llama-cloud 0.1.15__py3-none-any.whl → 0.1.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +0 -28
- llama_cloud/resources/evals/client.py +0 -643
- llama_cloud/resources/pipelines/client.py +10 -371
- llama_cloud/resources/projects/client.py +72 -923
- llama_cloud/resources/retrievers/client.py +124 -0
- llama_cloud/types/__init__.py +0 -28
- llama_cloud/types/extract_config.py +0 -3
- llama_cloud/types/extract_mode.py +9 -1
- llama_cloud/types/prompt_conf.py +1 -0
- llama_cloud/types/report_block.py +1 -0
- llama_cloud/types/struct_mode.py +4 -0
- llama_cloud/types/struct_parse_conf.py +6 -0
- {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.16.dist-info}/METADATA +1 -1
- {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.16.dist-info}/RECORD +16 -30
- llama_cloud/types/eval_dataset.py +0 -40
- llama_cloud/types/eval_dataset_job_params.py +0 -39
- llama_cloud/types/eval_dataset_job_record.py +0 -58
- llama_cloud/types/eval_execution_params_override.py +0 -37
- llama_cloud/types/eval_metric.py +0 -17
- llama_cloud/types/eval_question.py +0 -38
- llama_cloud/types/eval_question_create.py +0 -31
- llama_cloud/types/eval_question_result.py +0 -52
- llama_cloud/types/local_eval.py +0 -47
- llama_cloud/types/local_eval_results.py +0 -40
- llama_cloud/types/local_eval_sets.py +0 -33
- llama_cloud/types/metric_result.py +0 -33
- llama_cloud/types/prompt_mixin_prompts.py +0 -39
- llama_cloud/types/prompt_spec.py +0 -36
- {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.16.dist-info}/LICENSE +0 -0
- {llama_cloud-0.1.15.dist-info → llama_cloud-0.1.16.dist-info}/WHEEL +0 -0
|
@@ -346,6 +346,68 @@ class RetrieversClient:
|
|
|
346
346
|
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
347
347
|
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
348
348
|
|
|
349
|
+
def direct_retrieve(
|
|
350
|
+
self,
|
|
351
|
+
*,
|
|
352
|
+
project_id: typing.Optional[str] = None,
|
|
353
|
+
organization_id: typing.Optional[str] = None,
|
|
354
|
+
mode: typing.Optional[CompositeRetrievalMode] = OMIT,
|
|
355
|
+
rerank_top_n: typing.Optional[int] = OMIT,
|
|
356
|
+
query: str,
|
|
357
|
+
pipelines: typing.Optional[typing.List[RetrieverPipeline]] = OMIT,
|
|
358
|
+
) -> CompositeRetrievalResult:
|
|
359
|
+
"""
|
|
360
|
+
Retrieve data using specified pipelines without creating a persistent retriever.
|
|
361
|
+
|
|
362
|
+
Parameters:
|
|
363
|
+
- project_id: typing.Optional[str].
|
|
364
|
+
|
|
365
|
+
- organization_id: typing.Optional[str].
|
|
366
|
+
|
|
367
|
+
- mode: typing.Optional[CompositeRetrievalMode]. The mode of composite retrieval.
|
|
368
|
+
|
|
369
|
+
- rerank_top_n: typing.Optional[int]. The number of nodes to retrieve after reranking over retrieved nodes from all retrieval tools.
|
|
370
|
+
|
|
371
|
+
- query: str. The query to retrieve against.
|
|
372
|
+
|
|
373
|
+
- pipelines: typing.Optional[typing.List[RetrieverPipeline]]. The pipelines to use for retrieval.
|
|
374
|
+
---
|
|
375
|
+
from llama_cloud import CompositeRetrievalMode
|
|
376
|
+
from llama_cloud.client import LlamaCloud
|
|
377
|
+
|
|
378
|
+
client = LlamaCloud(
|
|
379
|
+
token="YOUR_TOKEN",
|
|
380
|
+
)
|
|
381
|
+
client.retrievers.direct_retrieve(
|
|
382
|
+
mode=CompositeRetrievalMode.ROUTING,
|
|
383
|
+
query="string",
|
|
384
|
+
)
|
|
385
|
+
"""
|
|
386
|
+
_request: typing.Dict[str, typing.Any] = {"query": query}
|
|
387
|
+
if mode is not OMIT:
|
|
388
|
+
_request["mode"] = mode
|
|
389
|
+
if rerank_top_n is not OMIT:
|
|
390
|
+
_request["rerank_top_n"] = rerank_top_n
|
|
391
|
+
if pipelines is not OMIT:
|
|
392
|
+
_request["pipelines"] = pipelines
|
|
393
|
+
_response = self._client_wrapper.httpx_client.request(
|
|
394
|
+
"POST",
|
|
395
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers/retrieve"),
|
|
396
|
+
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
397
|
+
json=jsonable_encoder(_request),
|
|
398
|
+
headers=self._client_wrapper.get_headers(),
|
|
399
|
+
timeout=60,
|
|
400
|
+
)
|
|
401
|
+
if 200 <= _response.status_code < 300:
|
|
402
|
+
return pydantic.parse_obj_as(CompositeRetrievalResult, _response.json()) # type: ignore
|
|
403
|
+
if _response.status_code == 422:
|
|
404
|
+
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
405
|
+
try:
|
|
406
|
+
_response_json = _response.json()
|
|
407
|
+
except JSONDecodeError:
|
|
408
|
+
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
409
|
+
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
410
|
+
|
|
349
411
|
|
|
350
412
|
class AsyncRetrieversClient:
|
|
351
413
|
def __init__(self, *, client_wrapper: AsyncClientWrapper):
|
|
@@ -664,3 +726,65 @@ class AsyncRetrieversClient:
|
|
|
664
726
|
except JSONDecodeError:
|
|
665
727
|
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
666
728
|
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
729
|
+
|
|
730
|
+
async def direct_retrieve(
|
|
731
|
+
self,
|
|
732
|
+
*,
|
|
733
|
+
project_id: typing.Optional[str] = None,
|
|
734
|
+
organization_id: typing.Optional[str] = None,
|
|
735
|
+
mode: typing.Optional[CompositeRetrievalMode] = OMIT,
|
|
736
|
+
rerank_top_n: typing.Optional[int] = OMIT,
|
|
737
|
+
query: str,
|
|
738
|
+
pipelines: typing.Optional[typing.List[RetrieverPipeline]] = OMIT,
|
|
739
|
+
) -> CompositeRetrievalResult:
|
|
740
|
+
"""
|
|
741
|
+
Retrieve data using specified pipelines without creating a persistent retriever.
|
|
742
|
+
|
|
743
|
+
Parameters:
|
|
744
|
+
- project_id: typing.Optional[str].
|
|
745
|
+
|
|
746
|
+
- organization_id: typing.Optional[str].
|
|
747
|
+
|
|
748
|
+
- mode: typing.Optional[CompositeRetrievalMode]. The mode of composite retrieval.
|
|
749
|
+
|
|
750
|
+
- rerank_top_n: typing.Optional[int]. The number of nodes to retrieve after reranking over retrieved nodes from all retrieval tools.
|
|
751
|
+
|
|
752
|
+
- query: str. The query to retrieve against.
|
|
753
|
+
|
|
754
|
+
- pipelines: typing.Optional[typing.List[RetrieverPipeline]]. The pipelines to use for retrieval.
|
|
755
|
+
---
|
|
756
|
+
from llama_cloud import CompositeRetrievalMode
|
|
757
|
+
from llama_cloud.client import AsyncLlamaCloud
|
|
758
|
+
|
|
759
|
+
client = AsyncLlamaCloud(
|
|
760
|
+
token="YOUR_TOKEN",
|
|
761
|
+
)
|
|
762
|
+
await client.retrievers.direct_retrieve(
|
|
763
|
+
mode=CompositeRetrievalMode.ROUTING,
|
|
764
|
+
query="string",
|
|
765
|
+
)
|
|
766
|
+
"""
|
|
767
|
+
_request: typing.Dict[str, typing.Any] = {"query": query}
|
|
768
|
+
if mode is not OMIT:
|
|
769
|
+
_request["mode"] = mode
|
|
770
|
+
if rerank_top_n is not OMIT:
|
|
771
|
+
_request["rerank_top_n"] = rerank_top_n
|
|
772
|
+
if pipelines is not OMIT:
|
|
773
|
+
_request["pipelines"] = pipelines
|
|
774
|
+
_response = await self._client_wrapper.httpx_client.request(
|
|
775
|
+
"POST",
|
|
776
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers/retrieve"),
|
|
777
|
+
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
778
|
+
json=jsonable_encoder(_request),
|
|
779
|
+
headers=self._client_wrapper.get_headers(),
|
|
780
|
+
timeout=60,
|
|
781
|
+
)
|
|
782
|
+
if 200 <= _response.status_code < 300:
|
|
783
|
+
return pydantic.parse_obj_as(CompositeRetrievalResult, _response.json()) # type: ignore
|
|
784
|
+
if _response.status_code == 422:
|
|
785
|
+
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
786
|
+
try:
|
|
787
|
+
_response_json = _response.json()
|
|
788
|
+
except JSONDecodeError:
|
|
789
|
+
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
790
|
+
raise ApiError(status_code=_response.status_code, body=_response_json)
|
llama_cloud/types/__init__.py
CHANGED
|
@@ -103,15 +103,7 @@ from .embedding_model_config_update_embedding_config import (
|
|
|
103
103
|
EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding,
|
|
104
104
|
EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding,
|
|
105
105
|
)
|
|
106
|
-
from .eval_dataset import EvalDataset
|
|
107
|
-
from .eval_dataset_job_params import EvalDatasetJobParams
|
|
108
|
-
from .eval_dataset_job_record import EvalDatasetJobRecord
|
|
109
106
|
from .eval_execution_params import EvalExecutionParams
|
|
110
|
-
from .eval_execution_params_override import EvalExecutionParamsOverride
|
|
111
|
-
from .eval_metric import EvalMetric
|
|
112
|
-
from .eval_question import EvalQuestion
|
|
113
|
-
from .eval_question_create import EvalQuestionCreate
|
|
114
|
-
from .eval_question_result import EvalQuestionResult
|
|
115
107
|
from .extract_agent import ExtractAgent
|
|
116
108
|
from .extract_agent_create import ExtractAgentCreate
|
|
117
109
|
from .extract_agent_create_data_schema import ExtractAgentCreateDataSchema
|
|
@@ -178,9 +170,6 @@ from .llama_parse_supported_file_extensions import LlamaParseSupportedFileExtens
|
|
|
178
170
|
from .llm import Llm
|
|
179
171
|
from .llm_model_data import LlmModelData
|
|
180
172
|
from .llm_parameters import LlmParameters
|
|
181
|
-
from .local_eval import LocalEval
|
|
182
|
-
from .local_eval_results import LocalEvalResults
|
|
183
|
-
from .local_eval_sets import LocalEvalSets
|
|
184
173
|
from .managed_ingestion_status import ManagedIngestionStatus
|
|
185
174
|
from .managed_ingestion_status_response import ManagedIngestionStatusResponse
|
|
186
175
|
from .markdown_element_node_parser import MarkdownElementNodeParser
|
|
@@ -191,7 +180,6 @@ from .metadata_filter import MetadataFilter
|
|
|
191
180
|
from .metadata_filter_value import MetadataFilterValue
|
|
192
181
|
from .metadata_filters import MetadataFilters
|
|
193
182
|
from .metadata_filters_filters_item import MetadataFiltersFiltersItem
|
|
194
|
-
from .metric_result import MetricResult
|
|
195
183
|
from .node_parser import NodeParser
|
|
196
184
|
from .node_relationship import NodeRelationship
|
|
197
185
|
from .none_chunking_config import NoneChunkingConfig
|
|
@@ -276,8 +264,6 @@ from .progress_event_status import ProgressEventStatus
|
|
|
276
264
|
from .project import Project
|
|
277
265
|
from .project_create import ProjectCreate
|
|
278
266
|
from .prompt_conf import PromptConf
|
|
279
|
-
from .prompt_mixin_prompts import PromptMixinPrompts
|
|
280
|
-
from .prompt_spec import PromptSpec
|
|
281
267
|
from .pydantic_program_mode import PydanticProgramMode
|
|
282
268
|
from .recurring_credit_grant import RecurringCreditGrant
|
|
283
269
|
from .related_node_info import RelatedNodeInfo
|
|
@@ -435,15 +421,7 @@ __all__ = [
|
|
|
435
421
|
"EmbeddingModelConfigUpdateEmbeddingConfig_HuggingfaceApiEmbedding",
|
|
436
422
|
"EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding",
|
|
437
423
|
"EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding",
|
|
438
|
-
"EvalDataset",
|
|
439
|
-
"EvalDatasetJobParams",
|
|
440
|
-
"EvalDatasetJobRecord",
|
|
441
424
|
"EvalExecutionParams",
|
|
442
|
-
"EvalExecutionParamsOverride",
|
|
443
|
-
"EvalMetric",
|
|
444
|
-
"EvalQuestion",
|
|
445
|
-
"EvalQuestionCreate",
|
|
446
|
-
"EvalQuestionResult",
|
|
447
425
|
"ExtractAgent",
|
|
448
426
|
"ExtractAgentCreate",
|
|
449
427
|
"ExtractAgentCreateDataSchema",
|
|
@@ -508,9 +486,6 @@ __all__ = [
|
|
|
508
486
|
"Llm",
|
|
509
487
|
"LlmModelData",
|
|
510
488
|
"LlmParameters",
|
|
511
|
-
"LocalEval",
|
|
512
|
-
"LocalEvalResults",
|
|
513
|
-
"LocalEvalSets",
|
|
514
489
|
"ManagedIngestionStatus",
|
|
515
490
|
"ManagedIngestionStatusResponse",
|
|
516
491
|
"MarkdownElementNodeParser",
|
|
@@ -521,7 +496,6 @@ __all__ = [
|
|
|
521
496
|
"MetadataFilterValue",
|
|
522
497
|
"MetadataFilters",
|
|
523
498
|
"MetadataFiltersFiltersItem",
|
|
524
|
-
"MetricResult",
|
|
525
499
|
"NodeParser",
|
|
526
500
|
"NodeRelationship",
|
|
527
501
|
"NoneChunkingConfig",
|
|
@@ -600,8 +574,6 @@ __all__ = [
|
|
|
600
574
|
"Project",
|
|
601
575
|
"ProjectCreate",
|
|
602
576
|
"PromptConf",
|
|
603
|
-
"PromptMixinPrompts",
|
|
604
|
-
"PromptSpec",
|
|
605
577
|
"PydanticProgramMode",
|
|
606
578
|
"RecurringCreditGrant",
|
|
607
579
|
"RelatedNodeInfo",
|
|
@@ -23,9 +23,6 @@ class ExtractConfig(pydantic.BaseModel):
|
|
|
23
23
|
|
|
24
24
|
extraction_target: typing.Optional[ExtractTarget] = pydantic.Field(description="The extraction target specified.")
|
|
25
25
|
extraction_mode: typing.Optional[ExtractMode] = pydantic.Field(description="The extraction mode specified.")
|
|
26
|
-
handle_missing: typing.Optional[bool] = pydantic.Field(
|
|
27
|
-
description="Whether to handle missing fields in the schema."
|
|
28
|
-
)
|
|
29
26
|
system_prompt: typing.Optional[str]
|
|
30
27
|
|
|
31
28
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -9,9 +9,17 @@ T_Result = typing.TypeVar("T_Result")
|
|
|
9
9
|
class ExtractMode(str, enum.Enum):
|
|
10
10
|
FAST = "FAST"
|
|
11
11
|
ACCURATE = "ACCURATE"
|
|
12
|
+
MULTIMODAL = "MULTIMODAL"
|
|
12
13
|
|
|
13
|
-
def visit(
|
|
14
|
+
def visit(
|
|
15
|
+
self,
|
|
16
|
+
fast: typing.Callable[[], T_Result],
|
|
17
|
+
accurate: typing.Callable[[], T_Result],
|
|
18
|
+
multimodal: typing.Callable[[], T_Result],
|
|
19
|
+
) -> T_Result:
|
|
14
20
|
if self is ExtractMode.FAST:
|
|
15
21
|
return fast()
|
|
16
22
|
if self is ExtractMode.ACCURATE:
|
|
17
23
|
return accurate()
|
|
24
|
+
if self is ExtractMode.MULTIMODAL:
|
|
25
|
+
return multimodal()
|
llama_cloud/types/prompt_conf.py
CHANGED
|
@@ -18,6 +18,7 @@ class PromptConf(pydantic.BaseModel):
|
|
|
18
18
|
system_prompt: typing.Optional[str] = pydantic.Field(description="The system prompt to use for the extraction.")
|
|
19
19
|
extraction_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for the extraction.")
|
|
20
20
|
error_handling_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for error handling.")
|
|
21
|
+
reasoning_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for reasoning.")
|
|
21
22
|
|
|
22
23
|
def json(self, **kwargs: typing.Any) -> str:
|
|
23
24
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -18,6 +18,7 @@ except ImportError:
|
|
|
18
18
|
class ReportBlock(pydantic.BaseModel):
|
|
19
19
|
idx: int = pydantic.Field(description="The index of the block")
|
|
20
20
|
template: str = pydantic.Field(description="The content of the block")
|
|
21
|
+
requires_human_review: typing.Optional[bool] = pydantic.Field(description="Whether the block requires human review")
|
|
21
22
|
sources: typing.Optional[typing.List[TextNodeWithScore]] = pydantic.Field(description="The sources for the block")
|
|
22
23
|
|
|
23
24
|
def json(self, **kwargs: typing.Any) -> str:
|
llama_cloud/types/struct_mode.py
CHANGED
|
@@ -10,6 +10,7 @@ class StructMode(str, enum.Enum):
|
|
|
10
10
|
STRUCT_PARSE = "STRUCT_PARSE"
|
|
11
11
|
JSON_MODE = "JSON_MODE"
|
|
12
12
|
FUNC_CALL = "FUNC_CALL"
|
|
13
|
+
STRUCT_RELAXED = "STRUCT_RELAXED"
|
|
13
14
|
UNSTRUCTURED = "UNSTRUCTURED"
|
|
14
15
|
|
|
15
16
|
def visit(
|
|
@@ -17,6 +18,7 @@ class StructMode(str, enum.Enum):
|
|
|
17
18
|
struct_parse: typing.Callable[[], T_Result],
|
|
18
19
|
json_mode: typing.Callable[[], T_Result],
|
|
19
20
|
func_call: typing.Callable[[], T_Result],
|
|
21
|
+
struct_relaxed: typing.Callable[[], T_Result],
|
|
20
22
|
unstructured: typing.Callable[[], T_Result],
|
|
21
23
|
) -> T_Result:
|
|
22
24
|
if self is StructMode.STRUCT_PARSE:
|
|
@@ -25,5 +27,7 @@ class StructMode(str, enum.Enum):
|
|
|
25
27
|
return json_mode()
|
|
26
28
|
if self is StructMode.FUNC_CALL:
|
|
27
29
|
return func_call()
|
|
30
|
+
if self is StructMode.STRUCT_RELAXED:
|
|
31
|
+
return struct_relaxed()
|
|
28
32
|
if self is StructMode.UNSTRUCTURED:
|
|
29
33
|
return unstructured()
|
|
@@ -32,6 +32,12 @@ class StructParseConf(pydantic.BaseModel):
|
|
|
32
32
|
struct_mode: typing.Optional[StructMode] = pydantic.Field(
|
|
33
33
|
description="The struct mode to use for the structured parsing."
|
|
34
34
|
)
|
|
35
|
+
handle_missing: typing.Optional[bool] = pydantic.Field(
|
|
36
|
+
description="Whether to handle missing fields in the schema."
|
|
37
|
+
)
|
|
38
|
+
use_reasoning: typing.Optional[bool] = pydantic.Field(
|
|
39
|
+
description="Whether to use reasoning for the structured parsing."
|
|
40
|
+
)
|
|
35
41
|
prompt_conf: typing.Optional[PromptConf] = pydantic.Field(
|
|
36
42
|
description="The prompt configuration for the structured parsing."
|
|
37
43
|
)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
llama_cloud/__init__.py,sha256=
|
|
1
|
+
llama_cloud/__init__.py,sha256=GsERaXUabzoc0F4eXn1nzIVnb9iuBaEMCgSyfYJ2TMQ,22569
|
|
2
2
|
llama_cloud/client.py,sha256=0fK6iRBCA77eSs0zFrYQj-zD0BLy6Dr2Ss0ETJ4WaOY,5555
|
|
3
3
|
llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
|
|
4
4
|
llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
|
|
@@ -28,7 +28,7 @@ llama_cloud/resources/embedding_model_configs/client.py,sha256=uyuDfQQXudqLEQFev
|
|
|
28
28
|
llama_cloud/resources/embedding_model_configs/types/__init__.py,sha256=6-rcDwJhw_0shz3CjrPvlYBYXJJ1bLn-PpplhOsQ79w,1156
|
|
29
29
|
llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py,sha256=SQCHJk0AmBbKS5XKdcEJxhDhIMLQCmCI13IHC28v7vQ,3054
|
|
30
30
|
llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
31
|
-
llama_cloud/resources/evals/client.py,sha256=
|
|
31
|
+
llama_cloud/resources/evals/client.py,sha256=v2AyeQV0hVgC6xoP2gJNgneJMaeXALV1hIeirYGxlPw,3242
|
|
32
32
|
llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
|
|
33
33
|
llama_cloud/resources/files/client.py,sha256=7VmhrE5fbftB6p6QUQUkGM5FO48obF73keq86vGFyhE,49676
|
|
34
34
|
llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
|
|
@@ -44,20 +44,20 @@ llama_cloud/resources/organizations/client.py,sha256=OGSVpkfY5wu8-22IFWVmtbYSDiy
|
|
|
44
44
|
llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
45
45
|
llama_cloud/resources/parsing/client.py,sha256=cdEEqjb5pRvb-Vq9VXjgh1107emTzYh5VP-Uu4aV3XI,74026
|
|
46
46
|
llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
|
|
47
|
-
llama_cloud/resources/pipelines/client.py,sha256
|
|
47
|
+
llama_cloud/resources/pipelines/client.py,sha256=My_TCezdFHfzPmzSzD25DIKNO88XUrQGeFmwOQ-Z0Gk,125055
|
|
48
48
|
llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
|
|
49
49
|
llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py,sha256=trI48WLxPcAqV9207Q6-3cj1nl4EGlZpw7En56ZsPgg,217
|
|
50
50
|
llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=c8FF64fDrBMX_2RX4uY3CjbNc0Ss_AUJ4Eqs-KeV4Wc,2874
|
|
51
51
|
llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py,sha256=KbkyULMv-qeS3qRd31ia6pd5rOdypS0o2UL42NRcA7E,321
|
|
52
52
|
llama_cloud/resources/projects/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
53
|
-
llama_cloud/resources/projects/client.py,sha256=
|
|
53
|
+
llama_cloud/resources/projects/client.py,sha256=_9a54cNU8deQKrOpx4kj7Vgj2ByCyQQ7eEHhj-Zc1Ik,22498
|
|
54
54
|
llama_cloud/resources/reports/__init__.py,sha256=cruYbQ1bIuJbRpkfaQY7ajUEslffjd7KzvzMzbtPH94,217
|
|
55
55
|
llama_cloud/resources/reports/client.py,sha256=kHjtXVVc1Xi3T1GyBvSW5K4mTdr6xQwZA3vw-liRKBg,46736
|
|
56
56
|
llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwHww2YU90lOonBPTmZIk,291
|
|
57
57
|
llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
|
|
58
58
|
llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
59
|
-
llama_cloud/resources/retrievers/client.py,sha256=
|
|
60
|
-
llama_cloud/types/__init__.py,sha256=
|
|
59
|
+
llama_cloud/resources/retrievers/client.py,sha256=fmRVQjMaSaytaU1NMvE_vosyrbkdY93kGi2VKAGcb4U,30245
|
|
60
|
+
llama_cloud/types/__init__.py,sha256=AHJ1ew2Q4Y-b1dj2WHJDv9mSH7b--pfw2FrCgoIeC6I,27769
|
|
61
61
|
llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
|
|
62
62
|
llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
|
|
63
63
|
llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
|
|
@@ -131,15 +131,7 @@ llama_cloud/types/embedding_model_config.py,sha256=6-o0vsAX89eHQdCAG5sI317Aivr4T
|
|
|
131
131
|
llama_cloud/types/embedding_model_config_embedding_config.py,sha256=9rmfeiJYhBPmSJCXp-qxkOAd9WPwL5Hks7jIKd8XCPM,2901
|
|
132
132
|
llama_cloud/types/embedding_model_config_update.py,sha256=BiA1KbFT-TSvy5OEyChd0dgDnQCKfBRxsDTvVKNj10Q,1175
|
|
133
133
|
llama_cloud/types/embedding_model_config_update_embedding_config.py,sha256=mrXFxzb9GRaH4UUnOe_05-uYUuiTgDDCRadAMbPmGgc,2991
|
|
134
|
-
llama_cloud/types/eval_dataset.py,sha256=FIP4uHqUXg0LxGPaq-LmW2aTcEdQk-i5AYLbGqsQSV0,1310
|
|
135
|
-
llama_cloud/types/eval_dataset_job_params.py,sha256=vcXLJWO581uigNvGAurPDgMeEFtQURWucLF5pemdeS0,1343
|
|
136
|
-
llama_cloud/types/eval_dataset_job_record.py,sha256=vBDz7xezpE8AB6Kw7sZLYxgMcv0dxUWVC01_fI2QuUU,2168
|
|
137
134
|
llama_cloud/types/eval_execution_params.py,sha256=ntVaJh5SMZMPL4QLUiihVjUlg2SKbrezvbMKGlrF66Q,1369
|
|
138
|
-
llama_cloud/types/eval_execution_params_override.py,sha256=ihEFbMRYmFJ5mWmFW24JjV6D0qqeDM4p829mSxMGtOQ,1195
|
|
139
|
-
llama_cloud/types/eval_metric.py,sha256=vhO_teMLiyzBdzKpOBW8Bm9qCw2h6m3unp2XotB7pDQ,499
|
|
140
|
-
llama_cloud/types/eval_question.py,sha256=UG042gXLw1uIW9hQOffCzIoGHVSve8Wk9ZeYGzwhHDU,1432
|
|
141
|
-
llama_cloud/types/eval_question_create.py,sha256=oOwxkE5gPj8RAwgr3uuTHfTvLSXmYkkxNHqsT7oUHjI,1031
|
|
142
|
-
llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQbToiVJqm41ArY,2168
|
|
143
135
|
llama_cloud/types/extract_agent.py,sha256=T98IOueut4M52Qm7hqcUOcWFFDhZ-ye0OFdXgfFGtS4,1763
|
|
144
136
|
llama_cloud/types/extract_agent_create.py,sha256=nDe2AELKdhF2VKe-IiajHavo8xatTZWbJb76D-HhJkM,1429
|
|
145
137
|
llama_cloud/types/extract_agent_create_data_schema.py,sha256=zB31hJQ8hKaIsPkfTWiX5hqsPVFMyyeWEDZ_Aq237jo,305
|
|
@@ -148,7 +140,7 @@ llama_cloud/types/extract_agent_data_schema_value.py,sha256=UaDQ2KjajLDccW7F4NKd
|
|
|
148
140
|
llama_cloud/types/extract_agent_update.py,sha256=bcXovL4OblDFQXAfhstLMfSSY2sJHQFkfVjzZ_8jO8c,1349
|
|
149
141
|
llama_cloud/types/extract_agent_update_data_schema.py,sha256=argR5gPRUYWY6ADCMKRdg-8NM-rsBM91_TEn8NKqVy8,305
|
|
150
142
|
llama_cloud/types/extract_agent_update_data_schema_zero_value.py,sha256=Nvd892EFhg-PzlqoFp5i2owL7hCZ2SsuL7U4Tk9NeRI,217
|
|
151
|
-
llama_cloud/types/extract_config.py,sha256=
|
|
143
|
+
llama_cloud/types/extract_config.py,sha256=oR_6uYl8-58q6a5BsgymJuqCKPn6JoY7SAUmjT9M3es,1369
|
|
152
144
|
llama_cloud/types/extract_job.py,sha256=Yx4fDdCdylAji2LPTwqflVpz1o9slpj9tTLS93-1tzU,1431
|
|
153
145
|
llama_cloud/types/extract_job_create.py,sha256=UK1mBIKyflo7e6m1MxMN95pLscj67jH_yvs8EvmBXqU,1545
|
|
154
146
|
llama_cloud/types/extract_job_create_batch.py,sha256=64BAproProYtPk7vAPGvFoxvlgg7ZLb1LSg3ChIf7AM,1589
|
|
@@ -156,7 +148,7 @@ llama_cloud/types/extract_job_create_batch_data_schema_override.py,sha256=GykJ1B
|
|
|
156
148
|
llama_cloud/types/extract_job_create_batch_data_schema_override_zero_value.py,sha256=7zXOgTYUwVAeyYeqWvX69m-7mhvK0V9cBRvgqVSd0X0,228
|
|
157
149
|
llama_cloud/types/extract_job_create_data_schema_override.py,sha256=vuiJ2lGJjbXEnvFKzVnKyvgwhMXPg1Pb5GZne2DrB60,330
|
|
158
150
|
llama_cloud/types/extract_job_create_data_schema_override_zero_value.py,sha256=HHEYxOSQXXyBYOiUQg_qwfQtXFj-OtThMwbUDBIgZU0,223
|
|
159
|
-
llama_cloud/types/extract_mode.py,sha256=
|
|
151
|
+
llama_cloud/types/extract_mode.py,sha256=mMkEugv91d-kcWLGUlr7Nm62p0eSlXeqfMAKw7u7wXI,644
|
|
160
152
|
llama_cloud/types/extract_resultset.py,sha256=Alje0YQJUiA_aKi0hQs7TAnhDmZuQ_yL9b6HCNYBFQg,1627
|
|
161
153
|
llama_cloud/types/extract_resultset_data.py,sha256=v9Ae4SxLsvYPE9crko4N16lBjsxuZpz1yrUOhnaM_VY,427
|
|
162
154
|
llama_cloud/types/extract_resultset_data_item_value.py,sha256=JwqgDIGW0irr8QWaSTIrl24FhGxTUDOXIbxoSdIjuxs,209
|
|
@@ -202,9 +194,6 @@ llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9F
|
|
|
202
194
|
llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
|
|
203
195
|
llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
|
|
204
196
|
llama_cloud/types/llm_parameters.py,sha256=RTKYt09lm9a1MlnBfYuTP2x_Ww4byUNNc1TqIel5O1Y,1377
|
|
205
|
-
llama_cloud/types/local_eval.py,sha256=aJ8jRG0b5EL9cLjx281bzAzPw7Ar004Jfp6mBmyjuTA,1491
|
|
206
|
-
llama_cloud/types/local_eval_results.py,sha256=YfK6AhfD0gr5apQBfrfzrTHDXvrk7ynAUUjNSKu9NVk,1380
|
|
207
|
-
llama_cloud/types/local_eval_sets.py,sha256=XJSSriwRvkma889pPiBQrpRakKejKOX3tWPu1TGb1ug,1181
|
|
208
197
|
llama_cloud/types/managed_ingestion_status.py,sha256=3KVlcurpEBOPAesBUS5pSYLoQVIyZUlr90Mmv-uALHE,1290
|
|
209
198
|
llama_cloud/types/managed_ingestion_status_response.py,sha256=rdNpjNbQswF-6JG1e-EU374TP6Pjlxl0p7HJyNmuxTI,1373
|
|
210
199
|
llama_cloud/types/markdown_element_node_parser.py,sha256=NUqdU8BmyfSFK2rV6hCrvP6U1iB6aqZCVsvHWJQ49xU,1964
|
|
@@ -215,7 +204,6 @@ llama_cloud/types/metadata_filter.py,sha256=dVdXY6i0aCkvJrs7ncQt4-S8jmBF9bBSp2Vu
|
|
|
215
204
|
llama_cloud/types/metadata_filter_value.py,sha256=ij721gXNI7zbgsuDl9-AqBcXg2WDuVZhYS5F5YqekEs,188
|
|
216
205
|
llama_cloud/types/metadata_filters.py,sha256=uSf6sB4oQu6WzMPNFG6Tc4euqEiYcj_X14Y5JWt9xVE,1315
|
|
217
206
|
llama_cloud/types/metadata_filters_filters_item.py,sha256=e8KhD2q6Qc2_aK6r5CvyxC0oWVYO4F4vBIcB9eMEPPM,246
|
|
218
|
-
llama_cloud/types/metric_result.py,sha256=gCVyu9usPip30igCLKS0oTYU6V3CvY8QIk1gwaXB7ik,1051
|
|
219
207
|
llama_cloud/types/node_parser.py,sha256=rqZTQ_9GnCHOvSpXuAZoezxQCOgxHo-hmQv0s7pnEFc,1380
|
|
220
208
|
llama_cloud/types/node_relationship.py,sha256=2e2PqWm0LOTiImvtsyiuaAPNIl0BItjSrQZTJv65GRA,1209
|
|
221
209
|
llama_cloud/types/none_chunking_config.py,sha256=D062t314Vp-s4n9h8wNgsYfElI4PonPKmihvjEmaqdA,952
|
|
@@ -277,15 +265,13 @@ llama_cloud/types/progress_event.py,sha256=Bk73A8geTVaq0ze5pMnbkAmx7FSOHQIixYCpC
|
|
|
277
265
|
llama_cloud/types/progress_event_status.py,sha256=yb4RAXwOKU6Bi7iyYy-3lwhF6_mLz0ZFyGjxIdaByoE,893
|
|
278
266
|
llama_cloud/types/project.py,sha256=4NNh_ZAjEkoWl5st6b1jsPVf_SYKtUTB6rS1701G4IQ,1441
|
|
279
267
|
llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
|
|
280
|
-
llama_cloud/types/prompt_conf.py,sha256=
|
|
281
|
-
llama_cloud/types/prompt_mixin_prompts.py,sha256=_ipiIFWmWSuaJ5VFI5rXa_C7lHaIL3Yv5izh7__xTxI,1323
|
|
282
|
-
llama_cloud/types/prompt_spec.py,sha256=tPJTIzN9pYmiZD-HcPHFuhh4n1ak9FI5f7xFNV31djQ,1410
|
|
268
|
+
llama_cloud/types/prompt_conf.py,sha256=4vAKt0Gce9ALRb_-FE0QbRiFM1Rc9OQAADggwBwgauE,1402
|
|
283
269
|
llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
|
|
284
270
|
llama_cloud/types/recurring_credit_grant.py,sha256=19qI3p5k1mQ1Qoo-gCQU02Aa42XpEsmwxPF1F88F-Yg,1517
|
|
285
271
|
llama_cloud/types/related_node_info.py,sha256=frQg_RqrSBc62ooJ4QOF5QRKymHcNot5WVFAB_g1sMg,1216
|
|
286
272
|
llama_cloud/types/related_node_info_node_type.py,sha256=lH95d8G-EnKCllV_igJsBfYt49y162PoNxWtrCo_Kgk,173
|
|
287
273
|
llama_cloud/types/report.py,sha256=9M_WkIxi5ilmtXrLKo5XxWzJ_qV8FFf5j8bAlQRmaks,1155
|
|
288
|
-
llama_cloud/types/report_block.py,sha256=
|
|
274
|
+
llama_cloud/types/report_block.py,sha256=y5n5z0JxZNH9kzN0rTqIdZPRLA9XHdYvQlHTcPSraKk,1381
|
|
289
275
|
llama_cloud/types/report_block_dependency.py,sha256=TGtLpcJG2xwTKr3GU8Err53T0BR_zNTiT-2JILvPbSg,785
|
|
290
276
|
llama_cloud/types/report_create_response.py,sha256=tmnVkyAMVf0HNQy186DFVV1oZQzYGY9wxNk84cwQLKA,1020
|
|
291
277
|
llama_cloud/types/report_event_item.py,sha256=_-0wgI96Ama2qKqUODTmI_fEcrnW5eAAjL1AoFEr4cQ,1451
|
|
@@ -310,8 +296,8 @@ llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Zt
|
|
|
310
296
|
llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
|
|
311
297
|
llama_cloud/types/sentence_splitter.py,sha256=GbC3KE20Nd85uzO4bqJttjqJhQ_1co2gKnSQxzfOAiM,2140
|
|
312
298
|
llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDPvx0,1018
|
|
313
|
-
llama_cloud/types/struct_mode.py,sha256=
|
|
314
|
-
llama_cloud/types/struct_parse_conf.py,sha256=
|
|
299
|
+
llama_cloud/types/struct_mode.py,sha256=ROicwjXfFmgVU8_xSVxJlnFUzRNKG5VIEF1wYg9uOPU,1020
|
|
300
|
+
llama_cloud/types/struct_parse_conf.py,sha256=Od5f8azJlJTJJ6rwtZEIaEsSSYBdrNsHtLeMtdpMtxM,2101
|
|
315
301
|
llama_cloud/types/supported_llm_model.py,sha256=0v-g01LyZB7TeN0zwAeSJejRoT95SVaXOJhNz7boJwM,1461
|
|
316
302
|
llama_cloud/types/supported_llm_model_names.py,sha256=dEhmwGQVG-dmuGGbTWBAYadr-g5u3kiVz308CLWuSqw,2657
|
|
317
303
|
llama_cloud/types/text_block.py,sha256=X154sQkSyposXuRcEWNp_tWcDQ-AI6q_-MfJUN5exP8,958
|
|
@@ -335,7 +321,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
|
|
|
335
321
|
llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
|
|
336
322
|
llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
|
|
337
323
|
llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
|
|
338
|
-
llama_cloud-0.1.
|
|
339
|
-
llama_cloud-0.1.
|
|
340
|
-
llama_cloud-0.1.
|
|
341
|
-
llama_cloud-0.1.
|
|
324
|
+
llama_cloud-0.1.16.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
|
|
325
|
+
llama_cloud-0.1.16.dist-info/METADATA,sha256=nCSIO_-vJxp4O2kbNl74lwlihxhu62Bg3eI7yjC8tu4,902
|
|
326
|
+
llama_cloud-0.1.16.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
|
327
|
+
llama_cloud-0.1.16.dist-info/RECORD,,
|
|
@@ -1,40 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class EvalDataset(pydantic.BaseModel):
|
|
18
|
-
"""
|
|
19
|
-
Schema for an eval dataset.
|
|
20
|
-
Includes the other DB fields like id, created_at, & updated_at.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
-
name: str = pydantic.Field(description="The name of the EvalDataset.")
|
|
27
|
-
project_id: str
|
|
28
|
-
|
|
29
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
-
return super().json(**kwargs_with_defaults)
|
|
32
|
-
|
|
33
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
-
return super().dict(**kwargs_with_defaults)
|
|
36
|
-
|
|
37
|
-
class Config:
|
|
38
|
-
frozen = True
|
|
39
|
-
smart_union = True
|
|
40
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .eval_execution_params import EvalExecutionParams
|
|
8
|
-
|
|
9
|
-
try:
|
|
10
|
-
import pydantic
|
|
11
|
-
if pydantic.__version__.startswith("1."):
|
|
12
|
-
raise ImportError
|
|
13
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
-
except ImportError:
|
|
15
|
-
import pydantic # type: ignore
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class EvalDatasetJobParams(pydantic.BaseModel):
|
|
19
|
-
"""
|
|
20
|
-
Schema for the parameters of an eval dataset job.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
eval_question_ids: typing.List[str] = pydantic.Field(
|
|
24
|
-
description="The IDs for the EvalQuestions this execution ran against."
|
|
25
|
-
)
|
|
26
|
-
eval_execution_params: EvalExecutionParams = pydantic.Field(description="The parameters for the eval execution.")
|
|
27
|
-
|
|
28
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
29
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
-
return super().json(**kwargs_with_defaults)
|
|
31
|
-
|
|
32
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
33
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
34
|
-
return super().dict(**kwargs_with_defaults)
|
|
35
|
-
|
|
36
|
-
class Config:
|
|
37
|
-
frozen = True
|
|
38
|
-
smart_union = True
|
|
39
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,58 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
import typing_extensions
|
|
7
|
-
|
|
8
|
-
from ..core.datetime_utils import serialize_datetime
|
|
9
|
-
from .eval_dataset_job_params import EvalDatasetJobParams
|
|
10
|
-
from .status_enum import StatusEnum
|
|
11
|
-
|
|
12
|
-
try:
|
|
13
|
-
import pydantic
|
|
14
|
-
if pydantic.__version__.startswith("1."):
|
|
15
|
-
raise ImportError
|
|
16
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
17
|
-
except ImportError:
|
|
18
|
-
import pydantic # type: ignore
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
class EvalDatasetJobRecord(pydantic.BaseModel):
|
|
22
|
-
"""
|
|
23
|
-
Schema for job that evaluates an EvalDataset against a pipeline.
|
|
24
|
-
"""
|
|
25
|
-
|
|
26
|
-
job_name: typing_extensions.Literal["eval_dataset_job"]
|
|
27
|
-
partitions: typing.Dict[str, str] = pydantic.Field(
|
|
28
|
-
description="The partitions for this execution. Used for determining where to save job output."
|
|
29
|
-
)
|
|
30
|
-
parameters: typing.Optional[EvalDatasetJobParams]
|
|
31
|
-
session_id: typing.Optional[str]
|
|
32
|
-
correlation_id: typing.Optional[str]
|
|
33
|
-
parent_job_execution_id: typing.Optional[str]
|
|
34
|
-
user_id: typing.Optional[str]
|
|
35
|
-
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
36
|
-
project_id: typing.Optional[str]
|
|
37
|
-
id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
|
|
38
|
-
status: StatusEnum
|
|
39
|
-
error_code: typing.Optional[str]
|
|
40
|
-
error_message: typing.Optional[str]
|
|
41
|
-
attempts: typing.Optional[int]
|
|
42
|
-
started_at: typing.Optional[dt.datetime]
|
|
43
|
-
ended_at: typing.Optional[dt.datetime]
|
|
44
|
-
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
45
|
-
data: typing.Optional[typing.Any]
|
|
46
|
-
|
|
47
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
48
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
49
|
-
return super().json(**kwargs_with_defaults)
|
|
50
|
-
|
|
51
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
52
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
53
|
-
return super().dict(**kwargs_with_defaults)
|
|
54
|
-
|
|
55
|
-
class Config:
|
|
56
|
-
frozen = True
|
|
57
|
-
smart_union = True
|
|
58
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,37 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .supported_llm_model_names import SupportedLlmModelNames
|
|
8
|
-
|
|
9
|
-
try:
|
|
10
|
-
import pydantic
|
|
11
|
-
if pydantic.__version__.startswith("1."):
|
|
12
|
-
raise ImportError
|
|
13
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
-
except ImportError:
|
|
15
|
-
import pydantic # type: ignore
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class EvalExecutionParamsOverride(pydantic.BaseModel):
|
|
19
|
-
"""
|
|
20
|
-
Schema for the params override for an eval execution.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
llm_model: typing.Optional[SupportedLlmModelNames]
|
|
24
|
-
qa_prompt_tmpl: typing.Optional[str]
|
|
25
|
-
|
|
26
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
27
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
-
return super().json(**kwargs_with_defaults)
|
|
29
|
-
|
|
30
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
31
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
-
return super().dict(**kwargs_with_defaults)
|
|
33
|
-
|
|
34
|
-
class Config:
|
|
35
|
-
frozen = True
|
|
36
|
-
smart_union = True
|
|
37
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
llama_cloud/types/eval_metric.py
DELETED
|
@@ -1,17 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import enum
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
T_Result = typing.TypeVar("T_Result")
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
class EvalMetric(str, enum.Enum):
|
|
10
|
-
RELEVANCY = "RELEVANCY"
|
|
11
|
-
FAITHFULNESS = "FAITHFULNESS"
|
|
12
|
-
|
|
13
|
-
def visit(self, relevancy: typing.Callable[[], T_Result], faithfulness: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
-
if self is EvalMetric.RELEVANCY:
|
|
15
|
-
return relevancy()
|
|
16
|
-
if self is EvalMetric.FAITHFULNESS:
|
|
17
|
-
return faithfulness()
|