llama-cloud 0.1.15__py3-none-any.whl → 0.1.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

@@ -346,6 +346,68 @@ class RetrieversClient:
346
346
  raise ApiError(status_code=_response.status_code, body=_response.text)
347
347
  raise ApiError(status_code=_response.status_code, body=_response_json)
348
348
 
349
+ def direct_retrieve(
350
+ self,
351
+ *,
352
+ project_id: typing.Optional[str] = None,
353
+ organization_id: typing.Optional[str] = None,
354
+ mode: typing.Optional[CompositeRetrievalMode] = OMIT,
355
+ rerank_top_n: typing.Optional[int] = OMIT,
356
+ query: str,
357
+ pipelines: typing.Optional[typing.List[RetrieverPipeline]] = OMIT,
358
+ ) -> CompositeRetrievalResult:
359
+ """
360
+ Retrieve data using specified pipelines without creating a persistent retriever.
361
+
362
+ Parameters:
363
+ - project_id: typing.Optional[str].
364
+
365
+ - organization_id: typing.Optional[str].
366
+
367
+ - mode: typing.Optional[CompositeRetrievalMode]. The mode of composite retrieval.
368
+
369
+ - rerank_top_n: typing.Optional[int]. The number of nodes to retrieve after reranking over retrieved nodes from all retrieval tools.
370
+
371
+ - query: str. The query to retrieve against.
372
+
373
+ - pipelines: typing.Optional[typing.List[RetrieverPipeline]]. The pipelines to use for retrieval.
374
+ ---
375
+ from llama_cloud import CompositeRetrievalMode
376
+ from llama_cloud.client import LlamaCloud
377
+
378
+ client = LlamaCloud(
379
+ token="YOUR_TOKEN",
380
+ )
381
+ client.retrievers.direct_retrieve(
382
+ mode=CompositeRetrievalMode.ROUTING,
383
+ query="string",
384
+ )
385
+ """
386
+ _request: typing.Dict[str, typing.Any] = {"query": query}
387
+ if mode is not OMIT:
388
+ _request["mode"] = mode
389
+ if rerank_top_n is not OMIT:
390
+ _request["rerank_top_n"] = rerank_top_n
391
+ if pipelines is not OMIT:
392
+ _request["pipelines"] = pipelines
393
+ _response = self._client_wrapper.httpx_client.request(
394
+ "POST",
395
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers/retrieve"),
396
+ params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
397
+ json=jsonable_encoder(_request),
398
+ headers=self._client_wrapper.get_headers(),
399
+ timeout=60,
400
+ )
401
+ if 200 <= _response.status_code < 300:
402
+ return pydantic.parse_obj_as(CompositeRetrievalResult, _response.json()) # type: ignore
403
+ if _response.status_code == 422:
404
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
405
+ try:
406
+ _response_json = _response.json()
407
+ except JSONDecodeError:
408
+ raise ApiError(status_code=_response.status_code, body=_response.text)
409
+ raise ApiError(status_code=_response.status_code, body=_response_json)
410
+
349
411
 
350
412
  class AsyncRetrieversClient:
351
413
  def __init__(self, *, client_wrapper: AsyncClientWrapper):
@@ -664,3 +726,65 @@ class AsyncRetrieversClient:
664
726
  except JSONDecodeError:
665
727
  raise ApiError(status_code=_response.status_code, body=_response.text)
666
728
  raise ApiError(status_code=_response.status_code, body=_response_json)
729
+
730
+ async def direct_retrieve(
731
+ self,
732
+ *,
733
+ project_id: typing.Optional[str] = None,
734
+ organization_id: typing.Optional[str] = None,
735
+ mode: typing.Optional[CompositeRetrievalMode] = OMIT,
736
+ rerank_top_n: typing.Optional[int] = OMIT,
737
+ query: str,
738
+ pipelines: typing.Optional[typing.List[RetrieverPipeline]] = OMIT,
739
+ ) -> CompositeRetrievalResult:
740
+ """
741
+ Retrieve data using specified pipelines without creating a persistent retriever.
742
+
743
+ Parameters:
744
+ - project_id: typing.Optional[str].
745
+
746
+ - organization_id: typing.Optional[str].
747
+
748
+ - mode: typing.Optional[CompositeRetrievalMode]. The mode of composite retrieval.
749
+
750
+ - rerank_top_n: typing.Optional[int]. The number of nodes to retrieve after reranking over retrieved nodes from all retrieval tools.
751
+
752
+ - query: str. The query to retrieve against.
753
+
754
+ - pipelines: typing.Optional[typing.List[RetrieverPipeline]]. The pipelines to use for retrieval.
755
+ ---
756
+ from llama_cloud import CompositeRetrievalMode
757
+ from llama_cloud.client import AsyncLlamaCloud
758
+
759
+ client = AsyncLlamaCloud(
760
+ token="YOUR_TOKEN",
761
+ )
762
+ await client.retrievers.direct_retrieve(
763
+ mode=CompositeRetrievalMode.ROUTING,
764
+ query="string",
765
+ )
766
+ """
767
+ _request: typing.Dict[str, typing.Any] = {"query": query}
768
+ if mode is not OMIT:
769
+ _request["mode"] = mode
770
+ if rerank_top_n is not OMIT:
771
+ _request["rerank_top_n"] = rerank_top_n
772
+ if pipelines is not OMIT:
773
+ _request["pipelines"] = pipelines
774
+ _response = await self._client_wrapper.httpx_client.request(
775
+ "POST",
776
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers/retrieve"),
777
+ params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
778
+ json=jsonable_encoder(_request),
779
+ headers=self._client_wrapper.get_headers(),
780
+ timeout=60,
781
+ )
782
+ if 200 <= _response.status_code < 300:
783
+ return pydantic.parse_obj_as(CompositeRetrievalResult, _response.json()) # type: ignore
784
+ if _response.status_code == 422:
785
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
786
+ try:
787
+ _response_json = _response.json()
788
+ except JSONDecodeError:
789
+ raise ApiError(status_code=_response.status_code, body=_response.text)
790
+ raise ApiError(status_code=_response.status_code, body=_response_json)
@@ -103,15 +103,7 @@ from .embedding_model_config_update_embedding_config import (
103
103
  EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding,
104
104
  EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding,
105
105
  )
106
- from .eval_dataset import EvalDataset
107
- from .eval_dataset_job_params import EvalDatasetJobParams
108
- from .eval_dataset_job_record import EvalDatasetJobRecord
109
106
  from .eval_execution_params import EvalExecutionParams
110
- from .eval_execution_params_override import EvalExecutionParamsOverride
111
- from .eval_metric import EvalMetric
112
- from .eval_question import EvalQuestion
113
- from .eval_question_create import EvalQuestionCreate
114
- from .eval_question_result import EvalQuestionResult
115
107
  from .extract_agent import ExtractAgent
116
108
  from .extract_agent_create import ExtractAgentCreate
117
109
  from .extract_agent_create_data_schema import ExtractAgentCreateDataSchema
@@ -178,9 +170,6 @@ from .llama_parse_supported_file_extensions import LlamaParseSupportedFileExtens
178
170
  from .llm import Llm
179
171
  from .llm_model_data import LlmModelData
180
172
  from .llm_parameters import LlmParameters
181
- from .local_eval import LocalEval
182
- from .local_eval_results import LocalEvalResults
183
- from .local_eval_sets import LocalEvalSets
184
173
  from .managed_ingestion_status import ManagedIngestionStatus
185
174
  from .managed_ingestion_status_response import ManagedIngestionStatusResponse
186
175
  from .markdown_element_node_parser import MarkdownElementNodeParser
@@ -191,7 +180,6 @@ from .metadata_filter import MetadataFilter
191
180
  from .metadata_filter_value import MetadataFilterValue
192
181
  from .metadata_filters import MetadataFilters
193
182
  from .metadata_filters_filters_item import MetadataFiltersFiltersItem
194
- from .metric_result import MetricResult
195
183
  from .node_parser import NodeParser
196
184
  from .node_relationship import NodeRelationship
197
185
  from .none_chunking_config import NoneChunkingConfig
@@ -276,8 +264,6 @@ from .progress_event_status import ProgressEventStatus
276
264
  from .project import Project
277
265
  from .project_create import ProjectCreate
278
266
  from .prompt_conf import PromptConf
279
- from .prompt_mixin_prompts import PromptMixinPrompts
280
- from .prompt_spec import PromptSpec
281
267
  from .pydantic_program_mode import PydanticProgramMode
282
268
  from .recurring_credit_grant import RecurringCreditGrant
283
269
  from .related_node_info import RelatedNodeInfo
@@ -435,15 +421,7 @@ __all__ = [
435
421
  "EmbeddingModelConfigUpdateEmbeddingConfig_HuggingfaceApiEmbedding",
436
422
  "EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding",
437
423
  "EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding",
438
- "EvalDataset",
439
- "EvalDatasetJobParams",
440
- "EvalDatasetJobRecord",
441
424
  "EvalExecutionParams",
442
- "EvalExecutionParamsOverride",
443
- "EvalMetric",
444
- "EvalQuestion",
445
- "EvalQuestionCreate",
446
- "EvalQuestionResult",
447
425
  "ExtractAgent",
448
426
  "ExtractAgentCreate",
449
427
  "ExtractAgentCreateDataSchema",
@@ -508,9 +486,6 @@ __all__ = [
508
486
  "Llm",
509
487
  "LlmModelData",
510
488
  "LlmParameters",
511
- "LocalEval",
512
- "LocalEvalResults",
513
- "LocalEvalSets",
514
489
  "ManagedIngestionStatus",
515
490
  "ManagedIngestionStatusResponse",
516
491
  "MarkdownElementNodeParser",
@@ -521,7 +496,6 @@ __all__ = [
521
496
  "MetadataFilterValue",
522
497
  "MetadataFilters",
523
498
  "MetadataFiltersFiltersItem",
524
- "MetricResult",
525
499
  "NodeParser",
526
500
  "NodeRelationship",
527
501
  "NoneChunkingConfig",
@@ -600,8 +574,6 @@ __all__ = [
600
574
  "Project",
601
575
  "ProjectCreate",
602
576
  "PromptConf",
603
- "PromptMixinPrompts",
604
- "PromptSpec",
605
577
  "PydanticProgramMode",
606
578
  "RecurringCreditGrant",
607
579
  "RelatedNodeInfo",
@@ -23,9 +23,6 @@ class ExtractConfig(pydantic.BaseModel):
23
23
 
24
24
  extraction_target: typing.Optional[ExtractTarget] = pydantic.Field(description="The extraction target specified.")
25
25
  extraction_mode: typing.Optional[ExtractMode] = pydantic.Field(description="The extraction mode specified.")
26
- handle_missing: typing.Optional[bool] = pydantic.Field(
27
- description="Whether to handle missing fields in the schema."
28
- )
29
26
  system_prompt: typing.Optional[str]
30
27
 
31
28
  def json(self, **kwargs: typing.Any) -> str:
@@ -9,9 +9,17 @@ T_Result = typing.TypeVar("T_Result")
9
9
  class ExtractMode(str, enum.Enum):
10
10
  FAST = "FAST"
11
11
  ACCURATE = "ACCURATE"
12
+ MULTIMODAL = "MULTIMODAL"
12
13
 
13
- def visit(self, fast: typing.Callable[[], T_Result], accurate: typing.Callable[[], T_Result]) -> T_Result:
14
+ def visit(
15
+ self,
16
+ fast: typing.Callable[[], T_Result],
17
+ accurate: typing.Callable[[], T_Result],
18
+ multimodal: typing.Callable[[], T_Result],
19
+ ) -> T_Result:
14
20
  if self is ExtractMode.FAST:
15
21
  return fast()
16
22
  if self is ExtractMode.ACCURATE:
17
23
  return accurate()
24
+ if self is ExtractMode.MULTIMODAL:
25
+ return multimodal()
@@ -18,6 +18,7 @@ class PromptConf(pydantic.BaseModel):
18
18
  system_prompt: typing.Optional[str] = pydantic.Field(description="The system prompt to use for the extraction.")
19
19
  extraction_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for the extraction.")
20
20
  error_handling_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for error handling.")
21
+ reasoning_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for reasoning.")
21
22
 
22
23
  def json(self, **kwargs: typing.Any) -> str:
23
24
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -18,6 +18,7 @@ except ImportError:
18
18
  class ReportBlock(pydantic.BaseModel):
19
19
  idx: int = pydantic.Field(description="The index of the block")
20
20
  template: str = pydantic.Field(description="The content of the block")
21
+ requires_human_review: typing.Optional[bool] = pydantic.Field(description="Whether the block requires human review")
21
22
  sources: typing.Optional[typing.List[TextNodeWithScore]] = pydantic.Field(description="The sources for the block")
22
23
 
23
24
  def json(self, **kwargs: typing.Any) -> str:
@@ -10,6 +10,7 @@ class StructMode(str, enum.Enum):
10
10
  STRUCT_PARSE = "STRUCT_PARSE"
11
11
  JSON_MODE = "JSON_MODE"
12
12
  FUNC_CALL = "FUNC_CALL"
13
+ STRUCT_RELAXED = "STRUCT_RELAXED"
13
14
  UNSTRUCTURED = "UNSTRUCTURED"
14
15
 
15
16
  def visit(
@@ -17,6 +18,7 @@ class StructMode(str, enum.Enum):
17
18
  struct_parse: typing.Callable[[], T_Result],
18
19
  json_mode: typing.Callable[[], T_Result],
19
20
  func_call: typing.Callable[[], T_Result],
21
+ struct_relaxed: typing.Callable[[], T_Result],
20
22
  unstructured: typing.Callable[[], T_Result],
21
23
  ) -> T_Result:
22
24
  if self is StructMode.STRUCT_PARSE:
@@ -25,5 +27,7 @@ class StructMode(str, enum.Enum):
25
27
  return json_mode()
26
28
  if self is StructMode.FUNC_CALL:
27
29
  return func_call()
30
+ if self is StructMode.STRUCT_RELAXED:
31
+ return struct_relaxed()
28
32
  if self is StructMode.UNSTRUCTURED:
29
33
  return unstructured()
@@ -32,6 +32,12 @@ class StructParseConf(pydantic.BaseModel):
32
32
  struct_mode: typing.Optional[StructMode] = pydantic.Field(
33
33
  description="The struct mode to use for the structured parsing."
34
34
  )
35
+ handle_missing: typing.Optional[bool] = pydantic.Field(
36
+ description="Whether to handle missing fields in the schema."
37
+ )
38
+ use_reasoning: typing.Optional[bool] = pydantic.Field(
39
+ description="Whether to use reasoning for the structured parsing."
40
+ )
35
41
  prompt_conf: typing.Optional[PromptConf] = pydantic.Field(
36
42
  description="The prompt configuration for the structured parsing."
37
43
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.1.15
3
+ Version: 0.1.16
4
4
  Summary:
5
5
  License: MIT
6
6
  Author: Logan Markewich
@@ -1,4 +1,4 @@
1
- llama_cloud/__init__.py,sha256=tJjIj-iumXdTiBOzpqXtfOwVkNBkXJ3Kel0aR6a8bw0,23193
1
+ llama_cloud/__init__.py,sha256=GsERaXUabzoc0F4eXn1nzIVnb9iuBaEMCgSyfYJ2TMQ,22569
2
2
  llama_cloud/client.py,sha256=0fK6iRBCA77eSs0zFrYQj-zD0BLy6Dr2Ss0ETJ4WaOY,5555
3
3
  llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
@@ -28,7 +28,7 @@ llama_cloud/resources/embedding_model_configs/client.py,sha256=uyuDfQQXudqLEQFev
28
28
  llama_cloud/resources/embedding_model_configs/types/__init__.py,sha256=6-rcDwJhw_0shz3CjrPvlYBYXJJ1bLn-PpplhOsQ79w,1156
29
29
  llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py,sha256=SQCHJk0AmBbKS5XKdcEJxhDhIMLQCmCI13IHC28v7vQ,3054
30
30
  llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
31
- llama_cloud/resources/evals/client.py,sha256=JyPHP9MsJ-15XHUVu-UjCcINo2IDPr2OageAqLBGlmw,27578
31
+ llama_cloud/resources/evals/client.py,sha256=v2AyeQV0hVgC6xoP2gJNgneJMaeXALV1hIeirYGxlPw,3242
32
32
  llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
33
33
  llama_cloud/resources/files/client.py,sha256=7VmhrE5fbftB6p6QUQUkGM5FO48obF73keq86vGFyhE,49676
34
34
  llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
@@ -44,20 +44,20 @@ llama_cloud/resources/organizations/client.py,sha256=OGSVpkfY5wu8-22IFWVmtbYSDiy
44
44
  llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
45
45
  llama_cloud/resources/parsing/client.py,sha256=cdEEqjb5pRvb-Vq9VXjgh1107emTzYh5VP-Uu4aV3XI,74026
46
46
  llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
47
- llama_cloud/resources/pipelines/client.py,sha256=-Oveo6XSfCZva-ylJp7DikV26KxkJsDr6xNFZ8FIqkQ,139274
47
+ llama_cloud/resources/pipelines/client.py,sha256=My_TCezdFHfzPmzSzD25DIKNO88XUrQGeFmwOQ-Z0Gk,125055
48
48
  llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
49
49
  llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py,sha256=trI48WLxPcAqV9207Q6-3cj1nl4EGlZpw7En56ZsPgg,217
50
50
  llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=c8FF64fDrBMX_2RX4uY3CjbNc0Ss_AUJ4Eqs-KeV4Wc,2874
51
51
  llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py,sha256=KbkyULMv-qeS3qRd31ia6pd5rOdypS0o2UL42NRcA7E,321
52
52
  llama_cloud/resources/projects/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
53
- llama_cloud/resources/projects/client.py,sha256=Tn-8WLGKHc3tzJikrcPOlefjASen7fTAzBDbzdvXtes,56315
53
+ llama_cloud/resources/projects/client.py,sha256=_9a54cNU8deQKrOpx4kj7Vgj2ByCyQQ7eEHhj-Zc1Ik,22498
54
54
  llama_cloud/resources/reports/__init__.py,sha256=cruYbQ1bIuJbRpkfaQY7ajUEslffjd7KzvzMzbtPH94,217
55
55
  llama_cloud/resources/reports/client.py,sha256=kHjtXVVc1Xi3T1GyBvSW5K4mTdr6xQwZA3vw-liRKBg,46736
56
56
  llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwHww2YU90lOonBPTmZIk,291
57
57
  llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
58
58
  llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
59
- llama_cloud/resources/retrievers/client.py,sha256=ASDdqnwXX4qj0sCAkWO7RKFnQ1oiLzBLIQ2bwqnMOKs,24905
60
- llama_cloud/types/__init__.py,sha256=xw0pso0-CRFjj7Z27CtiUU7AbKzPfaDi59BRVPoeBbU,28758
59
+ llama_cloud/resources/retrievers/client.py,sha256=fmRVQjMaSaytaU1NMvE_vosyrbkdY93kGi2VKAGcb4U,30245
60
+ llama_cloud/types/__init__.py,sha256=AHJ1ew2Q4Y-b1dj2WHJDv9mSH7b--pfw2FrCgoIeC6I,27769
61
61
  llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
62
62
  llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
63
63
  llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
@@ -131,15 +131,7 @@ llama_cloud/types/embedding_model_config.py,sha256=6-o0vsAX89eHQdCAG5sI317Aivr4T
131
131
  llama_cloud/types/embedding_model_config_embedding_config.py,sha256=9rmfeiJYhBPmSJCXp-qxkOAd9WPwL5Hks7jIKd8XCPM,2901
132
132
  llama_cloud/types/embedding_model_config_update.py,sha256=BiA1KbFT-TSvy5OEyChd0dgDnQCKfBRxsDTvVKNj10Q,1175
133
133
  llama_cloud/types/embedding_model_config_update_embedding_config.py,sha256=mrXFxzb9GRaH4UUnOe_05-uYUuiTgDDCRadAMbPmGgc,2991
134
- llama_cloud/types/eval_dataset.py,sha256=FIP4uHqUXg0LxGPaq-LmW2aTcEdQk-i5AYLbGqsQSV0,1310
135
- llama_cloud/types/eval_dataset_job_params.py,sha256=vcXLJWO581uigNvGAurPDgMeEFtQURWucLF5pemdeS0,1343
136
- llama_cloud/types/eval_dataset_job_record.py,sha256=vBDz7xezpE8AB6Kw7sZLYxgMcv0dxUWVC01_fI2QuUU,2168
137
134
  llama_cloud/types/eval_execution_params.py,sha256=ntVaJh5SMZMPL4QLUiihVjUlg2SKbrezvbMKGlrF66Q,1369
138
- llama_cloud/types/eval_execution_params_override.py,sha256=ihEFbMRYmFJ5mWmFW24JjV6D0qqeDM4p829mSxMGtOQ,1195
139
- llama_cloud/types/eval_metric.py,sha256=vhO_teMLiyzBdzKpOBW8Bm9qCw2h6m3unp2XotB7pDQ,499
140
- llama_cloud/types/eval_question.py,sha256=UG042gXLw1uIW9hQOffCzIoGHVSve8Wk9ZeYGzwhHDU,1432
141
- llama_cloud/types/eval_question_create.py,sha256=oOwxkE5gPj8RAwgr3uuTHfTvLSXmYkkxNHqsT7oUHjI,1031
142
- llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQbToiVJqm41ArY,2168
143
135
  llama_cloud/types/extract_agent.py,sha256=T98IOueut4M52Qm7hqcUOcWFFDhZ-ye0OFdXgfFGtS4,1763
144
136
  llama_cloud/types/extract_agent_create.py,sha256=nDe2AELKdhF2VKe-IiajHavo8xatTZWbJb76D-HhJkM,1429
145
137
  llama_cloud/types/extract_agent_create_data_schema.py,sha256=zB31hJQ8hKaIsPkfTWiX5hqsPVFMyyeWEDZ_Aq237jo,305
@@ -148,7 +140,7 @@ llama_cloud/types/extract_agent_data_schema_value.py,sha256=UaDQ2KjajLDccW7F4NKd
148
140
  llama_cloud/types/extract_agent_update.py,sha256=bcXovL4OblDFQXAfhstLMfSSY2sJHQFkfVjzZ_8jO8c,1349
149
141
  llama_cloud/types/extract_agent_update_data_schema.py,sha256=argR5gPRUYWY6ADCMKRdg-8NM-rsBM91_TEn8NKqVy8,305
150
142
  llama_cloud/types/extract_agent_update_data_schema_zero_value.py,sha256=Nvd892EFhg-PzlqoFp5i2owL7hCZ2SsuL7U4Tk9NeRI,217
151
- llama_cloud/types/extract_config.py,sha256=s0f8Yzfuzl0P_xV91SNj0Cbp77I_FMXCxL5lEJyXR6I,1505
143
+ llama_cloud/types/extract_config.py,sha256=oR_6uYl8-58q6a5BsgymJuqCKPn6JoY7SAUmjT9M3es,1369
152
144
  llama_cloud/types/extract_job.py,sha256=Yx4fDdCdylAji2LPTwqflVpz1o9slpj9tTLS93-1tzU,1431
153
145
  llama_cloud/types/extract_job_create.py,sha256=UK1mBIKyflo7e6m1MxMN95pLscj67jH_yvs8EvmBXqU,1545
154
146
  llama_cloud/types/extract_job_create_batch.py,sha256=64BAproProYtPk7vAPGvFoxvlgg7ZLb1LSg3ChIf7AM,1589
@@ -156,7 +148,7 @@ llama_cloud/types/extract_job_create_batch_data_schema_override.py,sha256=GykJ1B
156
148
  llama_cloud/types/extract_job_create_batch_data_schema_override_zero_value.py,sha256=7zXOgTYUwVAeyYeqWvX69m-7mhvK0V9cBRvgqVSd0X0,228
157
149
  llama_cloud/types/extract_job_create_data_schema_override.py,sha256=vuiJ2lGJjbXEnvFKzVnKyvgwhMXPg1Pb5GZne2DrB60,330
158
150
  llama_cloud/types/extract_job_create_data_schema_override_zero_value.py,sha256=HHEYxOSQXXyBYOiUQg_qwfQtXFj-OtThMwbUDBIgZU0,223
159
- llama_cloud/types/extract_mode.py,sha256=Xu8TvYHXYs-EcELV0hXbkcPuMyK1BLBQPKIBuHeUSnY,457
151
+ llama_cloud/types/extract_mode.py,sha256=mMkEugv91d-kcWLGUlr7Nm62p0eSlXeqfMAKw7u7wXI,644
160
152
  llama_cloud/types/extract_resultset.py,sha256=Alje0YQJUiA_aKi0hQs7TAnhDmZuQ_yL9b6HCNYBFQg,1627
161
153
  llama_cloud/types/extract_resultset_data.py,sha256=v9Ae4SxLsvYPE9crko4N16lBjsxuZpz1yrUOhnaM_VY,427
162
154
  llama_cloud/types/extract_resultset_data_item_value.py,sha256=JwqgDIGW0irr8QWaSTIrl24FhGxTUDOXIbxoSdIjuxs,209
@@ -202,9 +194,6 @@ llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9F
202
194
  llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
203
195
  llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
204
196
  llama_cloud/types/llm_parameters.py,sha256=RTKYt09lm9a1MlnBfYuTP2x_Ww4byUNNc1TqIel5O1Y,1377
205
- llama_cloud/types/local_eval.py,sha256=aJ8jRG0b5EL9cLjx281bzAzPw7Ar004Jfp6mBmyjuTA,1491
206
- llama_cloud/types/local_eval_results.py,sha256=YfK6AhfD0gr5apQBfrfzrTHDXvrk7ynAUUjNSKu9NVk,1380
207
- llama_cloud/types/local_eval_sets.py,sha256=XJSSriwRvkma889pPiBQrpRakKejKOX3tWPu1TGb1ug,1181
208
197
  llama_cloud/types/managed_ingestion_status.py,sha256=3KVlcurpEBOPAesBUS5pSYLoQVIyZUlr90Mmv-uALHE,1290
209
198
  llama_cloud/types/managed_ingestion_status_response.py,sha256=rdNpjNbQswF-6JG1e-EU374TP6Pjlxl0p7HJyNmuxTI,1373
210
199
  llama_cloud/types/markdown_element_node_parser.py,sha256=NUqdU8BmyfSFK2rV6hCrvP6U1iB6aqZCVsvHWJQ49xU,1964
@@ -215,7 +204,6 @@ llama_cloud/types/metadata_filter.py,sha256=dVdXY6i0aCkvJrs7ncQt4-S8jmBF9bBSp2Vu
215
204
  llama_cloud/types/metadata_filter_value.py,sha256=ij721gXNI7zbgsuDl9-AqBcXg2WDuVZhYS5F5YqekEs,188
216
205
  llama_cloud/types/metadata_filters.py,sha256=uSf6sB4oQu6WzMPNFG6Tc4euqEiYcj_X14Y5JWt9xVE,1315
217
206
  llama_cloud/types/metadata_filters_filters_item.py,sha256=e8KhD2q6Qc2_aK6r5CvyxC0oWVYO4F4vBIcB9eMEPPM,246
218
- llama_cloud/types/metric_result.py,sha256=gCVyu9usPip30igCLKS0oTYU6V3CvY8QIk1gwaXB7ik,1051
219
207
  llama_cloud/types/node_parser.py,sha256=rqZTQ_9GnCHOvSpXuAZoezxQCOgxHo-hmQv0s7pnEFc,1380
220
208
  llama_cloud/types/node_relationship.py,sha256=2e2PqWm0LOTiImvtsyiuaAPNIl0BItjSrQZTJv65GRA,1209
221
209
  llama_cloud/types/none_chunking_config.py,sha256=D062t314Vp-s4n9h8wNgsYfElI4PonPKmihvjEmaqdA,952
@@ -277,15 +265,13 @@ llama_cloud/types/progress_event.py,sha256=Bk73A8geTVaq0ze5pMnbkAmx7FSOHQIixYCpC
277
265
  llama_cloud/types/progress_event_status.py,sha256=yb4RAXwOKU6Bi7iyYy-3lwhF6_mLz0ZFyGjxIdaByoE,893
278
266
  llama_cloud/types/project.py,sha256=4NNh_ZAjEkoWl5st6b1jsPVf_SYKtUTB6rS1701G4IQ,1441
279
267
  llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
280
- llama_cloud/types/prompt_conf.py,sha256=B3G9kdx1Md5fsx2ix4NYz5emvKi2GisYOOp9RozCPCU,1294
281
- llama_cloud/types/prompt_mixin_prompts.py,sha256=_ipiIFWmWSuaJ5VFI5rXa_C7lHaIL3Yv5izh7__xTxI,1323
282
- llama_cloud/types/prompt_spec.py,sha256=tPJTIzN9pYmiZD-HcPHFuhh4n1ak9FI5f7xFNV31djQ,1410
268
+ llama_cloud/types/prompt_conf.py,sha256=4vAKt0Gce9ALRb_-FE0QbRiFM1Rc9OQAADggwBwgauE,1402
283
269
  llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
284
270
  llama_cloud/types/recurring_credit_grant.py,sha256=19qI3p5k1mQ1Qoo-gCQU02Aa42XpEsmwxPF1F88F-Yg,1517
285
271
  llama_cloud/types/related_node_info.py,sha256=frQg_RqrSBc62ooJ4QOF5QRKymHcNot5WVFAB_g1sMg,1216
286
272
  llama_cloud/types/related_node_info_node_type.py,sha256=lH95d8G-EnKCllV_igJsBfYt49y162PoNxWtrCo_Kgk,173
287
273
  llama_cloud/types/report.py,sha256=9M_WkIxi5ilmtXrLKo5XxWzJ_qV8FFf5j8bAlQRmaks,1155
288
- llama_cloud/types/report_block.py,sha256=h11qkKbd5fdNWILjLTiz4alQCSqITTq9DlGya8OuTVU,1260
274
+ llama_cloud/types/report_block.py,sha256=y5n5z0JxZNH9kzN0rTqIdZPRLA9XHdYvQlHTcPSraKk,1381
289
275
  llama_cloud/types/report_block_dependency.py,sha256=TGtLpcJG2xwTKr3GU8Err53T0BR_zNTiT-2JILvPbSg,785
290
276
  llama_cloud/types/report_create_response.py,sha256=tmnVkyAMVf0HNQy186DFVV1oZQzYGY9wxNk84cwQLKA,1020
291
277
  llama_cloud/types/report_event_item.py,sha256=_-0wgI96Ama2qKqUODTmI_fEcrnW5eAAjL1AoFEr4cQ,1451
@@ -310,8 +296,8 @@ llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Zt
310
296
  llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
311
297
  llama_cloud/types/sentence_splitter.py,sha256=GbC3KE20Nd85uzO4bqJttjqJhQ_1co2gKnSQxzfOAiM,2140
312
298
  llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDPvx0,1018
313
- llama_cloud/types/struct_mode.py,sha256=AjYmpXTEYlMNNac6cNjEGYQBJwKJERw2ERdjGKgrX3o,845
314
- llama_cloud/types/struct_parse_conf.py,sha256=bD0gZzN6tR8VO9s81KPwTffLQDnLLAAcNrnknii_178,1825
299
+ llama_cloud/types/struct_mode.py,sha256=ROicwjXfFmgVU8_xSVxJlnFUzRNKG5VIEF1wYg9uOPU,1020
300
+ llama_cloud/types/struct_parse_conf.py,sha256=Od5f8azJlJTJJ6rwtZEIaEsSSYBdrNsHtLeMtdpMtxM,2101
315
301
  llama_cloud/types/supported_llm_model.py,sha256=0v-g01LyZB7TeN0zwAeSJejRoT95SVaXOJhNz7boJwM,1461
316
302
  llama_cloud/types/supported_llm_model_names.py,sha256=dEhmwGQVG-dmuGGbTWBAYadr-g5u3kiVz308CLWuSqw,2657
317
303
  llama_cloud/types/text_block.py,sha256=X154sQkSyposXuRcEWNp_tWcDQ-AI6q_-MfJUN5exP8,958
@@ -335,7 +321,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
335
321
  llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
336
322
  llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
337
323
  llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
338
- llama_cloud-0.1.15.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
339
- llama_cloud-0.1.15.dist-info/METADATA,sha256=uPM6KdBc0u-od5x-l5Ef221lWETrhsnIkdVvdbL1PX8,902
340
- llama_cloud-0.1.15.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
341
- llama_cloud-0.1.15.dist-info/RECORD,,
324
+ llama_cloud-0.1.16.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
325
+ llama_cloud-0.1.16.dist-info/METADATA,sha256=nCSIO_-vJxp4O2kbNl74lwlihxhu62Bg3eI7yjC8tu4,902
326
+ llama_cloud-0.1.16.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
327
+ llama_cloud-0.1.16.dist-info/RECORD,,
@@ -1,40 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class EvalDataset(pydantic.BaseModel):
18
- """
19
- Schema for an eval dataset.
20
- Includes the other DB fields like id, created_at, & updated_at.
21
- """
22
-
23
- id: str = pydantic.Field(description="Unique identifier")
24
- created_at: typing.Optional[dt.datetime]
25
- updated_at: typing.Optional[dt.datetime]
26
- name: str = pydantic.Field(description="The name of the EvalDataset.")
27
- project_id: str
28
-
29
- def json(self, **kwargs: typing.Any) -> str:
30
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
- return super().json(**kwargs_with_defaults)
32
-
33
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
34
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
35
- return super().dict(**kwargs_with_defaults)
36
-
37
- class Config:
38
- frozen = True
39
- smart_union = True
40
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,39 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from .eval_execution_params import EvalExecutionParams
8
-
9
- try:
10
- import pydantic
11
- if pydantic.__version__.startswith("1."):
12
- raise ImportError
13
- import pydantic.v1 as pydantic # type: ignore
14
- except ImportError:
15
- import pydantic # type: ignore
16
-
17
-
18
- class EvalDatasetJobParams(pydantic.BaseModel):
19
- """
20
- Schema for the parameters of an eval dataset job.
21
- """
22
-
23
- eval_question_ids: typing.List[str] = pydantic.Field(
24
- description="The IDs for the EvalQuestions this execution ran against."
25
- )
26
- eval_execution_params: EvalExecutionParams = pydantic.Field(description="The parameters for the eval execution.")
27
-
28
- def json(self, **kwargs: typing.Any) -> str:
29
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
- return super().json(**kwargs_with_defaults)
31
-
32
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
33
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
34
- return super().dict(**kwargs_with_defaults)
35
-
36
- class Config:
37
- frozen = True
38
- smart_union = True
39
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,58 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- import typing_extensions
7
-
8
- from ..core.datetime_utils import serialize_datetime
9
- from .eval_dataset_job_params import EvalDatasetJobParams
10
- from .status_enum import StatusEnum
11
-
12
- try:
13
- import pydantic
14
- if pydantic.__version__.startswith("1."):
15
- raise ImportError
16
- import pydantic.v1 as pydantic # type: ignore
17
- except ImportError:
18
- import pydantic # type: ignore
19
-
20
-
21
- class EvalDatasetJobRecord(pydantic.BaseModel):
22
- """
23
- Schema for job that evaluates an EvalDataset against a pipeline.
24
- """
25
-
26
- job_name: typing_extensions.Literal["eval_dataset_job"]
27
- partitions: typing.Dict[str, str] = pydantic.Field(
28
- description="The partitions for this execution. Used for determining where to save job output."
29
- )
30
- parameters: typing.Optional[EvalDatasetJobParams]
31
- session_id: typing.Optional[str]
32
- correlation_id: typing.Optional[str]
33
- parent_job_execution_id: typing.Optional[str]
34
- user_id: typing.Optional[str]
35
- created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
36
- project_id: typing.Optional[str]
37
- id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
38
- status: StatusEnum
39
- error_code: typing.Optional[str]
40
- error_message: typing.Optional[str]
41
- attempts: typing.Optional[int]
42
- started_at: typing.Optional[dt.datetime]
43
- ended_at: typing.Optional[dt.datetime]
44
- updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
45
- data: typing.Optional[typing.Any]
46
-
47
- def json(self, **kwargs: typing.Any) -> str:
48
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
49
- return super().json(**kwargs_with_defaults)
50
-
51
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
52
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
53
- return super().dict(**kwargs_with_defaults)
54
-
55
- class Config:
56
- frozen = True
57
- smart_union = True
58
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,37 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from .supported_llm_model_names import SupportedLlmModelNames
8
-
9
- try:
10
- import pydantic
11
- if pydantic.__version__.startswith("1."):
12
- raise ImportError
13
- import pydantic.v1 as pydantic # type: ignore
14
- except ImportError:
15
- import pydantic # type: ignore
16
-
17
-
18
- class EvalExecutionParamsOverride(pydantic.BaseModel):
19
- """
20
- Schema for the params override for an eval execution.
21
- """
22
-
23
- llm_model: typing.Optional[SupportedLlmModelNames]
24
- qa_prompt_tmpl: typing.Optional[str]
25
-
26
- def json(self, **kwargs: typing.Any) -> str:
27
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
- return super().json(**kwargs_with_defaults)
29
-
30
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
- return super().dict(**kwargs_with_defaults)
33
-
34
- class Config:
35
- frozen = True
36
- smart_union = True
37
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,17 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import enum
4
- import typing
5
-
6
- T_Result = typing.TypeVar("T_Result")
7
-
8
-
9
- class EvalMetric(str, enum.Enum):
10
- RELEVANCY = "RELEVANCY"
11
- FAITHFULNESS = "FAITHFULNESS"
12
-
13
- def visit(self, relevancy: typing.Callable[[], T_Result], faithfulness: typing.Callable[[], T_Result]) -> T_Result:
14
- if self is EvalMetric.RELEVANCY:
15
- return relevancy()
16
- if self is EvalMetric.FAITHFULNESS:
17
- return faithfulness()