llama-cloud 0.1.14__py3-none-any.whl → 0.1.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +8 -28
- llama_cloud/resources/evals/client.py +0 -643
- llama_cloud/resources/llama_extract/client.py +168 -6
- llama_cloud/resources/parsing/client.py +0 -8
- llama_cloud/resources/pipelines/client.py +10 -371
- llama_cloud/resources/projects/client.py +72 -923
- llama_cloud/resources/retrievers/client.py +124 -0
- llama_cloud/types/__init__.py +8 -28
- llama_cloud/types/chunk_mode.py +4 -0
- llama_cloud/types/extract_config.py +0 -3
- llama_cloud/types/{local_eval.py → extract_job_create_batch.py} +9 -14
- llama_cloud/types/extract_job_create_batch_data_schema_override.py +9 -0
- llama_cloud/types/extract_job_create_batch_data_schema_override_zero_value.py +7 -0
- llama_cloud/types/extract_mode.py +9 -1
- llama_cloud/types/llama_parse_parameters.py +0 -1
- llama_cloud/types/{local_eval_results.py → paginated_extract_runs_response.py} +7 -8
- llama_cloud/types/prompt_conf.py +1 -0
- llama_cloud/types/report_block.py +1 -0
- llama_cloud/types/struct_mode.py +4 -0
- llama_cloud/types/struct_parse_conf.py +6 -0
- llama_cloud/types/usage.py +2 -1
- {llama_cloud-0.1.14.dist-info → llama_cloud-0.1.16.dist-info}/METADATA +1 -1
- {llama_cloud-0.1.14.dist-info → llama_cloud-0.1.16.dist-info}/RECORD +25 -35
- llama_cloud/types/eval_dataset.py +0 -40
- llama_cloud/types/eval_dataset_job_params.py +0 -39
- llama_cloud/types/eval_dataset_job_record.py +0 -58
- llama_cloud/types/eval_execution_params_override.py +0 -37
- llama_cloud/types/eval_metric.py +0 -17
- llama_cloud/types/eval_question.py +0 -38
- llama_cloud/types/eval_question_create.py +0 -31
- llama_cloud/types/eval_question_result.py +0 -52
- llama_cloud/types/local_eval_sets.py +0 -33
- llama_cloud/types/metric_result.py +0 -33
- llama_cloud/types/prompt_mixin_prompts.py +0 -39
- llama_cloud/types/prompt_spec.py +0 -36
- {llama_cloud-0.1.14.dist-info → llama_cloud-0.1.16.dist-info}/LICENSE +0 -0
- {llama_cloud-0.1.14.dist-info → llama_cloud-0.1.16.dist-info}/WHEEL +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
llama_cloud/__init__.py,sha256=
|
|
1
|
+
llama_cloud/__init__.py,sha256=GsERaXUabzoc0F4eXn1nzIVnb9iuBaEMCgSyfYJ2TMQ,22569
|
|
2
2
|
llama_cloud/client.py,sha256=0fK6iRBCA77eSs0zFrYQj-zD0BLy6Dr2Ss0ETJ4WaOY,5555
|
|
3
3
|
llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
|
|
4
4
|
llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
|
|
@@ -28,7 +28,7 @@ llama_cloud/resources/embedding_model_configs/client.py,sha256=uyuDfQQXudqLEQFev
|
|
|
28
28
|
llama_cloud/resources/embedding_model_configs/types/__init__.py,sha256=6-rcDwJhw_0shz3CjrPvlYBYXJJ1bLn-PpplhOsQ79w,1156
|
|
29
29
|
llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py,sha256=SQCHJk0AmBbKS5XKdcEJxhDhIMLQCmCI13IHC28v7vQ,3054
|
|
30
30
|
llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
31
|
-
llama_cloud/resources/evals/client.py,sha256=
|
|
31
|
+
llama_cloud/resources/evals/client.py,sha256=v2AyeQV0hVgC6xoP2gJNgneJMaeXALV1hIeirYGxlPw,3242
|
|
32
32
|
llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
|
|
33
33
|
llama_cloud/resources/files/client.py,sha256=7VmhrE5fbftB6p6QUQUkGM5FO48obF73keq86vGFyhE,49676
|
|
34
34
|
llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
|
|
@@ -38,26 +38,26 @@ llama_cloud/resources/files/types/file_create_resource_info_value.py,sha256=R7Y-
|
|
|
38
38
|
llama_cloud/resources/jobs/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
39
39
|
llama_cloud/resources/jobs/client.py,sha256=mN9uOzys9aZkhOJkApUy0yhfNeK8X09xQxT34ZPptNY,5386
|
|
40
40
|
llama_cloud/resources/llama_extract/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
41
|
-
llama_cloud/resources/llama_extract/client.py,sha256=
|
|
41
|
+
llama_cloud/resources/llama_extract/client.py,sha256=xEezIrVQcLW7bTle3gNi2bXVDm3trjXsUJpJtChXHVo,53044
|
|
42
42
|
llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
43
43
|
llama_cloud/resources/organizations/client.py,sha256=OGSVpkfY5wu8-22IFWVmtbYSDiy0-KqA3Lc1E_jNHvg,55889
|
|
44
44
|
llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
45
|
-
llama_cloud/resources/parsing/client.py,sha256=
|
|
45
|
+
llama_cloud/resources/parsing/client.py,sha256=cdEEqjb5pRvb-Vq9VXjgh1107emTzYh5VP-Uu4aV3XI,74026
|
|
46
46
|
llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
|
|
47
|
-
llama_cloud/resources/pipelines/client.py,sha256
|
|
47
|
+
llama_cloud/resources/pipelines/client.py,sha256=My_TCezdFHfzPmzSzD25DIKNO88XUrQGeFmwOQ-Z0Gk,125055
|
|
48
48
|
llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
|
|
49
49
|
llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py,sha256=trI48WLxPcAqV9207Q6-3cj1nl4EGlZpw7En56ZsPgg,217
|
|
50
50
|
llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=c8FF64fDrBMX_2RX4uY3CjbNc0Ss_AUJ4Eqs-KeV4Wc,2874
|
|
51
51
|
llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py,sha256=KbkyULMv-qeS3qRd31ia6pd5rOdypS0o2UL42NRcA7E,321
|
|
52
52
|
llama_cloud/resources/projects/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
53
|
-
llama_cloud/resources/projects/client.py,sha256=
|
|
53
|
+
llama_cloud/resources/projects/client.py,sha256=_9a54cNU8deQKrOpx4kj7Vgj2ByCyQQ7eEHhj-Zc1Ik,22498
|
|
54
54
|
llama_cloud/resources/reports/__init__.py,sha256=cruYbQ1bIuJbRpkfaQY7ajUEslffjd7KzvzMzbtPH94,217
|
|
55
55
|
llama_cloud/resources/reports/client.py,sha256=kHjtXVVc1Xi3T1GyBvSW5K4mTdr6xQwZA3vw-liRKBg,46736
|
|
56
56
|
llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwHww2YU90lOonBPTmZIk,291
|
|
57
57
|
llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
|
|
58
58
|
llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
59
|
-
llama_cloud/resources/retrievers/client.py,sha256=
|
|
60
|
-
llama_cloud/types/__init__.py,sha256=
|
|
59
|
+
llama_cloud/resources/retrievers/client.py,sha256=fmRVQjMaSaytaU1NMvE_vosyrbkdY93kGi2VKAGcb4U,30245
|
|
60
|
+
llama_cloud/types/__init__.py,sha256=AHJ1ew2Q4Y-b1dj2WHJDv9mSH7b--pfw2FrCgoIeC6I,27769
|
|
61
61
|
llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
|
|
62
62
|
llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
|
|
63
63
|
llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
|
|
@@ -79,7 +79,7 @@ llama_cloud/types/character_splitter.py,sha256=Jm6ie7c9JmMqIqLfAN-96sYvNUaIyLzCP
|
|
|
79
79
|
llama_cloud/types/chat_app.py,sha256=fLuzYkXLq51C_Y23hoLwfmG-OiT7jlyHt2JGe6-f1IA,1795
|
|
80
80
|
llama_cloud/types/chat_app_response.py,sha256=WSKr1KI9_pGTSstr3I53kZ8qb3y87Q4ulh8fR0C7sSU,1784
|
|
81
81
|
llama_cloud/types/chat_data.py,sha256=ZYqVtjXF6qPGajU4IWZu3InpU54TXJwBFiqxBepylP0,1197
|
|
82
|
-
llama_cloud/types/chunk_mode.py,sha256=
|
|
82
|
+
llama_cloud/types/chunk_mode.py,sha256=J4vqAQfQG6PWsIv1Fe_99nVsAfDbv_P81_KVsJ9AkU4,790
|
|
83
83
|
llama_cloud/types/cloud_az_storage_blob_data_source.py,sha256=NT4cYsD1M868_bSJxKM9cvTMtjQtQxKloE4vRv8_lwg,1534
|
|
84
84
|
llama_cloud/types/cloud_azure_ai_search_vector_store.py,sha256=9GTaft7BaKsR9RJQp5dlpbslXUlTMA1AcDdKV1ApfqI,1513
|
|
85
85
|
llama_cloud/types/cloud_box_data_source.py,sha256=9bffCaKGvctSsk9OdTpzzP__O1NDpb9wdvKY2uwjpwY,1470
|
|
@@ -131,15 +131,7 @@ llama_cloud/types/embedding_model_config.py,sha256=6-o0vsAX89eHQdCAG5sI317Aivr4T
|
|
|
131
131
|
llama_cloud/types/embedding_model_config_embedding_config.py,sha256=9rmfeiJYhBPmSJCXp-qxkOAd9WPwL5Hks7jIKd8XCPM,2901
|
|
132
132
|
llama_cloud/types/embedding_model_config_update.py,sha256=BiA1KbFT-TSvy5OEyChd0dgDnQCKfBRxsDTvVKNj10Q,1175
|
|
133
133
|
llama_cloud/types/embedding_model_config_update_embedding_config.py,sha256=mrXFxzb9GRaH4UUnOe_05-uYUuiTgDDCRadAMbPmGgc,2991
|
|
134
|
-
llama_cloud/types/eval_dataset.py,sha256=FIP4uHqUXg0LxGPaq-LmW2aTcEdQk-i5AYLbGqsQSV0,1310
|
|
135
|
-
llama_cloud/types/eval_dataset_job_params.py,sha256=vcXLJWO581uigNvGAurPDgMeEFtQURWucLF5pemdeS0,1343
|
|
136
|
-
llama_cloud/types/eval_dataset_job_record.py,sha256=vBDz7xezpE8AB6Kw7sZLYxgMcv0dxUWVC01_fI2QuUU,2168
|
|
137
134
|
llama_cloud/types/eval_execution_params.py,sha256=ntVaJh5SMZMPL4QLUiihVjUlg2SKbrezvbMKGlrF66Q,1369
|
|
138
|
-
llama_cloud/types/eval_execution_params_override.py,sha256=ihEFbMRYmFJ5mWmFW24JjV6D0qqeDM4p829mSxMGtOQ,1195
|
|
139
|
-
llama_cloud/types/eval_metric.py,sha256=vhO_teMLiyzBdzKpOBW8Bm9qCw2h6m3unp2XotB7pDQ,499
|
|
140
|
-
llama_cloud/types/eval_question.py,sha256=UG042gXLw1uIW9hQOffCzIoGHVSve8Wk9ZeYGzwhHDU,1432
|
|
141
|
-
llama_cloud/types/eval_question_create.py,sha256=oOwxkE5gPj8RAwgr3uuTHfTvLSXmYkkxNHqsT7oUHjI,1031
|
|
142
|
-
llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQbToiVJqm41ArY,2168
|
|
143
135
|
llama_cloud/types/extract_agent.py,sha256=T98IOueut4M52Qm7hqcUOcWFFDhZ-ye0OFdXgfFGtS4,1763
|
|
144
136
|
llama_cloud/types/extract_agent_create.py,sha256=nDe2AELKdhF2VKe-IiajHavo8xatTZWbJb76D-HhJkM,1429
|
|
145
137
|
llama_cloud/types/extract_agent_create_data_schema.py,sha256=zB31hJQ8hKaIsPkfTWiX5hqsPVFMyyeWEDZ_Aq237jo,305
|
|
@@ -148,12 +140,15 @@ llama_cloud/types/extract_agent_data_schema_value.py,sha256=UaDQ2KjajLDccW7F4NKd
|
|
|
148
140
|
llama_cloud/types/extract_agent_update.py,sha256=bcXovL4OblDFQXAfhstLMfSSY2sJHQFkfVjzZ_8jO8c,1349
|
|
149
141
|
llama_cloud/types/extract_agent_update_data_schema.py,sha256=argR5gPRUYWY6ADCMKRdg-8NM-rsBM91_TEn8NKqVy8,305
|
|
150
142
|
llama_cloud/types/extract_agent_update_data_schema_zero_value.py,sha256=Nvd892EFhg-PzlqoFp5i2owL7hCZ2SsuL7U4Tk9NeRI,217
|
|
151
|
-
llama_cloud/types/extract_config.py,sha256=
|
|
143
|
+
llama_cloud/types/extract_config.py,sha256=oR_6uYl8-58q6a5BsgymJuqCKPn6JoY7SAUmjT9M3es,1369
|
|
152
144
|
llama_cloud/types/extract_job.py,sha256=Yx4fDdCdylAji2LPTwqflVpz1o9slpj9tTLS93-1tzU,1431
|
|
153
145
|
llama_cloud/types/extract_job_create.py,sha256=UK1mBIKyflo7e6m1MxMN95pLscj67jH_yvs8EvmBXqU,1545
|
|
146
|
+
llama_cloud/types/extract_job_create_batch.py,sha256=64BAproProYtPk7vAPGvFoxvlgg7ZLb1LSg3ChIf7AM,1589
|
|
147
|
+
llama_cloud/types/extract_job_create_batch_data_schema_override.py,sha256=GykJ1BBecRtWYD3ZPi1YINqrr-me_pyr2w_4Ei4QOZQ,351
|
|
148
|
+
llama_cloud/types/extract_job_create_batch_data_schema_override_zero_value.py,sha256=7zXOgTYUwVAeyYeqWvX69m-7mhvK0V9cBRvgqVSd0X0,228
|
|
154
149
|
llama_cloud/types/extract_job_create_data_schema_override.py,sha256=vuiJ2lGJjbXEnvFKzVnKyvgwhMXPg1Pb5GZne2DrB60,330
|
|
155
150
|
llama_cloud/types/extract_job_create_data_schema_override_zero_value.py,sha256=HHEYxOSQXXyBYOiUQg_qwfQtXFj-OtThMwbUDBIgZU0,223
|
|
156
|
-
llama_cloud/types/extract_mode.py,sha256=
|
|
151
|
+
llama_cloud/types/extract_mode.py,sha256=mMkEugv91d-kcWLGUlr7Nm62p0eSlXeqfMAKw7u7wXI,644
|
|
157
152
|
llama_cloud/types/extract_resultset.py,sha256=Alje0YQJUiA_aKi0hQs7TAnhDmZuQ_yL9b6HCNYBFQg,1627
|
|
158
153
|
llama_cloud/types/extract_resultset_data.py,sha256=v9Ae4SxLsvYPE9crko4N16lBjsxuZpz1yrUOhnaM_VY,427
|
|
159
154
|
llama_cloud/types/extract_resultset_data_item_value.py,sha256=JwqgDIGW0irr8QWaSTIrl24FhGxTUDOXIbxoSdIjuxs,209
|
|
@@ -194,14 +189,11 @@ llama_cloud/types/job_record_with_usage_metrics.py,sha256=iNV2do5TB_0e3PoOz_DJyA
|
|
|
194
189
|
llama_cloud/types/llama_extract_settings.py,sha256=Yh9Ah9W0X4l-znjYm4oNIh8-LCBc99JEQmGU87bUzWs,2225
|
|
195
190
|
llama_cloud/types/llama_index_core_base_llms_types_chat_message.py,sha256=NelHo-T-ebVMhRKsqE_xV8AJW4c7o6lS0uEQnPsmTwg,1365
|
|
196
191
|
llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py,sha256=tTglUqrSUaVc2Wsi4uIt5MU-80_oxZzTnhf8ziilVGY,874
|
|
197
|
-
llama_cloud/types/llama_parse_parameters.py,sha256=
|
|
192
|
+
llama_cloud/types/llama_parse_parameters.py,sha256=TMKaebSDi_6B4qsalE2zyYCJirj_HW_x5MhSIimGPJ8,5234
|
|
198
193
|
llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9FbsH50mGBUiyWTIXQjHFl739uAyaQw,11207
|
|
199
194
|
llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
|
|
200
195
|
llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
|
|
201
196
|
llama_cloud/types/llm_parameters.py,sha256=RTKYt09lm9a1MlnBfYuTP2x_Ww4byUNNc1TqIel5O1Y,1377
|
|
202
|
-
llama_cloud/types/local_eval.py,sha256=aJ8jRG0b5EL9cLjx281bzAzPw7Ar004Jfp6mBmyjuTA,1491
|
|
203
|
-
llama_cloud/types/local_eval_results.py,sha256=YfK6AhfD0gr5apQBfrfzrTHDXvrk7ynAUUjNSKu9NVk,1380
|
|
204
|
-
llama_cloud/types/local_eval_sets.py,sha256=XJSSriwRvkma889pPiBQrpRakKejKOX3tWPu1TGb1ug,1181
|
|
205
197
|
llama_cloud/types/managed_ingestion_status.py,sha256=3KVlcurpEBOPAesBUS5pSYLoQVIyZUlr90Mmv-uALHE,1290
|
|
206
198
|
llama_cloud/types/managed_ingestion_status_response.py,sha256=rdNpjNbQswF-6JG1e-EU374TP6Pjlxl0p7HJyNmuxTI,1373
|
|
207
199
|
llama_cloud/types/markdown_element_node_parser.py,sha256=NUqdU8BmyfSFK2rV6hCrvP6U1iB6aqZCVsvHWJQ49xU,1964
|
|
@@ -212,7 +204,6 @@ llama_cloud/types/metadata_filter.py,sha256=dVdXY6i0aCkvJrs7ncQt4-S8jmBF9bBSp2Vu
|
|
|
212
204
|
llama_cloud/types/metadata_filter_value.py,sha256=ij721gXNI7zbgsuDl9-AqBcXg2WDuVZhYS5F5YqekEs,188
|
|
213
205
|
llama_cloud/types/metadata_filters.py,sha256=uSf6sB4oQu6WzMPNFG6Tc4euqEiYcj_X14Y5JWt9xVE,1315
|
|
214
206
|
llama_cloud/types/metadata_filters_filters_item.py,sha256=e8KhD2q6Qc2_aK6r5CvyxC0oWVYO4F4vBIcB9eMEPPM,246
|
|
215
|
-
llama_cloud/types/metric_result.py,sha256=gCVyu9usPip30igCLKS0oTYU6V3CvY8QIk1gwaXB7ik,1051
|
|
216
207
|
llama_cloud/types/node_parser.py,sha256=rqZTQ_9GnCHOvSpXuAZoezxQCOgxHo-hmQv0s7pnEFc,1380
|
|
217
208
|
llama_cloud/types/node_relationship.py,sha256=2e2PqWm0LOTiImvtsyiuaAPNIl0BItjSrQZTJv65GRA,1209
|
|
218
209
|
llama_cloud/types/none_chunking_config.py,sha256=D062t314Vp-s4n9h8wNgsYfElI4PonPKmihvjEmaqdA,952
|
|
@@ -227,6 +218,7 @@ llama_cloud/types/page_screenshot_metadata.py,sha256=lobrq0AsOr8sDwMgA9ytop8lRmR
|
|
|
227
218
|
llama_cloud/types/page_screenshot_node_with_score.py,sha256=EdqoXbmARCz1DV14E2saCPshIeII709uM4cLwxw_mkM,1232
|
|
228
219
|
llama_cloud/types/page_segmentation_config.py,sha256=VH8uuxnubnJak1gSpS64OoMueHidhsDB-2eq2tVHbag,998
|
|
229
220
|
llama_cloud/types/page_splitter_node_parser.py,sha256=rQgS1CDk18UKA0r9OPvjdtM570jzFArdLCTxYAtZny8,1424
|
|
221
|
+
llama_cloud/types/paginated_extract_runs_response.py,sha256=NNeVcgBm0mYTAsumwQBO_YrxvkgUqwsvZo3xs8QjVCc,1423
|
|
230
222
|
llama_cloud/types/paginated_jobs_history_with_metrics.py,sha256=Bxy6N0x0FARJhgwNKKPkNpXx8YLRHvth23G14f5Fuk4,1136
|
|
231
223
|
llama_cloud/types/paginated_list_cloud_documents_response.py,sha256=MsjS0SWlT0syELDck4x2sxxR3_NC1e6QTdepgVmK9aY,1341
|
|
232
224
|
llama_cloud/types/paginated_list_pipeline_files_response.py,sha256=2TKR2oHSQRyLMqWz1qQBSIvz-ZJb8U_94367lwOJ2S4,1317
|
|
@@ -273,15 +265,13 @@ llama_cloud/types/progress_event.py,sha256=Bk73A8geTVaq0ze5pMnbkAmx7FSOHQIixYCpC
|
|
|
273
265
|
llama_cloud/types/progress_event_status.py,sha256=yb4RAXwOKU6Bi7iyYy-3lwhF6_mLz0ZFyGjxIdaByoE,893
|
|
274
266
|
llama_cloud/types/project.py,sha256=4NNh_ZAjEkoWl5st6b1jsPVf_SYKtUTB6rS1701G4IQ,1441
|
|
275
267
|
llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
|
|
276
|
-
llama_cloud/types/prompt_conf.py,sha256=
|
|
277
|
-
llama_cloud/types/prompt_mixin_prompts.py,sha256=_ipiIFWmWSuaJ5VFI5rXa_C7lHaIL3Yv5izh7__xTxI,1323
|
|
278
|
-
llama_cloud/types/prompt_spec.py,sha256=tPJTIzN9pYmiZD-HcPHFuhh4n1ak9FI5f7xFNV31djQ,1410
|
|
268
|
+
llama_cloud/types/prompt_conf.py,sha256=4vAKt0Gce9ALRb_-FE0QbRiFM1Rc9OQAADggwBwgauE,1402
|
|
279
269
|
llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
|
|
280
270
|
llama_cloud/types/recurring_credit_grant.py,sha256=19qI3p5k1mQ1Qoo-gCQU02Aa42XpEsmwxPF1F88F-Yg,1517
|
|
281
271
|
llama_cloud/types/related_node_info.py,sha256=frQg_RqrSBc62ooJ4QOF5QRKymHcNot5WVFAB_g1sMg,1216
|
|
282
272
|
llama_cloud/types/related_node_info_node_type.py,sha256=lH95d8G-EnKCllV_igJsBfYt49y162PoNxWtrCo_Kgk,173
|
|
283
273
|
llama_cloud/types/report.py,sha256=9M_WkIxi5ilmtXrLKo5XxWzJ_qV8FFf5j8bAlQRmaks,1155
|
|
284
|
-
llama_cloud/types/report_block.py,sha256=
|
|
274
|
+
llama_cloud/types/report_block.py,sha256=y5n5z0JxZNH9kzN0rTqIdZPRLA9XHdYvQlHTcPSraKk,1381
|
|
285
275
|
llama_cloud/types/report_block_dependency.py,sha256=TGtLpcJG2xwTKr3GU8Err53T0BR_zNTiT-2JILvPbSg,785
|
|
286
276
|
llama_cloud/types/report_create_response.py,sha256=tmnVkyAMVf0HNQy186DFVV1oZQzYGY9wxNk84cwQLKA,1020
|
|
287
277
|
llama_cloud/types/report_event_item.py,sha256=_-0wgI96Ama2qKqUODTmI_fEcrnW5eAAjL1AoFEr4cQ,1451
|
|
@@ -306,8 +296,8 @@ llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Zt
|
|
|
306
296
|
llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
|
|
307
297
|
llama_cloud/types/sentence_splitter.py,sha256=GbC3KE20Nd85uzO4bqJttjqJhQ_1co2gKnSQxzfOAiM,2140
|
|
308
298
|
llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDPvx0,1018
|
|
309
|
-
llama_cloud/types/struct_mode.py,sha256=
|
|
310
|
-
llama_cloud/types/struct_parse_conf.py,sha256=
|
|
299
|
+
llama_cloud/types/struct_mode.py,sha256=ROicwjXfFmgVU8_xSVxJlnFUzRNKG5VIEF1wYg9uOPU,1020
|
|
300
|
+
llama_cloud/types/struct_parse_conf.py,sha256=Od5f8azJlJTJJ6rwtZEIaEsSSYBdrNsHtLeMtdpMtxM,2101
|
|
311
301
|
llama_cloud/types/supported_llm_model.py,sha256=0v-g01LyZB7TeN0zwAeSJejRoT95SVaXOJhNz7boJwM,1461
|
|
312
302
|
llama_cloud/types/supported_llm_model_names.py,sha256=dEhmwGQVG-dmuGGbTWBAYadr-g5u3kiVz308CLWuSqw,2657
|
|
313
303
|
llama_cloud/types/text_block.py,sha256=X154sQkSyposXuRcEWNp_tWcDQ-AI6q_-MfJUN5exP8,958
|
|
@@ -317,7 +307,7 @@ llama_cloud/types/text_node_with_score.py,sha256=k-KYWO_mgJBvO6xUfOD5W6v1Ku9E586
|
|
|
317
307
|
llama_cloud/types/token_chunking_config.py,sha256=XNvnTsNd--YOMQ_Ad8hoqhYgQftqkBHKVn6i7nJnMqs,1067
|
|
318
308
|
llama_cloud/types/token_text_splitter.py,sha256=iTT3x9yO021v757B2r-0Z-WFQiIESLqEJUCmUUwPQ_o,1899
|
|
319
309
|
llama_cloud/types/transformation_category_names.py,sha256=Wb7NBB0f-tEtfEZQis-iKy71SUKmmHFcXf6XLn6g0XU,545
|
|
320
|
-
llama_cloud/types/usage.py,sha256
|
|
310
|
+
llama_cloud/types/usage.py,sha256=LT4Jr4kiQiug2A_cNmGSxWV7UZmseYzxACXo7dTQIBQ,1466
|
|
321
311
|
llama_cloud/types/usage_active_alerts_item.py,sha256=YZkSH_Vd3hu5f-Nv0LKKj9slVTa3GsOcbSPhttKcVqQ,964
|
|
322
312
|
llama_cloud/types/usage_and_plan.py,sha256=DsQVkOkh6yiDY9FsGR34DcTocj53loO2lU55P45XnWY,1040
|
|
323
313
|
llama_cloud/types/usage_metric_response.py,sha256=ukvtNZLeLacv-5F0-GQ5wTBZOPUPEjAeurgYPc4s7nA,1047
|
|
@@ -331,7 +321,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
|
|
|
331
321
|
llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
|
|
332
322
|
llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
|
|
333
323
|
llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
|
|
334
|
-
llama_cloud-0.1.
|
|
335
|
-
llama_cloud-0.1.
|
|
336
|
-
llama_cloud-0.1.
|
|
337
|
-
llama_cloud-0.1.
|
|
324
|
+
llama_cloud-0.1.16.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
|
|
325
|
+
llama_cloud-0.1.16.dist-info/METADATA,sha256=nCSIO_-vJxp4O2kbNl74lwlihxhu62Bg3eI7yjC8tu4,902
|
|
326
|
+
llama_cloud-0.1.16.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
|
327
|
+
llama_cloud-0.1.16.dist-info/RECORD,,
|
|
@@ -1,40 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class EvalDataset(pydantic.BaseModel):
|
|
18
|
-
"""
|
|
19
|
-
Schema for an eval dataset.
|
|
20
|
-
Includes the other DB fields like id, created_at, & updated_at.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
-
name: str = pydantic.Field(description="The name of the EvalDataset.")
|
|
27
|
-
project_id: str
|
|
28
|
-
|
|
29
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
-
return super().json(**kwargs_with_defaults)
|
|
32
|
-
|
|
33
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
-
return super().dict(**kwargs_with_defaults)
|
|
36
|
-
|
|
37
|
-
class Config:
|
|
38
|
-
frozen = True
|
|
39
|
-
smart_union = True
|
|
40
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .eval_execution_params import EvalExecutionParams
|
|
8
|
-
|
|
9
|
-
try:
|
|
10
|
-
import pydantic
|
|
11
|
-
if pydantic.__version__.startswith("1."):
|
|
12
|
-
raise ImportError
|
|
13
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
-
except ImportError:
|
|
15
|
-
import pydantic # type: ignore
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class EvalDatasetJobParams(pydantic.BaseModel):
|
|
19
|
-
"""
|
|
20
|
-
Schema for the parameters of an eval dataset job.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
eval_question_ids: typing.List[str] = pydantic.Field(
|
|
24
|
-
description="The IDs for the EvalQuestions this execution ran against."
|
|
25
|
-
)
|
|
26
|
-
eval_execution_params: EvalExecutionParams = pydantic.Field(description="The parameters for the eval execution.")
|
|
27
|
-
|
|
28
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
29
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
-
return super().json(**kwargs_with_defaults)
|
|
31
|
-
|
|
32
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
33
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
34
|
-
return super().dict(**kwargs_with_defaults)
|
|
35
|
-
|
|
36
|
-
class Config:
|
|
37
|
-
frozen = True
|
|
38
|
-
smart_union = True
|
|
39
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,58 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
import typing_extensions
|
|
7
|
-
|
|
8
|
-
from ..core.datetime_utils import serialize_datetime
|
|
9
|
-
from .eval_dataset_job_params import EvalDatasetJobParams
|
|
10
|
-
from .status_enum import StatusEnum
|
|
11
|
-
|
|
12
|
-
try:
|
|
13
|
-
import pydantic
|
|
14
|
-
if pydantic.__version__.startswith("1."):
|
|
15
|
-
raise ImportError
|
|
16
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
17
|
-
except ImportError:
|
|
18
|
-
import pydantic # type: ignore
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
class EvalDatasetJobRecord(pydantic.BaseModel):
|
|
22
|
-
"""
|
|
23
|
-
Schema for job that evaluates an EvalDataset against a pipeline.
|
|
24
|
-
"""
|
|
25
|
-
|
|
26
|
-
job_name: typing_extensions.Literal["eval_dataset_job"]
|
|
27
|
-
partitions: typing.Dict[str, str] = pydantic.Field(
|
|
28
|
-
description="The partitions for this execution. Used for determining where to save job output."
|
|
29
|
-
)
|
|
30
|
-
parameters: typing.Optional[EvalDatasetJobParams]
|
|
31
|
-
session_id: typing.Optional[str]
|
|
32
|
-
correlation_id: typing.Optional[str]
|
|
33
|
-
parent_job_execution_id: typing.Optional[str]
|
|
34
|
-
user_id: typing.Optional[str]
|
|
35
|
-
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
36
|
-
project_id: typing.Optional[str]
|
|
37
|
-
id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
|
|
38
|
-
status: StatusEnum
|
|
39
|
-
error_code: typing.Optional[str]
|
|
40
|
-
error_message: typing.Optional[str]
|
|
41
|
-
attempts: typing.Optional[int]
|
|
42
|
-
started_at: typing.Optional[dt.datetime]
|
|
43
|
-
ended_at: typing.Optional[dt.datetime]
|
|
44
|
-
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
45
|
-
data: typing.Optional[typing.Any]
|
|
46
|
-
|
|
47
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
48
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
49
|
-
return super().json(**kwargs_with_defaults)
|
|
50
|
-
|
|
51
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
52
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
53
|
-
return super().dict(**kwargs_with_defaults)
|
|
54
|
-
|
|
55
|
-
class Config:
|
|
56
|
-
frozen = True
|
|
57
|
-
smart_union = True
|
|
58
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,37 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .supported_llm_model_names import SupportedLlmModelNames
|
|
8
|
-
|
|
9
|
-
try:
|
|
10
|
-
import pydantic
|
|
11
|
-
if pydantic.__version__.startswith("1."):
|
|
12
|
-
raise ImportError
|
|
13
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
-
except ImportError:
|
|
15
|
-
import pydantic # type: ignore
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class EvalExecutionParamsOverride(pydantic.BaseModel):
|
|
19
|
-
"""
|
|
20
|
-
Schema for the params override for an eval execution.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
llm_model: typing.Optional[SupportedLlmModelNames]
|
|
24
|
-
qa_prompt_tmpl: typing.Optional[str]
|
|
25
|
-
|
|
26
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
27
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
-
return super().json(**kwargs_with_defaults)
|
|
29
|
-
|
|
30
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
31
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
-
return super().dict(**kwargs_with_defaults)
|
|
33
|
-
|
|
34
|
-
class Config:
|
|
35
|
-
frozen = True
|
|
36
|
-
smart_union = True
|
|
37
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
llama_cloud/types/eval_metric.py
DELETED
|
@@ -1,17 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import enum
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
T_Result = typing.TypeVar("T_Result")
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
class EvalMetric(str, enum.Enum):
|
|
10
|
-
RELEVANCY = "RELEVANCY"
|
|
11
|
-
FAITHFULNESS = "FAITHFULNESS"
|
|
12
|
-
|
|
13
|
-
def visit(self, relevancy: typing.Callable[[], T_Result], faithfulness: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
-
if self is EvalMetric.RELEVANCY:
|
|
15
|
-
return relevancy()
|
|
16
|
-
if self is EvalMetric.FAITHFULNESS:
|
|
17
|
-
return faithfulness()
|
|
@@ -1,38 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class EvalQuestion(pydantic.BaseModel):
|
|
18
|
-
id: str = pydantic.Field(description="Unique identifier")
|
|
19
|
-
created_at: typing.Optional[dt.datetime]
|
|
20
|
-
updated_at: typing.Optional[dt.datetime]
|
|
21
|
-
content: str = pydantic.Field(description="The content of the question.")
|
|
22
|
-
eval_dataset_id: str
|
|
23
|
-
eval_dataset_index: int = pydantic.Field(
|
|
24
|
-
description="The index at which this question is positioned relative to the other questions in the linked EvalDataset. Client is responsible for setting this correctly."
|
|
25
|
-
)
|
|
26
|
-
|
|
27
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
28
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
-
return super().json(**kwargs_with_defaults)
|
|
30
|
-
|
|
31
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
32
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
33
|
-
return super().dict(**kwargs_with_defaults)
|
|
34
|
-
|
|
35
|
-
class Config:
|
|
36
|
-
frozen = True
|
|
37
|
-
smart_union = True
|
|
38
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,31 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class EvalQuestionCreate(pydantic.BaseModel):
|
|
18
|
-
content: str = pydantic.Field(description="The content of the question.")
|
|
19
|
-
|
|
20
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
21
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
22
|
-
return super().json(**kwargs_with_defaults)
|
|
23
|
-
|
|
24
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
25
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
-
return super().dict(**kwargs_with_defaults)
|
|
27
|
-
|
|
28
|
-
class Config:
|
|
29
|
-
frozen = True
|
|
30
|
-
smart_union = True
|
|
31
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,52 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .eval_execution_params import EvalExecutionParams
|
|
8
|
-
from .metric_result import MetricResult
|
|
9
|
-
from .text_node import TextNode
|
|
10
|
-
|
|
11
|
-
try:
|
|
12
|
-
import pydantic
|
|
13
|
-
if pydantic.__version__.startswith("1."):
|
|
14
|
-
raise ImportError
|
|
15
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
16
|
-
except ImportError:
|
|
17
|
-
import pydantic # type: ignore
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class EvalQuestionResult(pydantic.BaseModel):
|
|
21
|
-
"""
|
|
22
|
-
Schema for the result of an eval question job.
|
|
23
|
-
"""
|
|
24
|
-
|
|
25
|
-
eval_question_id: str = pydantic.Field(description="The ID of the question that was executed.")
|
|
26
|
-
pipeline_id: str = pydantic.Field(description="The ID of the pipeline that the question was executed against.")
|
|
27
|
-
source_nodes: typing.List[TextNode] = pydantic.Field(
|
|
28
|
-
description="The nodes retrieved by the pipeline for the given question."
|
|
29
|
-
)
|
|
30
|
-
answer: str = pydantic.Field(description="The answer to the question.")
|
|
31
|
-
eval_metrics: typing.Dict[str, MetricResult] = pydantic.Field(description="The eval metrics for the question.")
|
|
32
|
-
eval_dataset_execution_id: str = pydantic.Field(
|
|
33
|
-
description="The ID of the EvalDatasetJobRecord that this result was generated from."
|
|
34
|
-
)
|
|
35
|
-
eval_dataset_execution_params: EvalExecutionParams = pydantic.Field(
|
|
36
|
-
description="The EvalExecutionParams that were used when this result was generated."
|
|
37
|
-
)
|
|
38
|
-
eval_finished_at: dt.datetime = pydantic.Field(description="The timestamp when the eval finished.")
|
|
39
|
-
class_name: typing.Optional[str]
|
|
40
|
-
|
|
41
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
42
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
43
|
-
return super().json(**kwargs_with_defaults)
|
|
44
|
-
|
|
45
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
46
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
47
|
-
return super().dict(**kwargs_with_defaults)
|
|
48
|
-
|
|
49
|
-
class Config:
|
|
50
|
-
frozen = True
|
|
51
|
-
smart_union = True
|
|
52
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,33 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class LocalEvalSets(pydantic.BaseModel):
|
|
18
|
-
eval_set_id: str = pydantic.Field(description="The ID of the eval set.")
|
|
19
|
-
app_name: str = pydantic.Field(description="The name of the app.")
|
|
20
|
-
upload_time: dt.datetime = pydantic.Field(description="The time of the upload.")
|
|
21
|
-
|
|
22
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
23
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
24
|
-
return super().json(**kwargs_with_defaults)
|
|
25
|
-
|
|
26
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
27
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
-
return super().dict(**kwargs_with_defaults)
|
|
29
|
-
|
|
30
|
-
class Config:
|
|
31
|
-
frozen = True
|
|
32
|
-
smart_union = True
|
|
33
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,33 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class MetricResult(pydantic.BaseModel):
|
|
18
|
-
passing: typing.Optional[bool]
|
|
19
|
-
score: typing.Optional[float]
|
|
20
|
-
feedback: typing.Optional[str]
|
|
21
|
-
|
|
22
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
23
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
24
|
-
return super().json(**kwargs_with_defaults)
|
|
25
|
-
|
|
26
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
27
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
-
return super().dict(**kwargs_with_defaults)
|
|
29
|
-
|
|
30
|
-
class Config:
|
|
31
|
-
frozen = True
|
|
32
|
-
smart_union = True
|
|
33
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .prompt_spec import PromptSpec
|
|
8
|
-
|
|
9
|
-
try:
|
|
10
|
-
import pydantic
|
|
11
|
-
if pydantic.__version__.startswith("1."):
|
|
12
|
-
raise ImportError
|
|
13
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
-
except ImportError:
|
|
15
|
-
import pydantic # type: ignore
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class PromptMixinPrompts(pydantic.BaseModel):
|
|
19
|
-
"""
|
|
20
|
-
Schema for the prompts derived from the PromptMixin.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
project_id: str = pydantic.Field(description="The ID of the project.")
|
|
24
|
-
id: typing.Optional[str]
|
|
25
|
-
name: str = pydantic.Field(description="The name of the prompt set.")
|
|
26
|
-
prompts: typing.List[PromptSpec] = pydantic.Field(description="The prompts.")
|
|
27
|
-
|
|
28
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
29
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
-
return super().json(**kwargs_with_defaults)
|
|
31
|
-
|
|
32
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
33
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
34
|
-
return super().dict(**kwargs_with_defaults)
|
|
35
|
-
|
|
36
|
-
class Config:
|
|
37
|
-
frozen = True
|
|
38
|
-
smart_union = True
|
|
39
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
llama_cloud/types/prompt_spec.py
DELETED
|
@@ -1,36 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .app_schema_chat_chat_message import AppSchemaChatChatMessage
|
|
8
|
-
|
|
9
|
-
try:
|
|
10
|
-
import pydantic
|
|
11
|
-
if pydantic.__version__.startswith("1."):
|
|
12
|
-
raise ImportError
|
|
13
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
-
except ImportError:
|
|
15
|
-
import pydantic # type: ignore
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class PromptSpec(pydantic.BaseModel):
|
|
19
|
-
prompt_key: str = pydantic.Field(description="The key of the prompt in the PromptMixin.")
|
|
20
|
-
prompt_class: str = pydantic.Field(description="The class of the prompt (PromptTemplate or ChatPromptTemplate).")
|
|
21
|
-
prompt_type: str = pydantic.Field(description="The type of prompt.")
|
|
22
|
-
template: typing.Optional[str]
|
|
23
|
-
message_templates: typing.Optional[typing.List[AppSchemaChatChatMessage]]
|
|
24
|
-
|
|
25
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
-
return super().json(**kwargs_with_defaults)
|
|
28
|
-
|
|
29
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
-
return super().dict(**kwargs_with_defaults)
|
|
32
|
-
|
|
33
|
-
class Config:
|
|
34
|
-
frozen = True
|
|
35
|
-
smart_union = True
|
|
36
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
File without changes
|
|
File without changes
|