunk_lines: typing.Optional[int] = pydantic.Field(description="The number of lines to include in each chunk.")
33
- chunk_lines_overlap: typing.Optional[int] = pydantic.Field(
34
- description="How many lines of code each chunk overlaps with."
35
- )
36
- max_chars: typing.Optional[int] = pydantic.Field(description="Maximum number of characters per chunk.")
37
- class_name: typing.Optional[str]
38
-
39
- def json(self, **kwargs: typing.Any) -> str:
40
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
41
- return super().json(**kwargs_with_defaults)
42
-
43
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
44
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
45
- return super().dict(**kwargs_with_defaults)
46
-
47
- class Config:
48
- frozen = True
49
- smart_union = True
50
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,22 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import typing
4
-
5
- from .character_splitter import CharacterSplitter
6
- from .code_splitter import CodeSplitter
7
- from .markdown_element_node_parser import MarkdownElementNodeParser
8
- from .markdown_node_parser import MarkdownNodeParser
9
- from .page_splitter_node_parser import PageSplitterNodeParser
10
- from .sentence_splitter import SentenceSplitter
11
- from .token_text_splitter import TokenTextSplitter
12
-
13
- ConfiguredTransformationItemComponent = typing.Union[
14
- typing.Dict[str, typing.Any],
15
- CharacterSplitter,
16
- PageSplitterNodeParser,
17
- CodeSplitter,
18
- SentenceSplitter,
19
- TokenTextSplitter,
20
- MarkdownNodeParser,
21
- MarkdownElementNodeParser,
22
- ]
llama_cloud/types/llm.py DELETED
@@ -1,60 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from .base_prompt_template import BasePromptTemplate
8
- from .pydantic_program_mode import PydanticProgramMode
9
-
10
- try:
11
- import pydantic
12
- if pydantic.__version__.startswith("1."):
13
- raise ImportError
14
- import pydantic.v1 as pydantic # type: ignore
15
- except ImportError:
16
- import pydantic # type: ignore
17
-
18
-
19
- class Llm(pydantic.BaseModel):
20
- """
21
- The LLM class is the main class for interacting with language models.
22
-
23
- Attributes:
24
- system_prompt (Optional[str]):
25
- System prompt for LLM calls.
26
- messages_to_prompt (Callable):
27
- Function to convert a list of messages to an LLM prompt.
28
- completion_to_prompt (Callable):
29
- Function to convert a completion to an LLM prompt.
30
- output_parser (Optional[BaseOutputParser]):
31
- Output parser to parse, validate, and correct errors programmatically.
32
- pydantic_program_mode (PydanticProgramMode):
33
- Pydantic program mode to use for structured prediction.
34
- """
35
-
36
- callback_manager: typing.Optional[typing.Any]
37
- system_prompt: typing.Optional[str]
38
- messages_to_prompt: typing.Optional[str] = pydantic.Field(
39
- description="Function to convert a list of messages to an LLM prompt."
40
- )
41
- completion_to_prompt: typing.Optional[str] = pydantic.Field(
42
- description="Function to convert a completion to an LLM prompt."
43
- )
44
- output_parser: typing.Optional[typing.Any]
45
- pydantic_program_mode: typing.Optional[PydanticProgramMode]
46
- query_wrapper_prompt: typing.Optional[BasePromptTemplate]
47
- class_name: typing.Optional[str]
48
-
49
- def json(self, **kwargs: typing.Any) -> str:
50
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
51
- return super().json(**kwargs_with_defaults)
52
-
53
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
54
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
55
- return super().dict(**kwargs_with_defaults)
56
-
57
- class Config:
58
- frozen = True
59
- smart_union = True
60
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,51 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from .llm import Llm
8
- from .node_parser import NodeParser
9
-
10
- try:
11
- import pydantic
12
- if pydantic.__version__.startswith("1."):
13
- raise ImportError
14
- import pydantic.v1 as pydantic # type: ignore
15
- except ImportError:
16
- import pydantic # type: ignore
17
-
18
-
19
- class MarkdownElementNodeParser(pydantic.BaseModel):
20
- """
21
- Markdown element node parser.
22
-
23
- Splits a markdown document into Text Nodes and Index Nodes corresponding to embedded objects
24
- (e.g. tables).
25
- """
26
-
27
- include_metadata: typing.Optional[bool] = pydantic.Field(
28
- description="Whether or not to consider metadata when splitting."
29
- )
30
- include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
31
- callback_manager: typing.Optional[typing.Any]
32
- id_func: typing.Optional[str]
33
- llm: typing.Optional[Llm]
34
- summary_query_str: typing.Optional[str] = pydantic.Field(description="Query string to use for summarization.")
35
- num_workers: typing.Optional[int] = pydantic.Field(description="Num of workers for async jobs.")
36
- show_progress: typing.Optional[bool] = pydantic.Field(description="Whether to show progress.")
37
- nested_node_parser: typing.Optional[NodeParser]
38
- class_name: typing.Optional[str]
39
-
40
- def json(self, **kwargs: typing.Any) -> str:
41
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
42
- return super().json(**kwargs_with_defaults)
43
-
44
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
45
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
46
- return super().dict(**kwargs_with_defaults)
47
-
48
- class Config:
49
- frozen = True
50
- smart_union = True
51
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,52 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class MarkdownNodeParser(pydantic.BaseModel):
18
- """
19
- Markdown node parser.
20
-
21
- Splits a document into Nodes using Markdown header-based splitting logic.
22
- Each node contains its text content and the path of headers leading to it.
23
-
24
- Args:
25
- include_metadata (bool): whether to include metadata in nodes
26
- include_prev_next_rel (bool): whether to include prev/next relationships
27
- header_path_separator (str): separator char used for section header path metadata
28
- """
29
-
30
- include_metadata: typing.Optional[bool] = pydantic.Field(
31
- description="Whether or not to consider metadata when splitting."
32
- )
33
- include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
34
- callback_manager: typing.Optional[typing.Any]
35
- id_func: typing.Optional[str]
36
- header_path_separator: typing.Optional[str] = pydantic.Field(
37
- description="Separator char used for section header path metadata."
38
- )
39
- class_name: typing.Optional[str]
40
-
41
- def json(self, **kwargs: typing.Any) -> str:
42
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
43
- return super().json(**kwargs_with_defaults)
44
-
45
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
46
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
47
- return super().dict(**kwargs_with_defaults)
48
-
49
- class Config:
50
- frozen = True
51
- smart_union = True
52
- json_encoders = {dt.datetime: serialize_datetime}