llama-cloud 0.1.15__py3-none-any.whl → 0.1.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (49) hide show
  1. llama_cloud/__init__.py +10 -32
  2. llama_cloud/environment.py +1 -1
  3. llama_cloud/resources/chat_apps/client.py +20 -0
  4. llama_cloud/resources/evals/client.py +0 -643
  5. llama_cloud/resources/llama_extract/client.py +98 -6
  6. llama_cloud/resources/parsing/client.py +8 -0
  7. llama_cloud/resources/pipelines/client.py +14 -375
  8. llama_cloud/resources/projects/client.py +72 -923
  9. llama_cloud/resources/retrievers/client.py +161 -4
  10. llama_cloud/types/__init__.py +10 -32
  11. llama_cloud/types/base_plan.py +3 -0
  12. llama_cloud/types/base_plan_name.py +12 -0
  13. llama_cloud/types/cloud_confluence_data_source.py +1 -0
  14. llama_cloud/types/extract_config.py +0 -3
  15. llama_cloud/types/extract_mode.py +13 -1
  16. llama_cloud/types/extract_run.py +1 -0
  17. llama_cloud/types/llama_extract_settings.py +1 -0
  18. llama_cloud/types/llama_parse_parameters.py +1 -0
  19. llama_cloud/types/parsing_mode.py +12 -0
  20. llama_cloud/types/pipeline_file.py +2 -1
  21. llama_cloud/types/pipeline_file_status.py +33 -0
  22. llama_cloud/types/plan_limits.py +1 -0
  23. llama_cloud/types/preset_composite_retrieval_params.py +4 -2
  24. llama_cloud/types/prompt_conf.py +1 -0
  25. llama_cloud/types/{eval_question_create.py → re_rank_config.py} +6 -2
  26. llama_cloud/types/re_ranker_type.py +41 -0
  27. llama_cloud/types/report_block.py +1 -0
  28. llama_cloud/types/struct_mode.py +4 -0
  29. llama_cloud/types/struct_parse_conf.py +6 -0
  30. llama_cloud/types/usage_and_plan.py +2 -2
  31. llama_cloud/types/{usage.py → usage_response.py} +3 -3
  32. llama_cloud/types/{usage_active_alerts_item.py → usage_response_active_alerts_item.py} +8 -4
  33. {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.17.dist-info}/METADATA +1 -1
  34. {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.17.dist-info}/RECORD +36 -47
  35. llama_cloud/types/eval_dataset.py +0 -40
  36. llama_cloud/types/eval_dataset_job_params.py +0 -39
  37. llama_cloud/types/eval_dataset_job_record.py +0 -58
  38. llama_cloud/types/eval_execution_params_override.py +0 -37
  39. llama_cloud/types/eval_metric.py +0 -17
  40. llama_cloud/types/eval_question.py +0 -38
  41. llama_cloud/types/eval_question_result.py +0 -52
  42. llama_cloud/types/local_eval.py +0 -47
  43. llama_cloud/types/local_eval_results.py +0 -40
  44. llama_cloud/types/local_eval_sets.py +0 -33
  45. llama_cloud/types/metric_result.py +0 -33
  46. llama_cloud/types/prompt_mixin_prompts.py +0 -39
  47. llama_cloud/types/prompt_spec.py +0 -36
  48. {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.17.dist-info}/LICENSE +0 -0
  49. {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.17.dist-info}/WHEEL +0 -0
@@ -18,6 +18,7 @@ except ImportError:
18
18
  class ReportBlock(pydantic.BaseModel):
19
19
  idx: int = pydantic.Field(description="The index of the block")
20
20
  template: str = pydantic.Field(description="The content of the block")
21
+ requires_human_review: typing.Optional[bool] = pydantic.Field(description="Whether the block requires human review")
21
22
  sources: typing.Optional[typing.List[TextNodeWithScore]] = pydantic.Field(description="The sources for the block")
22
23
 
23
24
  def json(self, **kwargs: typing.Any) -> str:
@@ -10,6 +10,7 @@ class StructMode(str, enum.Enum):
10
10
  STRUCT_PARSE = "STRUCT_PARSE"
11
11
  JSON_MODE = "JSON_MODE"
12
12
  FUNC_CALL = "FUNC_CALL"
13
+ STRUCT_RELAXED = "STRUCT_RELAXED"
13
14
  UNSTRUCTURED = "UNSTRUCTURED"
14
15
 
15
16
  def visit(
@@ -17,6 +18,7 @@ class StructMode(str, enum.Enum):
17
18
  struct_parse: typing.Callable[[], T_Result],
18
19
  json_mode: typing.Callable[[], T_Result],
19
20
  func_call: typing.Callable[[], T_Result],
21
+ struct_relaxed: typing.Callable[[], T_Result],
20
22
  unstructured: typing.Callable[[], T_Result],
21
23
  ) -> T_Result:
22
24
  if self is StructMode.STRUCT_PARSE:
@@ -25,5 +27,7 @@ class StructMode(str, enum.Enum):
25
27
  return json_mode()
26
28
  if self is StructMode.FUNC_CALL:
27
29
  return func_call()
30
+ if self is StructMode.STRUCT_RELAXED:
31
+ return struct_relaxed()
28
32
  if self is StructMode.UNSTRUCTURED:
29
33
  return unstructured()
@@ -32,6 +32,12 @@ class StructParseConf(pydantic.BaseModel):
32
32
  struct_mode: typing.Optional[StructMode] = pydantic.Field(
33
33
  description="The struct mode to use for the structured parsing."
34
34
  )
35
+ handle_missing: typing.Optional[bool] = pydantic.Field(
36
+ description="Whether to handle missing fields in the schema."
37
+ )
38
+ use_reasoning: typing.Optional[bool] = pydantic.Field(
39
+ description="Whether to use reasoning for the structured parsing."
40
+ )
35
41
  prompt_conf: typing.Optional[PromptConf] = pydantic.Field(
36
42
  description="The prompt configuration for the structured parsing."
37
43
  )
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from .base_plan import BasePlan
8
- from .usage import Usage
8
+ from .usage_response import UsageResponse
9
9
 
10
10
  try:
11
11
  import pydantic
@@ -18,7 +18,7 @@ except ImportError:
18
18
 
19
19
  class UsageAndPlan(pydantic.BaseModel):
20
20
  plan: BasePlan
21
- usage: Usage
21
+ usage: UsageResponse
22
22
 
23
23
  def json(self, **kwargs: typing.Any) -> str:
24
24
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from .free_credits_usage import FreeCreditsUsage
8
- from .usage_active_alerts_item import UsageActiveAlertsItem
8
+ from .usage_response_active_alerts_item import UsageResponseActiveAlertsItem
9
9
 
10
10
  try:
11
11
  import pydantic
@@ -16,7 +16,7 @@ except ImportError:
16
16
  import pydantic # type: ignore
17
17
 
18
18
 
19
- class Usage(pydantic.BaseModel):
19
+ class UsageResponse(pydantic.BaseModel):
20
20
  """
21
21
  Response model
22
22
  """
@@ -25,7 +25,7 @@ class Usage(pydantic.BaseModel):
25
25
  total_users: typing.Optional[int]
26
26
  total_indexes: typing.Optional[int]
27
27
  total_indexed_pages: typing.Optional[int]
28
- active_alerts: typing.Optional[typing.List[UsageActiveAlertsItem]]
28
+ active_alerts: typing.Optional[typing.List[UsageResponseActiveAlertsItem]]
29
29
  current_invoice_total_usd_cents: typing.Optional[int]
30
30
  total_extraction_agents: typing.Optional[int]
31
31
 
@@ -6,20 +6,24 @@ import typing
6
6
  T_Result = typing.TypeVar("T_Result")
7
7
 
8
8
 
9
- class UsageActiveAlertsItem(str, enum.Enum):
9
+ class UsageResponseActiveAlertsItem(str, enum.Enum):
10
10
  PLAN_SPEND_LIMIT_EXCEEDED = "plan_spend_limit_exceeded"
11
+ PLAN_SPEND_LIMIT_SOFT_ALERT = "plan_spend_limit_soft_alert"
11
12
  CONFIGURED_SPEND_LIMIT_EXCEEDED = "configured_spend_limit_exceeded"
12
13
  FREE_CREDITS_EXHAUSTED = "free_credits_exhausted"
13
14
 
14
15
  def visit(
15
16
  self,
16
17
  plan_spend_limit_exceeded: typing.Callable[[], T_Result],
18
+ plan_spend_limit_soft_alert: typing.Callable[[], T_Result],
17
19
  configured_spend_limit_exceeded: typing.Callable[[], T_Result],
18
20
  free_credits_exhausted: typing.Callable[[], T_Result],
19
21
  ) -> T_Result:
20
- if self is UsageActiveAlertsItem.PLAN_SPEND_LIMIT_EXCEEDED:
22
+ if self is UsageResponseActiveAlertsItem.PLAN_SPEND_LIMIT_EXCEEDED:
21
23
  return plan_spend_limit_exceeded()
22
- if self is UsageActiveAlertsItem.CONFIGURED_SPEND_LIMIT_EXCEEDED:
24
+ if self is UsageResponseActiveAlertsItem.PLAN_SPEND_LIMIT_SOFT_ALERT:
25
+ return plan_spend_limit_soft_alert()
26
+ if self is UsageResponseActiveAlertsItem.CONFIGURED_SPEND_LIMIT_EXCEEDED:
23
27
  return configured_spend_limit_exceeded()
24
- if self is UsageActiveAlertsItem.FREE_CREDITS_EXHAUSTED:
28
+ if self is UsageResponseActiveAlertsItem.FREE_CREDITS_EXHAUSTED:
25
29
  return free_credits_exhausted()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.1.15
3
+ Version: 0.1.17
4
4
  Summary:
5
5
  License: MIT
6
6
  Author: Logan Markewich
@@ -1,4 +1,4 @@
1
- llama_cloud/__init__.py,sha256=tJjIj-iumXdTiBOzpqXtfOwVkNBkXJ3Kel0aR6a8bw0,23193
1
+ llama_cloud/__init__.py,sha256=g_a0ws6UELyKPRknXkioQRO8cW7WeK82-QGFi2gQBjI,22727
2
2
  llama_cloud/client.py,sha256=0fK6iRBCA77eSs0zFrYQj-zD0BLy6Dr2Ss0ETJ4WaOY,5555
3
3
  llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
@@ -6,12 +6,12 @@ llama_cloud/core/client_wrapper.py,sha256=xmj0jCdQ0ySzbSqHUWOkpRRy069y74I_HuXkWl
6
6
  llama_cloud/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
7
7
  llama_cloud/core/jsonable_encoder.py,sha256=OewL6HcVqdSMCYDWwN0tsh7BZasBeOJZytrAxkH977k,3891
8
8
  llama_cloud/core/remove_none_from_dict.py,sha256=8m91FC3YuVem0Gm9_sXhJ2tGvP33owJJdrqCLEdowGw,330
9
- llama_cloud/environment.py,sha256=q4q-uY5WgcSlzfHwEANOqFQPu0lstqvMnVOsSfifMKo,168
9
+ llama_cloud/environment.py,sha256=feTjOebeFZMrBdnHat4RE5aHlpt-sJm4NhK4ntV1htI,167
10
10
  llama_cloud/errors/__init__.py,sha256=pbbVUFtB9LCocA1RMWMMF_RKjsy5YkOKX5BAuE49w6g,170
11
11
  llama_cloud/errors/unprocessable_entity_error.py,sha256=FvR7XPlV3Xx5nu8HNlmLhBRdk4so_gCHjYT5PyZe6sM,313
12
12
  llama_cloud/resources/__init__.py,sha256=h2kWef5KlC8qpr-1MJyIoFVCsNBidRUUUWztnsr9AHs,3298
13
13
  llama_cloud/resources/chat_apps/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
14
- llama_cloud/resources/chat_apps/client.py,sha256=olEESaQB-fmQTIi1zfheTTUpt3iBw5-lTYVmiIX9u_s,22943
14
+ llama_cloud/resources/chat_apps/client.py,sha256=r3URXWvgb_rGpiKbHLJXkE2OlOYb1g4LrWgzQeK3ivM,23619
15
15
  llama_cloud/resources/component_definitions/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
16
16
  llama_cloud/resources/component_definitions/client.py,sha256=YYfoXNa1qim2OdD5y4N5mvoBZKtrCuXS560mtqH_-1c,7569
17
17
  llama_cloud/resources/data_sinks/__init__.py,sha256=ZHUjn3HbKhq_7QS1q74r2m5RGKF5lxcvF2P6pGvpcis,147
@@ -28,7 +28,7 @@ llama_cloud/resources/embedding_model_configs/client.py,sha256=uyuDfQQXudqLEQFev
28
28
  llama_cloud/resources/embedding_model_configs/types/__init__.py,sha256=6-rcDwJhw_0shz3CjrPvlYBYXJJ1bLn-PpplhOsQ79w,1156
29
29
  llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py,sha256=SQCHJk0AmBbKS5XKdcEJxhDhIMLQCmCI13IHC28v7vQ,3054
30
30
  llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
31
- llama_cloud/resources/evals/client.py,sha256=JyPHP9MsJ-15XHUVu-UjCcINo2IDPr2OageAqLBGlmw,27578
31
+ llama_cloud/resources/evals/client.py,sha256=v2AyeQV0hVgC6xoP2gJNgneJMaeXALV1hIeirYGxlPw,3242
32
32
  llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
33
33
  llama_cloud/resources/files/client.py,sha256=7VmhrE5fbftB6p6QUQUkGM5FO48obF73keq86vGFyhE,49676
34
34
  llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
@@ -38,26 +38,26 @@ llama_cloud/resources/files/types/file_create_resource_info_value.py,sha256=R7Y-
38
38
  llama_cloud/resources/jobs/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
39
39
  llama_cloud/resources/jobs/client.py,sha256=mN9uOzys9aZkhOJkApUy0yhfNeK8X09xQxT34ZPptNY,5386
40
40
  llama_cloud/resources/llama_extract/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
41
- llama_cloud/resources/llama_extract/client.py,sha256=xEezIrVQcLW7bTle3gNi2bXVDm3trjXsUJpJtChXHVo,53044
41
+ llama_cloud/resources/llama_extract/client.py,sha256=ZFYdW0Rw06daAe2f-jiiHYydltYL3yYm6_LALKcHZ-4,56798
42
42
  llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
43
43
  llama_cloud/resources/organizations/client.py,sha256=OGSVpkfY5wu8-22IFWVmtbYSDiy0-KqA3Lc1E_jNHvg,55889
44
44
  llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
45
- llama_cloud/resources/parsing/client.py,sha256=cdEEqjb5pRvb-Vq9VXjgh1107emTzYh5VP-Uu4aV3XI,74026
45
+ llama_cloud/resources/parsing/client.py,sha256=dUeURj_Hr3T8jZZUXiwubp-ooL9MSHFxOKNrn8X6HWA,74184
46
46
  llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
47
- llama_cloud/resources/pipelines/client.py,sha256=-Oveo6XSfCZva-ylJp7DikV26KxkJsDr6xNFZ8FIqkQ,139274
47
+ llama_cloud/resources/pipelines/client.py,sha256=Irq4P4tZT3RyFZ66xIaYnQsEFtEpfjts3uVq6JZ2Vew,125071
48
48
  llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
49
49
  llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py,sha256=trI48WLxPcAqV9207Q6-3cj1nl4EGlZpw7En56ZsPgg,217
50
50
  llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=c8FF64fDrBMX_2RX4uY3CjbNc0Ss_AUJ4Eqs-KeV4Wc,2874
51
51
  llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py,sha256=KbkyULMv-qeS3qRd31ia6pd5rOdypS0o2UL42NRcA7E,321
52
52
  llama_cloud/resources/projects/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
53
- llama_cloud/resources/projects/client.py,sha256=Tn-8WLGKHc3tzJikrcPOlefjASen7fTAzBDbzdvXtes,56315
53
+ llama_cloud/resources/projects/client.py,sha256=_9a54cNU8deQKrOpx4kj7Vgj2ByCyQQ7eEHhj-Zc1Ik,22498
54
54
  llama_cloud/resources/reports/__init__.py,sha256=cruYbQ1bIuJbRpkfaQY7ajUEslffjd7KzvzMzbtPH94,217
55
55
  llama_cloud/resources/reports/client.py,sha256=kHjtXVVc1Xi3T1GyBvSW5K4mTdr6xQwZA3vw-liRKBg,46736
56
56
  llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwHww2YU90lOonBPTmZIk,291
57
57
  llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
58
58
  llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
59
- llama_cloud/resources/retrievers/client.py,sha256=ASDdqnwXX4qj0sCAkWO7RKFnQ1oiLzBLIQ2bwqnMOKs,24905
60
- llama_cloud/types/__init__.py,sha256=xw0pso0-CRFjj7Z27CtiUU7AbKzPfaDi59BRVPoeBbU,28758
59
+ llama_cloud/resources/retrievers/client.py,sha256=T7fu41wXAYUTGh23ZWlKPM4e8zH7mg5MDa8F1GxNYwQ,31502
60
+ llama_cloud/types/__init__.py,sha256=Jk2CpRyCPl-Ww9FvOsnN20xsPszmwvLgezBNm8e0dyo,28020
61
61
  llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
62
62
  llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
63
63
  llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
@@ -65,9 +65,9 @@ llama_cloud/types/app_schema_chat_chat_message.py,sha256=4Mplkc7PczuxKL7Gga3aj8Q
65
65
  llama_cloud/types/auto_transform_config.py,sha256=HVeHZM75DMRznScqLTfrMwcZwIdyWPuaEYbPewnHqwc,1168
66
66
  llama_cloud/types/azure_open_ai_embedding.py,sha256=MeDqZoPYFN7Nv_imY9cfqDU9SPlEyAY4HcQZ4PF5X3g,2264
67
67
  llama_cloud/types/azure_open_ai_embedding_config.py,sha256=o1zZhzcGElH3SeixFErrm7P_WFHQ6LvrLem_nKJWunw,1170
68
- llama_cloud/types/base_plan.py,sha256=JThRn0N9swW7cVmfvAaJDqTNAUTqlYAHJFZhfTxHe0c,1743
68
+ llama_cloud/types/base_plan.py,sha256=5DZi20EOciTc5okLAxQDqyGylsW-DflTy14dcvQb2fQ,1910
69
69
  llama_cloud/types/base_plan_metronome_plan_type.py,sha256=I3g_dVoWWztbmpWpYmseDqQSbwtlLUl2vS01tfgMjEA,499
70
- llama_cloud/types/base_plan_name.py,sha256=a0GU8mJiloUQttaN5vmFpAx3UmwWabI0lmYts0cMSsw,1478
70
+ llama_cloud/types/base_plan_name.py,sha256=keHQaw9YV9ghsWnGfnHrLtB4qNz0v4TWX4_MoO3flRM,1926
71
71
  llama_cloud/types/base_plan_plan_frequency.py,sha256=idUZlDaSdMrMZ2lQ1ytBWM4QyduIZu6Gt2eLU0LVqH4,684
72
72
  llama_cloud/types/base_prompt_template.py,sha256=Cw3887tnytHZ5bJBSlniyU9k5ASidv9VYR86--IbNqo,1248
73
73
  llama_cloud/types/bedrock_embedding.py,sha256=qrUoVW9Q2DLg-3nBRfGsZqUWGszfzc6ZHR8LJiXTZk4,1908
@@ -83,7 +83,7 @@ llama_cloud/types/chunk_mode.py,sha256=J4vqAQfQG6PWsIv1Fe_99nVsAfDbv_P81_KVsJ9Ak
83
83
  llama_cloud/types/cloud_az_storage_blob_data_source.py,sha256=NT4cYsD1M868_bSJxKM9cvTMtjQtQxKloE4vRv8_lwg,1534
84
84
  llama_cloud/types/cloud_azure_ai_search_vector_store.py,sha256=9GTaft7BaKsR9RJQp5dlpbslXUlTMA1AcDdKV1ApfqI,1513
85
85
  llama_cloud/types/cloud_box_data_source.py,sha256=9bffCaKGvctSsk9OdTpzzP__O1NDpb9wdvKY2uwjpwY,1470
86
- llama_cloud/types/cloud_confluence_data_source.py,sha256=bl4LUbY3RdTkYRbzSHBTG1zKy1fJ9faNACthSe_6Gvw,1486
86
+ llama_cloud/types/cloud_confluence_data_source.py,sha256=QsZbWPbRYxRoaCOGFzvLC_31QMSDQHaLYy3dgpMnQrM,1603
87
87
  llama_cloud/types/cloud_document.py,sha256=Rg_H8lcz2TzxEAIdU-m5mGpkM7s0j1Cn4JHkXYddmGs,1255
88
88
  llama_cloud/types/cloud_document_create.py,sha256=fQ1gZAtLCpr-a-sPbMez_5fK9JMU3uyp2tNvIzWNG3U,1278
89
89
  llama_cloud/types/cloud_google_drive_data_source.py,sha256=jf5k7SY8scR-8_X27ShYSh1vOiFteqIH6cNcG7xZGLE,1304
@@ -131,15 +131,7 @@ llama_cloud/types/embedding_model_config.py,sha256=6-o0vsAX89eHQdCAG5sI317Aivr4T
131
131
  llama_cloud/types/embedding_model_config_embedding_config.py,sha256=9rmfeiJYhBPmSJCXp-qxkOAd9WPwL5Hks7jIKd8XCPM,2901
132
132
  llama_cloud/types/embedding_model_config_update.py,sha256=BiA1KbFT-TSvy5OEyChd0dgDnQCKfBRxsDTvVKNj10Q,1175
133
133
  llama_cloud/types/embedding_model_config_update_embedding_config.py,sha256=mrXFxzb9GRaH4UUnOe_05-uYUuiTgDDCRadAMbPmGgc,2991
134
- llama_cloud/types/eval_dataset.py,sha256=FIP4uHqUXg0LxGPaq-LmW2aTcEdQk-i5AYLbGqsQSV0,1310
135
- llama_cloud/types/eval_dataset_job_params.py,sha256=vcXLJWO581uigNvGAurPDgMeEFtQURWucLF5pemdeS0,1343
136
- llama_cloud/types/eval_dataset_job_record.py,sha256=vBDz7xezpE8AB6Kw7sZLYxgMcv0dxUWVC01_fI2QuUU,2168
137
134
  llama_cloud/types/eval_execution_params.py,sha256=ntVaJh5SMZMPL4QLUiihVjUlg2SKbrezvbMKGlrF66Q,1369
138
- llama_cloud/types/eval_execution_params_override.py,sha256=ihEFbMRYmFJ5mWmFW24JjV6D0qqeDM4p829mSxMGtOQ,1195
139
- llama_cloud/types/eval_metric.py,sha256=vhO_teMLiyzBdzKpOBW8Bm9qCw2h6m3unp2XotB7pDQ,499
140
- llama_cloud/types/eval_question.py,sha256=UG042gXLw1uIW9hQOffCzIoGHVSve8Wk9ZeYGzwhHDU,1432
141
- llama_cloud/types/eval_question_create.py,sha256=oOwxkE5gPj8RAwgr3uuTHfTvLSXmYkkxNHqsT7oUHjI,1031
142
- llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQbToiVJqm41ArY,2168
143
135
  llama_cloud/types/extract_agent.py,sha256=T98IOueut4M52Qm7hqcUOcWFFDhZ-ye0OFdXgfFGtS4,1763
144
136
  llama_cloud/types/extract_agent_create.py,sha256=nDe2AELKdhF2VKe-IiajHavo8xatTZWbJb76D-HhJkM,1429
145
137
  llama_cloud/types/extract_agent_create_data_schema.py,sha256=zB31hJQ8hKaIsPkfTWiX5hqsPVFMyyeWEDZ_Aq237jo,305
@@ -148,7 +140,7 @@ llama_cloud/types/extract_agent_data_schema_value.py,sha256=UaDQ2KjajLDccW7F4NKd
148
140
  llama_cloud/types/extract_agent_update.py,sha256=bcXovL4OblDFQXAfhstLMfSSY2sJHQFkfVjzZ_8jO8c,1349
149
141
  llama_cloud/types/extract_agent_update_data_schema.py,sha256=argR5gPRUYWY6ADCMKRdg-8NM-rsBM91_TEn8NKqVy8,305
150
142
  llama_cloud/types/extract_agent_update_data_schema_zero_value.py,sha256=Nvd892EFhg-PzlqoFp5i2owL7hCZ2SsuL7U4Tk9NeRI,217
151
- llama_cloud/types/extract_config.py,sha256=s0f8Yzfuzl0P_xV91SNj0Cbp77I_FMXCxL5lEJyXR6I,1505
143
+ llama_cloud/types/extract_config.py,sha256=oR_6uYl8-58q6a5BsgymJuqCKPn6JoY7SAUmjT9M3es,1369
152
144
  llama_cloud/types/extract_job.py,sha256=Yx4fDdCdylAji2LPTwqflVpz1o9slpj9tTLS93-1tzU,1431
153
145
  llama_cloud/types/extract_job_create.py,sha256=UK1mBIKyflo7e6m1MxMN95pLscj67jH_yvs8EvmBXqU,1545
154
146
  llama_cloud/types/extract_job_create_batch.py,sha256=64BAproProYtPk7vAPGvFoxvlgg7ZLb1LSg3ChIf7AM,1589
@@ -156,13 +148,13 @@ llama_cloud/types/extract_job_create_batch_data_schema_override.py,sha256=GykJ1B
156
148
  llama_cloud/types/extract_job_create_batch_data_schema_override_zero_value.py,sha256=7zXOgTYUwVAeyYeqWvX69m-7mhvK0V9cBRvgqVSd0X0,228
157
149
  llama_cloud/types/extract_job_create_data_schema_override.py,sha256=vuiJ2lGJjbXEnvFKzVnKyvgwhMXPg1Pb5GZne2DrB60,330
158
150
  llama_cloud/types/extract_job_create_data_schema_override_zero_value.py,sha256=HHEYxOSQXXyBYOiUQg_qwfQtXFj-OtThMwbUDBIgZU0,223
159
- llama_cloud/types/extract_mode.py,sha256=Xu8TvYHXYs-EcELV0hXbkcPuMyK1BLBQPKIBuHeUSnY,457
151
+ llama_cloud/types/extract_mode.py,sha256=uTyzzzeO5lo4idGRQQSnJc9pKSkuKFdXaFRyH0dKd_Q,790
160
152
  llama_cloud/types/extract_resultset.py,sha256=Alje0YQJUiA_aKi0hQs7TAnhDmZuQ_yL9b6HCNYBFQg,1627
161
153
  llama_cloud/types/extract_resultset_data.py,sha256=v9Ae4SxLsvYPE9crko4N16lBjsxuZpz1yrUOhnaM_VY,427
162
154
  llama_cloud/types/extract_resultset_data_item_value.py,sha256=JwqgDIGW0irr8QWaSTIrl24FhGxTUDOXIbxoSdIjuxs,209
163
155
  llama_cloud/types/extract_resultset_data_zero_value.py,sha256=-tqgtp3hwIr2NhuC28wVWqQDgFFGYPfRdzneMtNzoBU,209
164
156
  llama_cloud/types/extract_resultset_extraction_metadata_value.py,sha256=LEFcxgBCY35Tw93RIU8aEcyJYcLuhPp5-_G5XP07-xw,219
165
- llama_cloud/types/extract_run.py,sha256=VrVw5kYwPFARyWO5hgcWLgpUu3cmaZlmeGNXM826EI4,2264
157
+ llama_cloud/types/extract_run.py,sha256=wjjt1kwMLouLq8CyA0RTnEzNIiWfPAw10mgPwXHNAV8,2368
166
158
  llama_cloud/types/extract_run_data.py,sha256=Y24NhSSXSHDOI3qtETs9Iln5y3p5kCl4LB5F_RIoUj4,385
167
159
  llama_cloud/types/extract_run_data_item_value.py,sha256=jbR5Yo3bGwHw72OJJ1l5NGTngE-rC2Jxd5b6BrNKzOc,197
168
160
  llama_cloud/types/extract_run_data_schema_value.py,sha256=C4uNdNQHBrkribgmR6nxOQpRo1eydYJ78a0lm7B-e4o,199
@@ -194,17 +186,14 @@ llama_cloud/types/job_name_mapping.py,sha256=2dQFQlVHoeSlkyEKSEJv0M3PzJf7hMvkuAB
194
186
  llama_cloud/types/job_names.py,sha256=ZapQT__pLI14SagjGi8AsEwWY949hBoplQemMgb_Aoc,4098
195
187
  llama_cloud/types/job_record.py,sha256=r2WzLQXSOFogNMN2rl10rAlYI9OTCmVn06QaZXxa0rQ,2058
196
188
  llama_cloud/types/job_record_with_usage_metrics.py,sha256=iNV2do5TB_0e3PoOz_DJyAaM6Cn9G8KG-dGPGgEs5SY,1198
197
- llama_cloud/types/llama_extract_settings.py,sha256=Yh9Ah9W0X4l-znjYm4oNIh8-LCBc99JEQmGU87bUzWs,2225
189
+ llama_cloud/types/llama_extract_settings.py,sha256=HtuUbO_2GbypKl9IglpzmR22N2MPnjXVScSk2VcMx14,2278
198
190
  llama_cloud/types/llama_index_core_base_llms_types_chat_message.py,sha256=NelHo-T-ebVMhRKsqE_xV8AJW4c7o6lS0uEQnPsmTwg,1365
199
191
  llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py,sha256=tTglUqrSUaVc2Wsi4uIt5MU-80_oxZzTnhf8ziilVGY,874
200
- llama_cloud/types/llama_parse_parameters.py,sha256=TMKaebSDi_6B4qsalE2zyYCJirj_HW_x5MhSIimGPJ8,5234
192
+ llama_cloud/types/llama_parse_parameters.py,sha256=S3ynbHglFjqejskks6NyDtPQu_3ni19QelEkJjt7-HU,5267
201
193
  llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9FbsH50mGBUiyWTIXQjHFl739uAyaQw,11207
202
194
  llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
203
195
  llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
204
196
  llama_cloud/types/llm_parameters.py,sha256=RTKYt09lm9a1MlnBfYuTP2x_Ww4byUNNc1TqIel5O1Y,1377
205
- llama_cloud/types/local_eval.py,sha256=aJ8jRG0b5EL9cLjx281bzAzPw7Ar004Jfp6mBmyjuTA,1491
206
- llama_cloud/types/local_eval_results.py,sha256=YfK6AhfD0gr5apQBfrfzrTHDXvrk7ynAUUjNSKu9NVk,1380
207
- llama_cloud/types/local_eval_sets.py,sha256=XJSSriwRvkma889pPiBQrpRakKejKOX3tWPu1TGb1ug,1181
208
197
  llama_cloud/types/managed_ingestion_status.py,sha256=3KVlcurpEBOPAesBUS5pSYLoQVIyZUlr90Mmv-uALHE,1290
209
198
  llama_cloud/types/managed_ingestion_status_response.py,sha256=rdNpjNbQswF-6JG1e-EU374TP6Pjlxl0p7HJyNmuxTI,1373
210
199
  llama_cloud/types/markdown_element_node_parser.py,sha256=NUqdU8BmyfSFK2rV6hCrvP6U1iB6aqZCVsvHWJQ49xU,1964
@@ -215,7 +204,6 @@ llama_cloud/types/metadata_filter.py,sha256=dVdXY6i0aCkvJrs7ncQt4-S8jmBF9bBSp2Vu
215
204
  llama_cloud/types/metadata_filter_value.py,sha256=ij721gXNI7zbgsuDl9-AqBcXg2WDuVZhYS5F5YqekEs,188
216
205
  llama_cloud/types/metadata_filters.py,sha256=uSf6sB4oQu6WzMPNFG6Tc4euqEiYcj_X14Y5JWt9xVE,1315
217
206
  llama_cloud/types/metadata_filters_filters_item.py,sha256=e8KhD2q6Qc2_aK6r5CvyxC0oWVYO4F4vBIcB9eMEPPM,246
218
- llama_cloud/types/metric_result.py,sha256=gCVyu9usPip30igCLKS0oTYU6V3CvY8QIk1gwaXB7ik,1051
219
207
  llama_cloud/types/node_parser.py,sha256=rqZTQ_9GnCHOvSpXuAZoezxQCOgxHo-hmQv0s7pnEFc,1380
220
208
  llama_cloud/types/node_relationship.py,sha256=2e2PqWm0LOTiImvtsyiuaAPNIl0BItjSrQZTJv65GRA,1209
221
209
  llama_cloud/types/none_chunking_config.py,sha256=D062t314Vp-s4n9h8wNgsYfElI4PonPKmihvjEmaqdA,952
@@ -243,7 +231,7 @@ llama_cloud/types/parsing_job_json_result.py,sha256=BA3_u-ChHpE5wm08WmOvgPUsMsCl
243
231
  llama_cloud/types/parsing_job_markdown_result.py,sha256=gPIUO0JwtKwvSHcRYEr995DNl7VN3EaaSaj4aPHCP4o,1077
244
232
  llama_cloud/types/parsing_job_structured_result.py,sha256=w_Z4DOHjwUPmffjc4qJiGYbniWTpkjpVcD4irL1dDj0,1017
245
233
  llama_cloud/types/parsing_job_text_result.py,sha256=TP-7IRTWZLAZz7NYLkzi4PsGnaRJuPTt40p56Mk6Rhw,1065
246
- llama_cloud/types/parsing_mode.py,sha256=ppsF_Mia1FF26Zk3sZBwERxuqMbhvVDuVoR2kOsKJdE,1340
234
+ llama_cloud/types/parsing_mode.py,sha256=s89EhQB3N9yH9a5EtuB8tDcrHLe2KJTM6e0Do-iU7FE,2038
247
235
  llama_cloud/types/parsing_usage.py,sha256=JLlozu-vIkcRKqWaOVJ9Z2TrY7peJRTzOpYjOThGKGQ,1012
248
236
  llama_cloud/types/partition_names.py,sha256=zZZn-sn59gwch2fa7fGMwFWUEuu5Dfen3ZqKtcPnBEM,1877
249
237
  llama_cloud/types/permission.py,sha256=LjhZdo0oLvk7ZVIF1d6Qja--AKH5Ri0naUhuJvZS6Ng,1345
@@ -258,34 +246,35 @@ llama_cloud/types/pipeline_data_source_create.py,sha256=wMsymqB-YGyf3jdQr-N5ODVG
258
246
  llama_cloud/types/pipeline_data_source_custom_metadata_value.py,sha256=8n3r60sxMx4_udW0yzJZxzyWeK6L3cc2-jLGZFW4EDs,217
259
247
  llama_cloud/types/pipeline_deployment.py,sha256=eVBrz032aPb2cqtIIVYT5MTHQvBNm89XazoNrRWVugo,1356
260
248
  llama_cloud/types/pipeline_embedding_config.py,sha256=mpeJ6bOMvRUO12VTYbcHmgJ3ssHNKAUQMrF06j2t7Lc,2721
261
- llama_cloud/types/pipeline_file.py,sha256=PUfKFTXEsrIMmXlzguEeETmo0yjDk-cA0iofNiT-hlw,2452
249
+ llama_cloud/types/pipeline_file.py,sha256=_y0O_I7xr4ydXJb4__qyD8OlgTxS2I4RXdKCgV7qXGc,2520
262
250
  llama_cloud/types/pipeline_file_config_hash_value.py,sha256=4lvLnDpzNAHdiMkGJTTNDTu3p3H7Nxw5MR1Mzte7-_M,201
263
251
  llama_cloud/types/pipeline_file_create.py,sha256=yoMIzWED0ktKerE48kgzInBa3d0aNGO5JjTtDTDAn4A,1310
264
252
  llama_cloud/types/pipeline_file_create_custom_metadata_value.py,sha256=olVj5yhQFx1QqWO1Wv9d6AtL-YyYO9_OYtOfcD2ZeGY,217
265
253
  llama_cloud/types/pipeline_file_custom_metadata_value.py,sha256=ClFphYDNlHxeyLF5BWxIUhs2rooS0Xtqxr_Ae8dn8zE,211
266
254
  llama_cloud/types/pipeline_file_permission_info_value.py,sha256=a9yfg5n9po0-4ljGx8DtJoeLBwWFpaEk9ZQUN195BXg,211
267
255
  llama_cloud/types/pipeline_file_resource_info_value.py,sha256=s3uFGQNwlUEr-X4TJZkW_kMBvX3h1sXRJoYlJRvHSDc,209
256
+ llama_cloud/types/pipeline_file_status.py,sha256=7AJOlwqZVcsk6aPF6Q-x7UzjdzdBj4FeXAZ4m35Bb5M,1003
268
257
  llama_cloud/types/pipeline_transform_config.py,sha256=zMr-ePLKGjbaScxbAHaSwYBL7rrNibVlnn0cbgElDfU,824
269
258
  llama_cloud/types/pipeline_type.py,sha256=tTqrhxHP5xd7W2dQGD0e5FOv886nwJssyaVlXpWrtRo,551
270
- llama_cloud/types/plan_limits.py,sha256=Hqo2IyFoI4BSYtaYF4JYIGqYA0xIdpSqc3Ht_cycJTc,1986
259
+ llama_cloud/types/plan_limits.py,sha256=WAbDbRl8gsQxvhmuVB0YT8mry-0uKg6c66uivyppdQU,2056
271
260
  llama_cloud/types/playground_session.py,sha256=F8u2KZL2YaOrsT-o1n4zbhyPxSsoduc3ZCzQB8AecFA,1858
272
261
  llama_cloud/types/pooling.py,sha256=5Fr6c8rx9SDWwWzEvD78suob2d79ktodUtLUAUHMbP8,651
273
- llama_cloud/types/preset_composite_retrieval_params.py,sha256=8msstaAZUMs0ziQSEq4RJXNuQFztSDtDfyJHr632ubQ,1321
262
+ llama_cloud/types/preset_composite_retrieval_params.py,sha256=yEf1pk4Wz5J6SxgB8elklwuyVDCRSZqfWC6x3hJUS4Q,1366
274
263
  llama_cloud/types/preset_retrieval_params.py,sha256=gEkjXr4202ebLtPL6pYX5hj5NSwANpAdhZbEHCbE2RA,1782
275
264
  llama_cloud/types/presigned_url.py,sha256=-DOQo7XKvUsl-9Gz7fX6VOHdQLzGH2XRau24ASvG92E,1275
276
265
  llama_cloud/types/progress_event.py,sha256=Bk73A8geTVaq0ze5pMnbkAmx7FSOHQIixYCpCas_dcY,1684
277
266
  llama_cloud/types/progress_event_status.py,sha256=yb4RAXwOKU6Bi7iyYy-3lwhF6_mLz0ZFyGjxIdaByoE,893
278
267
  llama_cloud/types/project.py,sha256=4NNh_ZAjEkoWl5st6b1jsPVf_SYKtUTB6rS1701G4IQ,1441
279
268
  llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
280
- llama_cloud/types/prompt_conf.py,sha256=B3G9kdx1Md5fsx2ix4NYz5emvKi2GisYOOp9RozCPCU,1294
281
- llama_cloud/types/prompt_mixin_prompts.py,sha256=_ipiIFWmWSuaJ5VFI5rXa_C7lHaIL3Yv5izh7__xTxI,1323
282
- llama_cloud/types/prompt_spec.py,sha256=tPJTIzN9pYmiZD-HcPHFuhh4n1ak9FI5f7xFNV31djQ,1410
269
+ llama_cloud/types/prompt_conf.py,sha256=4vAKt0Gce9ALRb_-FE0QbRiFM1Rc9OQAADggwBwgauE,1402
283
270
  llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
271
+ llama_cloud/types/re_rank_config.py,sha256=mxRWwrC5BLg3DP1yEyRwW2lIpv5BuXZfTy8f4RbcOp0,1262
272
+ llama_cloud/types/re_ranker_type.py,sha256=qYItMEHrf80ePBp7gNGBSL67mkTIsqco92WJaJiYweo,1123
284
273
  llama_cloud/types/recurring_credit_grant.py,sha256=19qI3p5k1mQ1Qoo-gCQU02Aa42XpEsmwxPF1F88F-Yg,1517
285
274
  llama_cloud/types/related_node_info.py,sha256=frQg_RqrSBc62ooJ4QOF5QRKymHcNot5WVFAB_g1sMg,1216
286
275
  llama_cloud/types/related_node_info_node_type.py,sha256=lH95d8G-EnKCllV_igJsBfYt49y162PoNxWtrCo_Kgk,173
287
276
  llama_cloud/types/report.py,sha256=9M_WkIxi5ilmtXrLKo5XxWzJ_qV8FFf5j8bAlQRmaks,1155
288
- llama_cloud/types/report_block.py,sha256=h11qkKbd5fdNWILjLTiz4alQCSqITTq9DlGya8OuTVU,1260
277
+ llama_cloud/types/report_block.py,sha256=y5n5z0JxZNH9kzN0rTqIdZPRLA9XHdYvQlHTcPSraKk,1381
289
278
  llama_cloud/types/report_block_dependency.py,sha256=TGtLpcJG2xwTKr3GU8Err53T0BR_zNTiT-2JILvPbSg,785
290
279
  llama_cloud/types/report_create_response.py,sha256=tmnVkyAMVf0HNQy186DFVV1oZQzYGY9wxNk84cwQLKA,1020
291
280
  llama_cloud/types/report_event_item.py,sha256=_-0wgI96Ama2qKqUODTmI_fEcrnW5eAAjL1AoFEr4cQ,1451
@@ -310,8 +299,8 @@ llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Zt
310
299
  llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
311
300
  llama_cloud/types/sentence_splitter.py,sha256=GbC3KE20Nd85uzO4bqJttjqJhQ_1co2gKnSQxzfOAiM,2140
312
301
  llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDPvx0,1018
313
- llama_cloud/types/struct_mode.py,sha256=AjYmpXTEYlMNNac6cNjEGYQBJwKJERw2ERdjGKgrX3o,845
314
- llama_cloud/types/struct_parse_conf.py,sha256=bD0gZzN6tR8VO9s81KPwTffLQDnLLAAcNrnknii_178,1825
302
+ llama_cloud/types/struct_mode.py,sha256=ROicwjXfFmgVU8_xSVxJlnFUzRNKG5VIEF1wYg9uOPU,1020
303
+ llama_cloud/types/struct_parse_conf.py,sha256=Od5f8azJlJTJJ6rwtZEIaEsSSYBdrNsHtLeMtdpMtxM,2101
315
304
  llama_cloud/types/supported_llm_model.py,sha256=0v-g01LyZB7TeN0zwAeSJejRoT95SVaXOJhNz7boJwM,1461
316
305
  llama_cloud/types/supported_llm_model_names.py,sha256=dEhmwGQVG-dmuGGbTWBAYadr-g5u3kiVz308CLWuSqw,2657
317
306
  llama_cloud/types/text_block.py,sha256=X154sQkSyposXuRcEWNp_tWcDQ-AI6q_-MfJUN5exP8,958
@@ -321,10 +310,10 @@ llama_cloud/types/text_node_with_score.py,sha256=k-KYWO_mgJBvO6xUfOD5W6v1Ku9E586
321
310
  llama_cloud/types/token_chunking_config.py,sha256=XNvnTsNd--YOMQ_Ad8hoqhYgQftqkBHKVn6i7nJnMqs,1067
322
311
  llama_cloud/types/token_text_splitter.py,sha256=iTT3x9yO021v757B2r-0Z-WFQiIESLqEJUCmUUwPQ_o,1899
323
312
  llama_cloud/types/transformation_category_names.py,sha256=Wb7NBB0f-tEtfEZQis-iKy71SUKmmHFcXf6XLn6g0XU,545
324
- llama_cloud/types/usage.py,sha256=LT4Jr4kiQiug2A_cNmGSxWV7UZmseYzxACXo7dTQIBQ,1466
325
- llama_cloud/types/usage_active_alerts_item.py,sha256=YZkSH_Vd3hu5f-Nv0LKKj9slVTa3GsOcbSPhttKcVqQ,964
326
- llama_cloud/types/usage_and_plan.py,sha256=DsQVkOkh6yiDY9FsGR34DcTocj53loO2lU55P45XnWY,1040
313
+ llama_cloud/types/usage_and_plan.py,sha256=bclc7TE7CTBu7RLiTHG426dziyj--I8m5NVu86I2AV4,1065
327
314
  llama_cloud/types/usage_metric_response.py,sha256=ukvtNZLeLacv-5F0-GQ5wTBZOPUPEjAeurgYPc4s7nA,1047
315
+ llama_cloud/types/usage_response.py,sha256=o0u15PGNQmOOie4kJFfc4Rw0jKGLckBJdH0NCAfT8_k,1499
316
+ llama_cloud/types/usage_response_active_alerts_item.py,sha256=5EgU7go_CPe2Bmio12MwDoJaMnaMW0XjFNvVks0BhQY,1255
328
317
  llama_cloud/types/user_job_record.py,sha256=mJHdokJsemXJOwM2l7fsW3X0SlwSNcy7yHbcXZHh3I4,1098
329
318
  llama_cloud/types/user_organization.py,sha256=Ydel7grMnKiPMWJmSWhCFCm3v_n286Gk36ANtDLNLd4,1770
330
319
  llama_cloud/types/user_organization_create.py,sha256=Zj57s9xuYVnLW2p8i4j2QORL-G1y7Ab3avXE1baERQY,1189
@@ -335,7 +324,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
335
324
  llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
336
325
  llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
337
326
  llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
338
- llama_cloud-0.1.15.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
339
- llama_cloud-0.1.15.dist-info/METADATA,sha256=uPM6KdBc0u-od5x-l5Ef221lWETrhsnIkdVvdbL1PX8,902
340
- llama_cloud-0.1.15.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
341
- llama_cloud-0.1.15.dist-info/RECORD,,
327
+ llama_cloud-0.1.17.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
328
+ llama_cloud-0.1.17.dist-info/METADATA,sha256=lH_iTxlsKdlvdppMsvFpJtyl5vFWAsT2NVppajCSBEs,902
329
+ llama_cloud-0.1.17.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
330
+ llama_cloud-0.1.17.dist-info/RECORD,,
@@ -1,40 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class EvalDataset(pydantic.BaseModel):
18
- """
19
- Schema for an eval dataset.
20
- Includes the other DB fields like id, created_at, & updated_at.
21
- """
22
-
23
- id: str = pydantic.Field(description="Unique identifier")
24
- created_at: typing.Optional[dt.datetime]
25
- updated_at: typing.Optional[dt.datetime]
26
- name: str = pydantic.Field(description="The name of the EvalDataset.")
27
- project_id: str
28
-
29
- def json(self, **kwargs: typing.Any) -> str:
30
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
- return super().json(**kwargs_with_defaults)
32
-
33
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
34
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
35
- return super().dict(**kwargs_with_defaults)
36
-
37
- class Config:
38
- frozen = True
39
- smart_union = True
40
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,39 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from .eval_execution_params import EvalExecutionParams
8
-
9
- try:
10
- import pydantic
11
- if pydantic.__version__.startswith("1."):
12
- raise ImportError
13
- import pydantic.v1 as pydantic # type: ignore
14
- except ImportError:
15
- import pydantic # type: ignore
16
-
17
-
18
- class EvalDatasetJobParams(pydantic.BaseModel):
19
- """
20
- Schema for the parameters of an eval dataset job.
21
- """
22
-
23
- eval_question_ids: typing.List[str] = pydantic.Field(
24
- description="The IDs for the EvalQuestions this execution ran against."
25
- )
26
- eval_execution_params: EvalExecutionParams = pydantic.Field(description="The parameters for the eval execution.")
27
-
28
- def json(self, **kwargs: typing.Any) -> str:
29
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
- return super().json(**kwargs_with_defaults)
31
-
32
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
33
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
34
- return super().dict(**kwargs_with_defaults)
35
-
36
- class Config:
37
- frozen = True
38
- smart_union = True
39
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,58 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- import typing_extensions
7
-
8
- from ..core.datetime_utils import serialize_datetime
9
- from .eval_dataset_job_params import EvalDatasetJobParams
10
- from .status_enum import StatusEnum
11
-
12
- try:
13
- import pydantic
14
- if pydantic.__version__.startswith("1."):
15
- raise ImportError
16
- import pydantic.v1 as pydantic # type: ignore
17
- except ImportError:
18
- import pydantic # type: ignore
19
-
20
-
21
- class EvalDatasetJobRecord(pydantic.BaseModel):
22
- """
23
- Schema for job that evaluates an EvalDataset against a pipeline.
24
- """
25
-
26
- job_name: typing_extensions.Literal["eval_dataset_job"]
27
- partitions: typing.Dict[str, str] = pydantic.Field(
28
- description="The partitions for this execution. Used for determining where to save job output."
29
- )
30
- parameters: typing.Optional[EvalDatasetJobParams]
31
- session_id: typing.Optional[str]
32
- correlation_id: typing.Optional[str]
33
- parent_job_execution_id: typing.Optional[str]
34
- user_id: typing.Optional[str]
35
- created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
36
- project_id: typing.Optional[str]
37
- id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
38
- status: StatusEnum
39
- error_code: typing.Optional[str]
40
- error_message: typing.Optional[str]
41
- attempts: typing.Optional[int]
42
- started_at: typing.Optional[dt.datetime]
43
- ended_at: typing.Optional[dt.datetime]
44
- updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
45
- data: typing.Optional[typing.Any]
46
-
47
- def json(self, **kwargs: typing.Any) -> str:
48
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
49
- return super().json(**kwargs_with_defaults)
50
-
51
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
52
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
53
- return super().dict(**kwargs_with_defaults)
54
-
55
- class Config:
56
- frozen = True
57
- smart_union = True
58
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,37 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from .supported_llm_model_names import SupportedLlmModelNames
8
-
9
- try:
10
- import pydantic
11
- if pydantic.__version__.startswith("1."):
12
- raise ImportError
13
- import pydantic.v1 as pydantic # type: ignore
14
- except ImportError:
15
- import pydantic # type: ignore
16
-
17
-
18
- class EvalExecutionParamsOverride(pydantic.BaseModel):
19
- """
20
- Schema for the params override for an eval execution.
21
- """
22
-
23
- llm_model: typing.Optional[SupportedLlmModelNames]
24
- qa_prompt_tmpl: typing.Optional[str]
25
-
26
- def json(self, **kwargs: typing.Any) -> str:
27
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
- return super().json(**kwargs_with_defaults)
29
-
30
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
- return super().dict(**kwargs_with_defaults)
33
-
34
- class Config:
35
- frozen = True
36
- smart_union = True
37
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,17 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import enum
4
- import typing
5
-
6
- T_Result = typing.TypeVar("T_Result")
7
-
8
-
9
- class EvalMetric(str, enum.Enum):
10
- RELEVANCY = "RELEVANCY"
11
- FAITHFULNESS = "FAITHFULNESS"
12
-
13
- def visit(self, relevancy: typing.Callable[[], T_Result], faithfulness: typing.Callable[[], T_Result]) -> T_Result:
14
- if self is EvalMetric.RELEVANCY:
15
- return relevancy()
16
- if self is EvalMetric.FAITHFULNESS:
17
- return faithfulness()
@@ -1,38 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class EvalQuestion(pydantic.BaseModel):
18
- id: str = pydantic.Field(description="Unique identifier")
19
- created_at: typing.Optional[dt.datetime]
20
- updated_at: typing.Optional[dt.datetime]
21
- content: str = pydantic.Field(description="The content of the question.")
22
- eval_dataset_id: str
23
- eval_dataset_index: int = pydantic.Field(
24
- description="The index at which this question is positioned relative to the other questions in the linked EvalDataset. Client is responsible for setting this correctly."
25
- )
26
-
27
- def json(self, **kwargs: typing.Any) -> str:
28
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
- return super().json(**kwargs_with_defaults)
30
-
31
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
32
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
- return super().dict(**kwargs_with_defaults)
34
-
35
- class Config:
36
- frozen = True
37
- smart_union = True
38
- json_encoders = {dt.datetime: serialize_datetime}