llama-cloud 0.1.10__py3-none-any.whl → 0.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

@@ -29,6 +29,7 @@ from .character_splitter import CharacterSplitter
29
29
  from .chat_app import ChatApp
30
30
  from .chat_app_response import ChatAppResponse
31
31
  from .chat_data import ChatData
32
+ from .chunk_mode import ChunkMode
32
33
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
33
34
  from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
34
35
  from .cloud_box_data_source import CloudBoxDataSource
@@ -73,6 +74,7 @@ from .data_source_create_custom_metadata_value import DataSourceCreateCustomMeta
73
74
  from .data_source_custom_metadata_value import DataSourceCustomMetadataValue
74
75
  from .data_source_definition import DataSourceDefinition
75
76
  from .edit_suggestion import EditSuggestion
77
+ from .edit_suggestion_blocks_item import EditSuggestionBlocksItem
76
78
  from .element_segmentation_config import ElementSegmentationConfig
77
79
  from .embedding_model_config import EmbeddingModelConfig
78
80
  from .embedding_model_config_embedding_config import (
@@ -127,6 +129,7 @@ from .extract_run_extraction_metadata_value import ExtractRunExtractionMetadataV
127
129
  from .extract_schema_validate_response import ExtractSchemaValidateResponse
128
130
  from .extract_schema_validate_response_data_schema_value import ExtractSchemaValidateResponseDataSchemaValue
129
131
  from .extract_state import ExtractState
132
+ from .extract_target import ExtractTarget
130
133
  from .file import File
131
134
  from .file_permission_info_value import FilePermissionInfoValue
132
135
  from .file_resource_info_value import FileResourceInfoValue
@@ -252,6 +255,7 @@ from .progress_event import ProgressEvent
252
255
  from .progress_event_status import ProgressEventStatus
253
256
  from .project import Project
254
257
  from .project_create import ProjectCreate
258
+ from .prompt_conf import PromptConf
255
259
  from .prompt_mixin_prompts import PromptMixinPrompts
256
260
  from .prompt_spec import PromptSpec
257
261
  from .pydantic_program_mode import PydanticProgramMode
@@ -269,7 +273,6 @@ from .report_event_item_event_data import (
269
273
  ReportEventItemEventData_ReportStateUpdate,
270
274
  )
271
275
  from .report_event_type import ReportEventType
272
- from .report_file_info import ReportFileInfo
273
276
  from .report_metadata import ReportMetadata
274
277
  from .report_plan import ReportPlan
275
278
  from .report_plan_block import ReportPlanBlock
@@ -284,10 +287,13 @@ from .retriever import Retriever
284
287
  from .retriever_create import RetrieverCreate
285
288
  from .retriever_pipeline import RetrieverPipeline
286
289
  from .role import Role
290
+ from .schema_relax_mode import SchemaRelaxMode
287
291
  from .semantic_chunking_config import SemanticChunkingConfig
288
292
  from .sentence_chunking_config import SentenceChunkingConfig
289
293
  from .sentence_splitter import SentenceSplitter
290
294
  from .status_enum import StatusEnum
295
+ from .struct_mode import StructMode
296
+ from .struct_parse_conf import StructParseConf
291
297
  from .supported_llm_model import SupportedLlmModel
292
298
  from .supported_llm_model_names import SupportedLlmModelNames
293
299
  from .text_block import TextBlock
@@ -336,6 +342,7 @@ __all__ = [
336
342
  "ChatApp",
337
343
  "ChatAppResponse",
338
344
  "ChatData",
345
+ "ChunkMode",
339
346
  "CloudAzStorageBlobDataSource",
340
347
  "CloudAzureAiSearchVectorStore",
341
348
  "CloudBoxDataSource",
@@ -380,6 +387,7 @@ __all__ = [
380
387
  "DataSourceCustomMetadataValue",
381
388
  "DataSourceDefinition",
382
389
  "EditSuggestion",
390
+ "EditSuggestionBlocksItem",
383
391
  "ElementSegmentationConfig",
384
392
  "EmbeddingModelConfig",
385
393
  "EmbeddingModelConfigEmbeddingConfig",
@@ -430,6 +438,7 @@ __all__ = [
430
438
  "ExtractSchemaValidateResponse",
431
439
  "ExtractSchemaValidateResponseDataSchemaValue",
432
440
  "ExtractState",
441
+ "ExtractTarget",
433
442
  "File",
434
443
  "FilePermissionInfoValue",
435
444
  "FileResourceInfoValue",
@@ -547,6 +556,7 @@ __all__ = [
547
556
  "ProgressEventStatus",
548
557
  "Project",
549
558
  "ProjectCreate",
559
+ "PromptConf",
550
560
  "PromptMixinPrompts",
551
561
  "PromptSpec",
552
562
  "PydanticProgramMode",
@@ -562,7 +572,6 @@ __all__ = [
562
572
  "ReportEventItemEventData_ReportBlockUpdate",
563
573
  "ReportEventItemEventData_ReportStateUpdate",
564
574
  "ReportEventType",
565
- "ReportFileInfo",
566
575
  "ReportMetadata",
567
576
  "ReportPlan",
568
577
  "ReportPlanBlock",
@@ -577,10 +586,13 @@ __all__ = [
577
586
  "RetrieverCreate",
578
587
  "RetrieverPipeline",
579
588
  "Role",
589
+ "SchemaRelaxMode",
580
590
  "SemanticChunkingConfig",
581
591
  "SentenceChunkingConfig",
582
592
  "SentenceSplitter",
583
593
  "StatusEnum",
594
+ "StructMode",
595
+ "StructParseConf",
584
596
  "SupportedLlmModel",
585
597
  "SupportedLlmModelNames",
586
598
  "TextBlock",
@@ -0,0 +1,25 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class ChunkMode(str, enum.Enum):
10
+ PAGE = "PAGE"
11
+ DOCUMENT = "DOCUMENT"
12
+ SECTION = "SECTION"
13
+
14
+ def visit(
15
+ self,
16
+ page: typing.Callable[[], T_Result],
17
+ document: typing.Callable[[], T_Result],
18
+ section: typing.Callable[[], T_Result],
19
+ ) -> T_Result:
20
+ if self is ChunkMode.PAGE:
21
+ return page()
22
+ if self is ChunkMode.DOCUMENT:
23
+ return document()
24
+ if self is ChunkMode.SECTION:
25
+ return section()
@@ -4,7 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
- from .report_block import ReportBlock
7
+ from .edit_suggestion_blocks_item import EditSuggestionBlocksItem
8
8
 
9
9
  try:
10
10
  import pydantic
@@ -21,9 +21,8 @@ class EditSuggestion(pydantic.BaseModel):
21
21
  """
22
22
 
23
23
  justification: str
24
- start_line: int
25
- end_line: int
26
- blocks: typing.List[ReportBlock]
24
+ blocks: typing.List[EditSuggestionBlocksItem]
25
+ removed_indices: typing.Optional[typing.List[int]]
27
26
 
28
27
  def json(self, **kwargs: typing.Any) -> str:
29
28
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,8 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ from .report_block import ReportBlock
6
+ from .report_plan_block import ReportPlanBlock
7
+
8
+ EditSuggestionBlocksItem = typing.Union[ReportBlock, ReportPlanBlock]
@@ -5,6 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from .extract_mode import ExtractMode
8
+ from .extract_target import ExtractTarget
8
9
 
9
10
  try:
10
11
  import pydantic
@@ -20,6 +21,7 @@ class ExtractConfig(pydantic.BaseModel):
20
21
  Additional parameters for the extraction agent.
21
22
  """
22
23
 
24
+ extraction_target: typing.Optional[ExtractTarget] = pydantic.Field(description="The extraction target specified.")
23
25
  extraction_mode: typing.Optional[ExtractMode] = pydantic.Field(description="The extraction mode specified.")
24
26
  handle_missing: typing.Optional[bool] = pydantic.Field(
25
27
  description="Whether to handle missing fields in the schema."
@@ -7,11 +7,11 @@ T_Result = typing.TypeVar("T_Result")
7
7
 
8
8
 
9
9
  class ExtractMode(str, enum.Enum):
10
- PER_DOC = "PER_DOC"
11
- PER_PAGE = "PER_PAGE"
10
+ FAST = "FAST"
11
+ ACCURATE = "ACCURATE"
12
12
 
13
- def visit(self, per_doc: typing.Callable[[], T_Result], per_page: typing.Callable[[], T_Result]) -> T_Result:
14
- if self is ExtractMode.PER_DOC:
15
- return per_doc()
16
- if self is ExtractMode.PER_PAGE:
17
- return per_page()
13
+ def visit(self, fast: typing.Callable[[], T_Result], accurate: typing.Callable[[], T_Result]) -> T_Result:
14
+ if self is ExtractMode.FAST:
15
+ return fast()
16
+ if self is ExtractMode.ACCURATE:
17
+ return accurate()
@@ -0,0 +1,17 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class ExtractTarget(str, enum.Enum):
10
+ PER_DOC = "PER_DOC"
11
+ PER_PAGE = "PER_PAGE"
12
+
13
+ def visit(self, per_doc: typing.Callable[[], T_Result], per_page: typing.Callable[[], T_Result]) -> T_Result:
14
+ if self is ExtractTarget.PER_DOC:
15
+ return per_doc()
16
+ if self is ExtractTarget.PER_PAGE:
17
+ return per_page()
@@ -4,7 +4,9 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
+ from .chunk_mode import ChunkMode
7
8
  from .llama_parse_parameters import LlamaParseParameters
9
+ from .struct_parse_conf import StructParseConf
8
10
 
9
11
  try:
10
12
  import pydantic
@@ -21,16 +23,22 @@ class LlamaExtractSettings(pydantic.BaseModel):
21
23
  are exposed to the user.
22
24
  """
23
25
 
24
- model: typing.Optional[str] = pydantic.Field(description="The model to use for the extraction.")
25
- temperature: typing.Optional[float] = pydantic.Field(description="The temperature to use for the extraction.")
26
26
  max_file_size: typing.Optional[int] = pydantic.Field(
27
27
  description="The maximum file size (in bytes) allowed for the document."
28
28
  )
29
- max_num_pages: typing.Optional[int] = pydantic.Field(
29
+ max_tokens: typing.Optional[int] = pydantic.Field(
30
+ description="The maximum number of tokens allowed for the document."
31
+ )
32
+ max_pages: typing.Optional[int] = pydantic.Field(
30
33
  description="The maximum number of pages allowed for the document."
31
34
  )
32
- extraction_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for the extraction.")
33
- error_handling_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for error handling.")
35
+ chunk_mode: typing.Optional[ChunkMode] = pydantic.Field(description="The mode to use for chunking the document.")
36
+ max_chunk_size: typing.Optional[int] = pydantic.Field(
37
+ description="The maximum size of the chunks (in tokens) to use for chunking the document."
38
+ )
39
+ extraction_agent_config: typing.Optional[typing.Dict[str, StructParseConf]] = pydantic.Field(
40
+ description="The configuration for the extraction agent."
41
+ )
34
42
  llama_parse_params: typing.Optional[LlamaParseParameters] = pydantic.Field(
35
43
  description="LlamaParse related settings."
36
44
  )
@@ -90,6 +90,7 @@ class LlamaParseParameters(pydantic.BaseModel):
90
90
  strict_mode_buggy_font: typing.Optional[bool]
91
91
  ignore_document_elements_for_layout_detection: typing.Optional[bool]
92
92
  output_tables_as_html: typing.Optional[bool] = pydantic.Field(alias="output_tables_as_HTML")
93
+ internal_is_screenshot_job: typing.Optional[bool]
93
94
 
94
95
  def json(self, **kwargs: typing.Any) -> str:
95
96
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -14,13 +14,10 @@ except ImportError:
14
14
  import pydantic # type: ignore
15
15
 
16
16
 
17
- class ReportFileInfo(pydantic.BaseModel):
18
- """
19
- Information about a file stored in S3
20
- """
21
-
22
- original_name: str = pydantic.Field(description="Original filename uploaded by user")
23
- s_3_path: str = pydantic.Field(alias="s3_path", description="Path to file in S3")
17
+ class PromptConf(pydantic.BaseModel):
18
+ system_prompt: typing.Optional[str] = pydantic.Field(description="The system prompt to use for the extraction.")
19
+ extraction_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for the extraction.")
20
+ error_handling_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for error handling.")
24
21
 
25
22
  def json(self, **kwargs: typing.Any) -> str:
26
23
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -33,5 +30,4 @@ class ReportFileInfo(pydantic.BaseModel):
33
30
  class Config:
34
31
  frozen = True
35
32
  smart_union = True
36
- allow_population_by_field_name = True
37
33
  json_encoders = {dt.datetime: serialize_datetime}
@@ -4,7 +4,6 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
- from .report_file_info import ReportFileInfo
8
7
  from .report_state import ReportState
9
8
 
10
9
  try:
@@ -26,7 +25,7 @@ class ReportMetadata(pydantic.BaseModel):
26
25
  report_metadata: typing.Dict[str, typing.Any] = pydantic.Field(description="The metadata for the report")
27
26
  state: ReportState = pydantic.Field(description="The state of the report")
28
27
  input_files: typing.Optional[typing.List[str]]
29
- template_file: typing.Optional[ReportFileInfo]
28
+ template_file: typing.Optional[str]
30
29
  template_text: typing.Optional[str]
31
30
  template_instructions: typing.Optional[str]
32
31
 
@@ -0,0 +1,25 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class SchemaRelaxMode(str, enum.Enum):
10
+ FULL = "FULL"
11
+ TOP_LEVEL = "TOP_LEVEL"
12
+ LEAF = "LEAF"
13
+
14
+ def visit(
15
+ self,
16
+ full: typing.Callable[[], T_Result],
17
+ top_level: typing.Callable[[], T_Result],
18
+ leaf: typing.Callable[[], T_Result],
19
+ ) -> T_Result:
20
+ if self is SchemaRelaxMode.FULL:
21
+ return full()
22
+ if self is SchemaRelaxMode.TOP_LEVEL:
23
+ return top_level()
24
+ if self is SchemaRelaxMode.LEAF:
25
+ return leaf()
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class StructMode(str, enum.Enum):
10
+ STRUCT_PARSE = "STRUCT_PARSE"
11
+ JSON_MODE = "JSON_MODE"
12
+ FUNC_CALL = "FUNC_CALL"
13
+ UNSTRUCTURED = "UNSTRUCTURED"
14
+
15
+ def visit(
16
+ self,
17
+ struct_parse: typing.Callable[[], T_Result],
18
+ json_mode: typing.Callable[[], T_Result],
19
+ func_call: typing.Callable[[], T_Result],
20
+ unstructured: typing.Callable[[], T_Result],
21
+ ) -> T_Result:
22
+ if self is StructMode.STRUCT_PARSE:
23
+ return struct_parse()
24
+ if self is StructMode.JSON_MODE:
25
+ return json_mode()
26
+ if self is StructMode.FUNC_CALL:
27
+ return func_call()
28
+ if self is StructMode.UNSTRUCTURED:
29
+ return unstructured()
@@ -0,0 +1,50 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .prompt_conf import PromptConf
8
+ from .schema_relax_mode import SchemaRelaxMode
9
+ from .struct_mode import StructMode
10
+
11
+ try:
12
+ import pydantic
13
+ if pydantic.__version__.startswith("1."):
14
+ raise ImportError
15
+ import pydantic.v1 as pydantic # type: ignore
16
+ except ImportError:
17
+ import pydantic # type: ignore
18
+
19
+
20
+ class StructParseConf(pydantic.BaseModel):
21
+ """
22
+ Configuration for the structured parsing agent.
23
+ """
24
+
25
+ model: typing.Optional[str] = pydantic.Field(description="The model to use for the structured parsing.")
26
+ temperature: typing.Optional[float] = pydantic.Field(
27
+ description="The temperature to use for the structured parsing."
28
+ )
29
+ relaxation_mode: typing.Optional[SchemaRelaxMode] = pydantic.Field(
30
+ description="The relaxation mode to use for the structured parsing."
31
+ )
32
+ struct_mode: typing.Optional[StructMode] = pydantic.Field(
33
+ description="The struct mode to use for the structured parsing."
34
+ )
35
+ prompt_conf: typing.Optional[PromptConf] = pydantic.Field(
36
+ description="The prompt configuration for the structured parsing."
37
+ )
38
+
39
+ def json(self, **kwargs: typing.Any) -> str:
40
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
41
+ return super().json(**kwargs_with_defaults)
42
+
43
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
44
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
45
+ return super().dict(**kwargs_with_defaults)
46
+
47
+ class Config:
48
+ frozen = True
49
+ smart_union = True
50
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -12,8 +12,13 @@ class SupportedLlmModelNames(str, enum.Enum):
12
12
  GPT_4_TURBO = "GPT_4_TURBO"
13
13
  GPT_4_O = "GPT_4O"
14
14
  GPT_4_O_MINI = "GPT_4O_MINI"
15
- AZURE_OPENAI = "AZURE_OPENAI"
15
+ AZURE_OPENAI_GPT_3_5_TURBO = "AZURE_OPENAI_GPT_3_5_TURBO"
16
+ AZURE_OPENAI_GPT_4_O = "AZURE_OPENAI_GPT_4O"
17
+ AZURE_OPENAI_GPT_4_O_MINI = "AZURE_OPENAI_GPT_4O_MINI"
18
+ AZURE_OPENAI_GPT_4 = "AZURE_OPENAI_GPT_4"
16
19
  CLAUDE_3_5_SONNET = "CLAUDE_3_5_SONNET"
20
+ BEDROCK_CLAUDE_3_5_SONNET = "BEDROCK_CLAUDE_3_5_SONNET"
21
+ VERTEX_AI_CLAUDE_3_5_SONNET = "VERTEX_AI_CLAUDE_3_5_SONNET"
17
22
 
18
23
  def visit(
19
24
  self,
@@ -22,8 +27,13 @@ class SupportedLlmModelNames(str, enum.Enum):
22
27
  gpt_4_turbo: typing.Callable[[], T_Result],
23
28
  gpt_4_o: typing.Callable[[], T_Result],
24
29
  gpt_4_o_mini: typing.Callable[[], T_Result],
25
- azure_openai: typing.Callable[[], T_Result],
30
+ azure_openai_gpt_3_5_turbo: typing.Callable[[], T_Result],
31
+ azure_openai_gpt_4_o: typing.Callable[[], T_Result],
32
+ azure_openai_gpt_4_o_mini: typing.Callable[[], T_Result],
33
+ azure_openai_gpt_4: typing.Callable[[], T_Result],
26
34
  claude_3_5_sonnet: typing.Callable[[], T_Result],
35
+ bedrock_claude_3_5_sonnet: typing.Callable[[], T_Result],
36
+ vertex_ai_claude_3_5_sonnet: typing.Callable[[], T_Result],
27
37
  ) -> T_Result:
28
38
  if self is SupportedLlmModelNames.GPT_3_5_TURBO:
29
39
  return gpt_3_5_turbo()
@@ -35,7 +45,17 @@ class SupportedLlmModelNames(str, enum.Enum):
35
45
  return gpt_4_o()
36
46
  if self is SupportedLlmModelNames.GPT_4_O_MINI:
37
47
  return gpt_4_o_mini()
38
- if self is SupportedLlmModelNames.AZURE_OPENAI:
39
- return azure_openai()
48
+ if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_3_5_TURBO:
49
+ return azure_openai_gpt_3_5_turbo()
50
+ if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_O:
51
+ return azure_openai_gpt_4_o()
52
+ if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_O_MINI:
53
+ return azure_openai_gpt_4_o_mini()
54
+ if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4:
55
+ return azure_openai_gpt_4()
40
56
  if self is SupportedLlmModelNames.CLAUDE_3_5_SONNET:
41
57
  return claude_3_5_sonnet()
58
+ if self is SupportedLlmModelNames.BEDROCK_CLAUDE_3_5_SONNET:
59
+ return bedrock_claude_3_5_sonnet()
60
+ if self is SupportedLlmModelNames.VERTEX_AI_CLAUDE_3_5_SONNET:
61
+ return vertex_ai_claude_3_5_sonnet()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.1.10
3
+ Version: 0.1.12
4
4
  Summary:
5
5
  License: MIT
6
6
  Author: Logan Markewich
@@ -13,8 +13,7 @@ Classifier: Programming Language :: Python :: 3.9
13
13
  Classifier: Programming Language :: Python :: 3.10
14
14
  Classifier: Programming Language :: Python :: 3.11
15
15
  Classifier: Programming Language :: Python :: 3.12
16
- Classifier: Programming Language :: Python :: 3.13
17
- Requires-Dist: certifi (>=2024.7.4,<2025.0.0)
16
+ Requires-Dist: certifi (>=2024.7.4)
18
17
  Requires-Dist: httpx (>=0.20.0)
19
18
  Requires-Dist: pydantic (>=1.10)
20
19
  Description-Content-Type: text/markdown
@@ -1,4 +1,4 @@
1
- llama_cloud/__init__.py,sha256=XR7VmwNyA8J1EOA5Cjs8XO-CpX60iZIxUudaz1GDXrI,21935
1
+ llama_cloud/__init__.py,sha256=X4Q_rgTHOWZ4unIpgBwbg6xxbHL7C_NDfae-yHhM12k,22183
2
2
  llama_cloud/client.py,sha256=0fK6iRBCA77eSs0zFrYQj-zD0BLy6Dr2Ss0ETJ4WaOY,5555
3
3
  llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
@@ -30,7 +30,7 @@ llama_cloud/resources/embedding_model_configs/types/embedding_model_config_creat
30
30
  llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
31
31
  llama_cloud/resources/evals/client.py,sha256=JyPHP9MsJ-15XHUVu-UjCcINo2IDPr2OageAqLBGlmw,27578
32
32
  llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
33
- llama_cloud/resources/files/client.py,sha256=BAwJabD4B7y17oNzi-tRVXtl5QtspX9-JqWWQ66Lzfc,49320
33
+ llama_cloud/resources/files/client.py,sha256=7VmhrE5fbftB6p6QUQUkGM5FO48obF73keq86vGFyhE,49676
34
34
  llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
35
35
  llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py,sha256=Wc8wFgujOO5pZvbbh2TMMzpa37GKZd14GYNJ9bdq7BE,214
36
36
  llama_cloud/resources/files/types/file_create_permission_info_value.py,sha256=KPCFuEaa8NiB85A5MfdXRAQ0poAUTl7Feg6BTfmdWas,209
@@ -38,7 +38,7 @@ llama_cloud/resources/files/types/file_create_resource_info_value.py,sha256=R7Y-
38
38
  llama_cloud/resources/jobs/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
39
39
  llama_cloud/resources/jobs/client.py,sha256=mN9uOzys9aZkhOJkApUy0yhfNeK8X09xQxT34ZPptNY,5386
40
40
  llama_cloud/resources/llama_extract/__init__.py,sha256=MgOA61chV7LogriUoyswOT627LaVt3UIb-imM3BvHdQ,617
41
- llama_cloud/resources/llama_extract/client.py,sha256=dzJ_7YihxOm8KmxDOjkuDLG5ON7TrNnrO7y_dsaCHAQ,53802
41
+ llama_cloud/resources/llama_extract/client.py,sha256=V8rmOzmyL3oRdvYbHQFZE77dFvUzzjsnEA1ep2_zLuM,55218
42
42
  llama_cloud/resources/llama_extract/types/__init__.py,sha256=yY34YD-MI4SnSbyJY5JwCGBBfqRr0dNh2zibRUt8mt4,895
43
43
  llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema.py,sha256=zB31hJQ8hKaIsPkfTWiX5hqsPVFMyyeWEDZ_Aq237jo,305
44
44
  llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema_zero_value.py,sha256=xoyXH3f0Y5beMWBxmtXSz6QoB_df_-0QBsYdjBhZnGw,217
@@ -49,7 +49,7 @@ llama_cloud/resources/llama_extract/types/extract_schema_validate_request_data_s
49
49
  llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
50
50
  llama_cloud/resources/organizations/client.py,sha256=VRqPsWYEksvysYgKIOGnfhXjC3aaf9OHK6fHsS-XHqk,55460
51
51
  llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
52
- llama_cloud/resources/parsing/client.py,sha256=TrJEJyBnVwD8t6fkOCCcIbfTvzZoJd-43D0r41nyaSQ,65732
52
+ llama_cloud/resources/parsing/client.py,sha256=8WHscm_0WzNpewtjN2m01DiX3UdV4PlDlRlrEEwxjQs,72070
53
53
  llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
54
54
  llama_cloud/resources/pipelines/client.py,sha256=MORoQkrH6-8-utV41zrXjFW2BegDsa_6pJhJvFH4OMQ,134251
55
55
  llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
@@ -59,12 +59,12 @@ llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py,sha256
59
59
  llama_cloud/resources/projects/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
60
60
  llama_cloud/resources/projects/client.py,sha256=B1A68C_rm7pfI6_fq9Xm1zuHdt9O8mLk1ZVvIt0iFb4,55882
61
61
  llama_cloud/resources/reports/__init__.py,sha256=cruYbQ1bIuJbRpkfaQY7ajUEslffjd7KzvzMzbtPH94,217
62
- llama_cloud/resources/reports/client.py,sha256=-Gr3GgfEACSXoQ6knz8Vm0p6Rl6Ej3YosRfqCv74T5U,45908
62
+ llama_cloud/resources/reports/client.py,sha256=Ubf1xfaVK8PaDaO22cJdjlxpPkdSoMZr9zRDKrA2T0s,46432
63
63
  llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwHww2YU90lOonBPTmZIk,291
64
64
  llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
65
65
  llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
66
66
  llama_cloud/resources/retrievers/client.py,sha256=ASDdqnwXX4qj0sCAkWO7RKFnQ1oiLzBLIQ2bwqnMOKs,24905
67
- llama_cloud/types/__init__.py,sha256=C_H0QvJ5RsXeDzazGGJZ5Qrf82DbzYAcByebPTl2Ot4,25950
67
+ llama_cloud/types/__init__.py,sha256=X2X5A34cSJO0B2zEHZxvsSyv0SLKlCxkPcNCG4J6hxo,26343
68
68
  llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
69
69
  llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
70
70
  llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
@@ -82,6 +82,7 @@ llama_cloud/types/character_splitter.py,sha256=Jm6ie7c9JmMqIqLfAN-96sYvNUaIyLzCP
82
82
  llama_cloud/types/chat_app.py,sha256=fLuzYkXLq51C_Y23hoLwfmG-OiT7jlyHt2JGe6-f1IA,1795
83
83
  llama_cloud/types/chat_app_response.py,sha256=WSKr1KI9_pGTSstr3I53kZ8qb3y87Q4ulh8fR0C7sSU,1784
84
84
  llama_cloud/types/chat_data.py,sha256=ZYqVtjXF6qPGajU4IWZu3InpU54TXJwBFiqxBepylP0,1197
85
+ llama_cloud/types/chunk_mode.py,sha256=7FIsCfJqZyek1cwRykSgRY24gA0Qo9kMGdJDFjabb9c,621
85
86
  llama_cloud/types/cloud_az_storage_blob_data_source.py,sha256=NT4cYsD1M868_bSJxKM9cvTMtjQtQxKloE4vRv8_lwg,1534
86
87
  llama_cloud/types/cloud_azure_ai_search_vector_store.py,sha256=9GTaft7BaKsR9RJQp5dlpbslXUlTMA1AcDdKV1ApfqI,1513
87
88
  llama_cloud/types/cloud_box_data_source.py,sha256=9bffCaKGvctSsk9OdTpzzP__O1NDpb9wdvKY2uwjpwY,1470
@@ -125,7 +126,8 @@ llama_cloud/types/data_source_create_component.py,sha256=-P4FGv9Xg951n-77_bb-2_C
125
126
  llama_cloud/types/data_source_create_custom_metadata_value.py,sha256=ejSsQNbszYQaUWFh9r9kQpHf88qbhuRv1SI9J_MOSC0,215
126
127
  llama_cloud/types/data_source_custom_metadata_value.py,sha256=pTZn5yjZYmuOhsLABFJOKZblZUkRqo1CqLAuP5tKji4,209
127
128
  llama_cloud/types/data_source_definition.py,sha256=HlSlTxzYcQJOSo_2OSroAE8vAr-otDvTNBSEkA54vL8,1575
128
- llama_cloud/types/edit_suggestion.py,sha256=L4WImd8_BDXImZG-Cz84rYJndEWeQmcrd1dDez9zrmU,1144
129
+ llama_cloud/types/edit_suggestion.py,sha256=uzXSZYJiU3FaNN-TvEd3EXdaXvjQIe7Mf4kntKkyB2I,1202
130
+ llama_cloud/types/edit_suggestion_blocks_item.py,sha256=ojTk4lh0IHmrWP5wLPTIlsc2jAUDoHvdjJ5sm2uMut0,236
129
131
  llama_cloud/types/element_segmentation_config.py,sha256=QOBk8YFrgK0I2m3caqV5bpYaGXbk0fMSjZ4hUPZXZDI,959
130
132
  llama_cloud/types/embedding_model_config.py,sha256=6-o0vsAX89eHQdCAG5sI317Aivr4Tvs6ycg9TqNgybo,1525
131
133
  llama_cloud/types/embedding_model_config_embedding_config.py,sha256=9rmfeiJYhBPmSJCXp-qxkOAd9WPwL5Hks7jIKd8XCPM,2901
@@ -142,12 +144,12 @@ llama_cloud/types/eval_question_create.py,sha256=oOwxkE5gPj8RAwgr3uuTHfTvLSXmYkk
142
144
  llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQbToiVJqm41ArY,2168
143
145
  llama_cloud/types/extract_agent.py,sha256=T98IOueut4M52Qm7hqcUOcWFFDhZ-ye0OFdXgfFGtS4,1763
144
146
  llama_cloud/types/extract_agent_data_schema_value.py,sha256=UaDQ2KjajLDccW7F4NKdfpefeTJrr1hl0c95WRETYkM,201
145
- llama_cloud/types/extract_config.py,sha256=KFg8cG61KvVlPVwGxtRSgR5XC40V_ID5u97P3t62QuU,1344
147
+ llama_cloud/types/extract_config.py,sha256=s0f8Yzfuzl0P_xV91SNj0Cbp77I_FMXCxL5lEJyXR6I,1505
146
148
  llama_cloud/types/extract_job.py,sha256=Yx4fDdCdylAji2LPTwqflVpz1o9slpj9tTLS93-1tzU,1431
147
149
  llama_cloud/types/extract_job_create.py,sha256=UK1mBIKyflo7e6m1MxMN95pLscj67jH_yvs8EvmBXqU,1545
148
150
  llama_cloud/types/extract_job_create_data_schema_override.py,sha256=vuiJ2lGJjbXEnvFKzVnKyvgwhMXPg1Pb5GZne2DrB60,330
149
151
  llama_cloud/types/extract_job_create_data_schema_override_zero_value.py,sha256=HHEYxOSQXXyBYOiUQg_qwfQtXFj-OtThMwbUDBIgZU0,223
150
- llama_cloud/types/extract_mode.py,sha256=aE0tcuviE_eXu0y-A8Mn5MChxOIzjm7EOqyhaPZ3LbA,472
152
+ llama_cloud/types/extract_mode.py,sha256=Xu8TvYHXYs-EcELV0hXbkcPuMyK1BLBQPKIBuHeUSnY,457
151
153
  llama_cloud/types/extract_resultset.py,sha256=Alje0YQJUiA_aKi0hQs7TAnhDmZuQ_yL9b6HCNYBFQg,1627
152
154
  llama_cloud/types/extract_resultset_data.py,sha256=v9Ae4SxLsvYPE9crko4N16lBjsxuZpz1yrUOhnaM_VY,427
153
155
  llama_cloud/types/extract_resultset_data_item_value.py,sha256=JwqgDIGW0irr8QWaSTIrl24FhGxTUDOXIbxoSdIjuxs,209
@@ -162,6 +164,7 @@ llama_cloud/types/extract_run_extraction_metadata_value.py,sha256=tBbPk7mkNWvjej
162
164
  llama_cloud/types/extract_schema_validate_response.py,sha256=EVSeXsljZC-gIpdXr16khI4kbZbc3jU-7rKVp5F_SQk,1170
163
165
  llama_cloud/types/extract_schema_validate_response_data_schema_value.py,sha256=lX9RbBHcmBRagA-K7x1he8EEmmNCiAs-tHumGfPvFVQ,224
164
166
  llama_cloud/types/extract_state.py,sha256=TNeVAXXKZaiM2srlbQlzRSn4_TDpR4xyT_yQhJUxFvk,775
167
+ llama_cloud/types/extract_target.py,sha256=Gt-FNqblzcjdfq1hxsqEjWWu-HNLXdKy4w98nog52Ms,478
165
168
  llama_cloud/types/file.py,sha256=rQXitPRKOYw91nK5qOZ0vpOmIx_MCpRb0g78d9dQs6w,1822
166
169
  llama_cloud/types/file_permission_info_value.py,sha256=RyQlNbhvIKS87Ywu7XUaw5jDToZX64M9Wqzu1U_q2Us,197
167
170
  llama_cloud/types/file_resource_info_value.py,sha256=g6T6ELeLK9jgcvX6r-EuAl_4JkwnyqdS0RRoabMReSU,195
@@ -181,10 +184,10 @@ llama_cloud/types/job_name_mapping.py,sha256=2dQFQlVHoeSlkyEKSEJv0M3PzJf7hMvkuAB
181
184
  llama_cloud/types/job_names.py,sha256=ZapQT__pLI14SagjGi8AsEwWY949hBoplQemMgb_Aoc,4098
182
185
  llama_cloud/types/job_record.py,sha256=-tp6w7dyd5KZMMynxSrL5W5YoJSdqTRWolx_f0_Hbh0,2069
183
186
  llama_cloud/types/job_record_with_usage_metrics.py,sha256=iNV2do5TB_0e3PoOz_DJyAaM6Cn9G8KG-dGPGgEs5SY,1198
184
- llama_cloud/types/llama_extract_settings.py,sha256=kIVAtnSNrwItV4AVJfI9qjMkjuSdjRiWbklf3EnzHmE,2006
187
+ llama_cloud/types/llama_extract_settings.py,sha256=Yh9Ah9W0X4l-znjYm4oNIh8-LCBc99JEQmGU87bUzWs,2225
185
188
  llama_cloud/types/llama_index_core_base_llms_types_chat_message.py,sha256=NelHo-T-ebVMhRKsqE_xV8AJW4c7o6lS0uEQnPsmTwg,1365
186
189
  llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py,sha256=tTglUqrSUaVc2Wsi4uIt5MU-80_oxZzTnhf8ziilVGY,874
187
- llama_cloud/types/llama_parse_parameters.py,sha256=NotxJiDF8W0Wxv3Ok4FjstrgS2WzJwambdHjh6Nsck4,4827
190
+ llama_cloud/types/llama_parse_parameters.py,sha256=mUJwdL73Ngcy2O64xKk1lWHbnWnQpwAEjTWScM_piuc,4881
188
191
  llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9FbsH50mGBUiyWTIXQjHFl739uAyaQw,11207
189
192
  llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
190
193
  llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
@@ -261,6 +264,7 @@ llama_cloud/types/progress_event.py,sha256=Bk73A8geTVaq0ze5pMnbkAmx7FSOHQIixYCpC
261
264
  llama_cloud/types/progress_event_status.py,sha256=yb4RAXwOKU6Bi7iyYy-3lwhF6_mLz0ZFyGjxIdaByoE,893
262
265
  llama_cloud/types/project.py,sha256=4NNh_ZAjEkoWl5st6b1jsPVf_SYKtUTB6rS1701G4IQ,1441
263
266
  llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
267
+ llama_cloud/types/prompt_conf.py,sha256=B3G9kdx1Md5fsx2ix4NYz5emvKi2GisYOOp9RozCPCU,1294
264
268
  llama_cloud/types/prompt_mixin_prompts.py,sha256=_ipiIFWmWSuaJ5VFI5rXa_C7lHaIL3Yv5izh7__xTxI,1323
265
269
  llama_cloud/types/prompt_spec.py,sha256=tPJTIzN9pYmiZD-HcPHFuhh4n1ak9FI5f7xFNV31djQ,1410
266
270
  llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
@@ -273,8 +277,7 @@ llama_cloud/types/report_create_response.py,sha256=tmnVkyAMVf0HNQy186DFVV1oZQzYG
273
277
  llama_cloud/types/report_event_item.py,sha256=_-0wgI96Ama2qKqUODTmI_fEcrnW5eAAjL1AoFEr4cQ,1451
274
278
  llama_cloud/types/report_event_item_event_data.py,sha256=_v_2wZVGuNgXpitYNcKlA9hJVMLECOKf8A-pUuLron8,1171
275
279
  llama_cloud/types/report_event_type.py,sha256=cPqKDVI8STX5BLndiGEovV4baa2it5fbfvcbiKyxAY8,1230
276
- llama_cloud/types/report_file_info.py,sha256=-EQgQAvfFvVcuOBM_inhfdWD-757mfsDrPjwwii-MHk,1230
277
- llama_cloud/types/report_metadata.py,sha256=TEUaRqy2ULtyFu3lFbea2X1SnYa5QMXZNJYerAQS1wM,1607
280
+ llama_cloud/types/report_metadata.py,sha256=cKB8wfToixuy8QEBNKzVTBznES9x4PU42DGnyiym5lc,1551
278
281
  llama_cloud/types/report_plan.py,sha256=UvtYQaSNUTWbmC-rP0c57rbGpDRPUQgou0c2r96FVUo,1332
279
282
  llama_cloud/types/report_plan_block.py,sha256=YlZ4fp4J3rduNKUknm0LfpHES_pgtQGFA9ZzErHoR40,1320
280
283
  llama_cloud/types/report_query.py,sha256=IwZNM37fgwD2CrHkQ3LtdKwUCyL2r4SrZc0xwfaTa_I,1216
@@ -288,12 +291,15 @@ llama_cloud/types/retriever.py,sha256=ZItPsorL8x1XjtJT49ZodaMqU8h2GfwlB4U4cgnfZk
288
291
  llama_cloud/types/retriever_create.py,sha256=WyUR9DRzu3Q9tzKEeXCdQuzCY6WKi9ADJkZea9rqvxU,1286
289
292
  llama_cloud/types/retriever_pipeline.py,sha256=F1pZDxg8JdQXRHE6ciFezd7a-Wv5bHplPcGDED-J4b0,1330
290
293
  llama_cloud/types/role.py,sha256=SCi2TyFbc68RJuNB-OdcP8ut03Uv5zPZk84QMmf17w8,1384
294
+ llama_cloud/types/schema_relax_mode.py,sha256=v4or6dYTvWvBBNtEd2ZSaUAb1706I0Zuh-Xztm-zx_0,635
291
295
  llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Ztd-l-YrHII7U-yM-k,1053
292
296
  llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
293
297
  llama_cloud/types/sentence_splitter.py,sha256=GbC3KE20Nd85uzO4bqJttjqJhQ_1co2gKnSQxzfOAiM,2140
294
298
  llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDPvx0,1018
299
+ llama_cloud/types/struct_mode.py,sha256=AjYmpXTEYlMNNac6cNjEGYQBJwKJERw2ERdjGKgrX3o,845
300
+ llama_cloud/types/struct_parse_conf.py,sha256=bD0gZzN6tR8VO9s81KPwTffLQDnLLAAcNrnknii_178,1825
295
301
  llama_cloud/types/supported_llm_model.py,sha256=0v-g01LyZB7TeN0zwAeSJejRoT95SVaXOJhNz7boJwM,1461
296
- llama_cloud/types/supported_llm_model_names.py,sha256=UpOGVGss6uxm5gpQvQMizUDYtnmY6FuKeKRUoQ5YeJs,1429
302
+ llama_cloud/types/supported_llm_model_names.py,sha256=dEhmwGQVG-dmuGGbTWBAYadr-g5u3kiVz308CLWuSqw,2657
297
303
  llama_cloud/types/text_block.py,sha256=X154sQkSyposXuRcEWNp_tWcDQ-AI6q_-MfJUN5exP8,958
298
304
  llama_cloud/types/text_node.py,sha256=Tq3QmuKC5cIHvC9wAtvhsXl1g2sACs2yJwQ0Uko8GSU,2846
299
305
  llama_cloud/types/text_node_relationships_value.py,sha256=qmXURTk1Xg7ZDzRSSV1uDEel0AXRLohND5ioezibHY0,217
@@ -313,7 +319,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
313
319
  llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
314
320
  llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
315
321
  llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
316
- llama_cloud-0.1.10.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
317
- llama_cloud-0.1.10.dist-info/METADATA,sha256=-MdePajbPzznObT3-F5rFlC61M_H10QWOBaq4lOR_Ow,912
318
- llama_cloud-0.1.10.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
319
- llama_cloud-0.1.10.dist-info/RECORD,,
322
+ llama_cloud-0.1.12.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
323
+ llama_cloud-0.1.12.dist-info/METADATA,sha256=cq17QpgehHf9h_wM1gBd636awXVxMkUkCgxlcHtiDQ4,851
324
+ llama_cloud-0.1.12.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
325
+ llama_cloud-0.1.12.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.1
2
+ Generator: poetry-core 1.9.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any