llama-cloud 0.1.0__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (27) hide show
  1. llama_cloud/__init__.py +2 -6
  2. llama_cloud/resources/data_sinks/client.py +6 -6
  3. llama_cloud/resources/data_sinks/types/data_sink_update_component.py +0 -4
  4. llama_cloud/resources/parsing/client.py +32 -0
  5. llama_cloud/types/__init__.py +2 -6
  6. llama_cloud/types/azure_open_ai_embedding.py +2 -7
  7. llama_cloud/types/bedrock_embedding.py +1 -4
  8. llama_cloud/types/cloud_pinecone_vector_store.py +1 -1
  9. llama_cloud/types/cohere_embedding.py +4 -9
  10. llama_cloud/types/configurable_data_sink_names.py +0 -8
  11. llama_cloud/types/configurable_transformation_names.py +0 -28
  12. llama_cloud/types/configured_transformation_item_component.py +0 -14
  13. llama_cloud/types/data_sink_component.py +0 -4
  14. llama_cloud/types/data_sink_create_component.py +0 -4
  15. llama_cloud/types/gemini_embedding.py +3 -14
  16. llama_cloud/types/hugging_face_inference_api_embedding.py +0 -9
  17. llama_cloud/types/input_message.py +1 -1
  18. llama_cloud/types/llama_parse_parameters.py +4 -0
  19. llama_cloud/types/open_ai_embedding.py +2 -25
  20. llama_cloud/types/vertex_ai_embedding_config.py +2 -2
  21. llama_cloud/types/{extend_vertex_text_embedding.py → vertex_text_embedding.py} +5 -6
  22. {llama_cloud-0.1.0.dist-info → llama_cloud-0.1.1.dist-info}/METADATA +1 -1
  23. {llama_cloud-0.1.0.dist-info → llama_cloud-0.1.1.dist-info}/RECORD +25 -27
  24. llama_cloud/types/cloud_chroma_vector_store.py +0 -39
  25. llama_cloud/types/cloud_weaviate_vector_store.py +0 -37
  26. {llama_cloud-0.1.0.dist-info → llama_cloud-0.1.1.dist-info}/LICENSE +0 -0
  27. {llama_cloud-0.1.0.dist-info → llama_cloud-0.1.1.dist-info}/WHEEL +0 -0
llama_cloud/__init__.py CHANGED
@@ -27,7 +27,6 @@ from .types import (
27
27
  CloudAzStorageBlobDataSource,
28
28
  CloudAzureAiSearchVectorStore,
29
29
  CloudBoxDataSource,
30
- CloudChromaVectorStore,
31
30
  CloudConfluenceDataSource,
32
31
  CloudDocument,
33
32
  CloudDocumentCreate,
@@ -43,7 +42,6 @@ from .types import (
43
42
  CloudS3DataSource,
44
43
  CloudSharepointDataSource,
45
44
  CloudSlackDataSource,
46
- CloudWeaviateVectorStore,
47
45
  CodeSplitter,
48
46
  CohereEmbedding,
49
47
  CohereEmbeddingConfig,
@@ -75,7 +73,6 @@ from .types import (
75
73
  EvalQuestion,
76
74
  EvalQuestionCreate,
77
75
  EvalQuestionResult,
78
- ExtendVertexTextEmbedding,
79
76
  ExtractionJob,
80
77
  ExtractionResult,
81
78
  ExtractionResultDataValue,
@@ -200,6 +197,7 @@ from .types import (
200
197
  ValidationErrorLocItem,
201
198
  VertexAiEmbeddingConfig,
202
199
  VertexEmbeddingMode,
200
+ VertexTextEmbedding,
203
201
  )
204
202
  from .errors import UnprocessableEntityError
205
203
  from .resources import (
@@ -259,7 +257,6 @@ __all__ = [
259
257
  "CloudAzStorageBlobDataSource",
260
258
  "CloudAzureAiSearchVectorStore",
261
259
  "CloudBoxDataSource",
262
- "CloudChromaVectorStore",
263
260
  "CloudConfluenceDataSource",
264
261
  "CloudDocument",
265
262
  "CloudDocumentCreate",
@@ -275,7 +272,6 @@ __all__ = [
275
272
  "CloudS3DataSource",
276
273
  "CloudSharepointDataSource",
277
274
  "CloudSlackDataSource",
278
- "CloudWeaviateVectorStore",
279
275
  "CodeSplitter",
280
276
  "CohereEmbedding",
281
277
  "CohereEmbeddingConfig",
@@ -310,7 +306,6 @@ __all__ = [
310
306
  "EvalQuestion",
311
307
  "EvalQuestionCreate",
312
308
  "EvalQuestionResult",
313
- "ExtendVertexTextEmbedding",
314
309
  "ExtractionJob",
315
310
  "ExtractionResult",
316
311
  "ExtractionResultDataValue",
@@ -450,6 +445,7 @@ __all__ = [
450
445
  "ValidationErrorLocItem",
451
446
  "VertexAiEmbeddingConfig",
452
447
  "VertexEmbeddingMode",
448
+ "VertexTextEmbedding",
453
449
  "component_definitions",
454
450
  "data_sinks",
455
451
  "data_sources",
@@ -89,7 +89,7 @@ class DataSinksClient:
89
89
  client.data_sinks.create_data_sink(
90
90
  request=DataSinkCreate(
91
91
  name="string",
92
- sink_type=ConfigurableDataSinkNames.CHROMA,
92
+ sink_type=ConfigurableDataSinkNames.PINECONE,
93
93
  ),
94
94
  )
95
95
  """
@@ -138,7 +138,7 @@ class DataSinksClient:
138
138
  client.data_sinks.upsert_data_sink(
139
139
  request=DataSinkCreate(
140
140
  name="string",
141
- sink_type=ConfigurableDataSinkNames.CHROMA,
141
+ sink_type=ConfigurableDataSinkNames.PINECONE,
142
142
  ),
143
143
  )
144
144
  """
@@ -220,7 +220,7 @@ class DataSinksClient:
220
220
  )
221
221
  client.data_sinks.update_data_sink(
222
222
  data_sink_id="string",
223
- sink_type=ConfigurableDataSinkNames.CHROMA,
223
+ sink_type=ConfigurableDataSinkNames.PINECONE,
224
224
  )
225
225
  """
226
226
  _request: typing.Dict[str, typing.Any] = {"sink_type": sink_type}
@@ -340,7 +340,7 @@ class AsyncDataSinksClient:
340
340
  await client.data_sinks.create_data_sink(
341
341
  request=DataSinkCreate(
342
342
  name="string",
343
- sink_type=ConfigurableDataSinkNames.CHROMA,
343
+ sink_type=ConfigurableDataSinkNames.PINECONE,
344
344
  ),
345
345
  )
346
346
  """
@@ -389,7 +389,7 @@ class AsyncDataSinksClient:
389
389
  await client.data_sinks.upsert_data_sink(
390
390
  request=DataSinkCreate(
391
391
  name="string",
392
- sink_type=ConfigurableDataSinkNames.CHROMA,
392
+ sink_type=ConfigurableDataSinkNames.PINECONE,
393
393
  ),
394
394
  )
395
395
  """
@@ -471,7 +471,7 @@ class AsyncDataSinksClient:
471
471
  )
472
472
  await client.data_sinks.update_data_sink(
473
473
  data_sink_id="string",
474
- sink_type=ConfigurableDataSinkNames.CHROMA,
474
+ sink_type=ConfigurableDataSinkNames.PINECONE,
475
475
  )
476
476
  """
477
477
  _request: typing.Dict[str, typing.Any] = {"sink_type": sink_type}
@@ -3,21 +3,17 @@
3
3
  import typing
4
4
 
5
5
  from ....types.cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
6
- from ....types.cloud_chroma_vector_store import CloudChromaVectorStore
7
6
  from ....types.cloud_milvus_vector_store import CloudMilvusVectorStore
8
7
  from ....types.cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
9
8
  from ....types.cloud_pinecone_vector_store import CloudPineconeVectorStore
10
9
  from ....types.cloud_postgres_vector_store import CloudPostgresVectorStore
11
10
  from ....types.cloud_qdrant_vector_store import CloudQdrantVectorStore
12
- from ....types.cloud_weaviate_vector_store import CloudWeaviateVectorStore
13
11
 
14
12
  DataSinkUpdateComponent = typing.Union[
15
13
  typing.Dict[str, typing.Any],
16
- CloudChromaVectorStore,
17
14
  CloudPineconeVectorStore,
18
15
  CloudPostgresVectorStore,
19
16
  CloudQdrantVectorStore,
20
- CloudWeaviateVectorStore,
21
17
  CloudAzureAiSearchVectorStore,
22
18
  CloudMongoDbAtlasVectorSearch,
23
19
  CloudMilvusVectorStore,
@@ -125,6 +125,10 @@ class ParsingClient:
125
125
  disable_reconstruction: bool,
126
126
  input_s_3_path: str,
127
127
  output_s_3_path_prefix: str,
128
+ azure_openai_deployment_name: str,
129
+ azure_openai_endpoint: str,
130
+ azure_openai_api_version: str,
131
+ azure_openai_key: str,
128
132
  file: typing.Optional[str] = OMIT,
129
133
  ) -> ParsingJob:
130
134
  """
@@ -179,6 +183,14 @@ class ParsingClient:
179
183
 
180
184
  - output_s_3_path_prefix: str.
181
185
 
186
+ - azure_openai_deployment_name: str.
187
+
188
+ - azure_openai_endpoint: str.
189
+
190
+ - azure_openai_api_version: str.
191
+
192
+ - azure_openai_key: str.
193
+
182
194
  - file: typing.Optional[str].
183
195
  """
184
196
  _request: typing.Dict[str, typing.Any] = {
@@ -206,6 +218,10 @@ class ParsingClient:
206
218
  "disable_reconstruction": disable_reconstruction,
207
219
  "input_s3_path": input_s_3_path,
208
220
  "output_s3_path_prefix": output_s_3_path_prefix,
221
+ "azure_openai_deployment_name": azure_openai_deployment_name,
222
+ "azure_openai_endpoint": azure_openai_endpoint,
223
+ "azure_openai_api_version": azure_openai_api_version,
224
+ "azure_openai_key": azure_openai_key,
209
225
  }
210
226
  if file is not OMIT:
211
227
  _request["file"] = file
@@ -678,6 +694,10 @@ class AsyncParsingClient:
678
694
  disable_reconstruction: bool,
679
695
  input_s_3_path: str,
680
696
  output_s_3_path_prefix: str,
697
+ azure_openai_deployment_name: str,
698
+ azure_openai_endpoint: str,
699
+ azure_openai_api_version: str,
700
+ azure_openai_key: str,
681
701
  file: typing.Optional[str] = OMIT,
682
702
  ) -> ParsingJob:
683
703
  """
@@ -732,6 +752,14 @@ class AsyncParsingClient:
732
752
 
733
753
  - output_s_3_path_prefix: str.
734
754
 
755
+ - azure_openai_deployment_name: str.
756
+
757
+ - azure_openai_endpoint: str.
758
+
759
+ - azure_openai_api_version: str.
760
+
761
+ - azure_openai_key: str.
762
+
735
763
  - file: typing.Optional[str].
736
764
  """
737
765
  _request: typing.Dict[str, typing.Any] = {
@@ -759,6 +787,10 @@ class AsyncParsingClient:
759
787
  "disable_reconstruction": disable_reconstruction,
760
788
  "input_s3_path": input_s_3_path,
761
789
  "output_s3_path_prefix": output_s_3_path_prefix,
790
+ "azure_openai_deployment_name": azure_openai_deployment_name,
791
+ "azure_openai_endpoint": azure_openai_endpoint,
792
+ "azure_openai_api_version": azure_openai_api_version,
793
+ "azure_openai_key": azure_openai_key,
762
794
  }
763
795
  if file is not OMIT:
764
796
  _request["file"] = file
@@ -30,7 +30,6 @@ from .chat_message import ChatMessage
30
30
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
31
31
  from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
32
32
  from .cloud_box_data_source import CloudBoxDataSource
33
- from .cloud_chroma_vector_store import CloudChromaVectorStore
34
33
  from .cloud_confluence_data_source import CloudConfluenceDataSource
35
34
  from .cloud_document import CloudDocument
36
35
  from .cloud_document_create import CloudDocumentCreate
@@ -46,7 +45,6 @@ from .cloud_qdrant_vector_store import CloudQdrantVectorStore
46
45
  from .cloud_s_3_data_source import CloudS3DataSource
47
46
  from .cloud_sharepoint_data_source import CloudSharepointDataSource
48
47
  from .cloud_slack_data_source import CloudSlackDataSource
49
- from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
50
48
  from .code_splitter import CodeSplitter
51
49
  from .cohere_embedding import CohereEmbedding
52
50
  from .cohere_embedding_config import CohereEmbeddingConfig
@@ -78,7 +76,6 @@ from .eval_metric import EvalMetric
78
76
  from .eval_question import EvalQuestion
79
77
  from .eval_question_create import EvalQuestionCreate
80
78
  from .eval_question_result import EvalQuestionResult
81
- from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
82
79
  from .extraction_job import ExtractionJob
83
80
  from .extraction_result import ExtractionResult
84
81
  from .extraction_result_data_value import ExtractionResultDataValue
@@ -209,6 +206,7 @@ from .validation_error import ValidationError
209
206
  from .validation_error_loc_item import ValidationErrorLocItem
210
207
  from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
211
208
  from .vertex_embedding_mode import VertexEmbeddingMode
209
+ from .vertex_text_embedding import VertexTextEmbedding
212
210
 
213
211
  __all__ = [
214
212
  "AdvancedModeTransformConfig",
@@ -237,7 +235,6 @@ __all__ = [
237
235
  "CloudAzStorageBlobDataSource",
238
236
  "CloudAzureAiSearchVectorStore",
239
237
  "CloudBoxDataSource",
240
- "CloudChromaVectorStore",
241
238
  "CloudConfluenceDataSource",
242
239
  "CloudDocument",
243
240
  "CloudDocumentCreate",
@@ -253,7 +250,6 @@ __all__ = [
253
250
  "CloudS3DataSource",
254
251
  "CloudSharepointDataSource",
255
252
  "CloudSlackDataSource",
256
- "CloudWeaviateVectorStore",
257
253
  "CodeSplitter",
258
254
  "CohereEmbedding",
259
255
  "CohereEmbeddingConfig",
@@ -285,7 +281,6 @@ __all__ = [
285
281
  "EvalQuestion",
286
282
  "EvalQuestionCreate",
287
283
  "EvalQuestionResult",
288
- "ExtendVertexTextEmbedding",
289
284
  "ExtractionJob",
290
285
  "ExtractionResult",
291
286
  "ExtractionResultDataValue",
@@ -410,4 +405,5 @@ __all__ = [
410
405
  "ValidationErrorLocItem",
411
406
  "VertexAiEmbeddingConfig",
412
407
  "VertexEmbeddingMode",
408
+ "VertexTextEmbedding",
413
409
  ]
@@ -15,14 +15,13 @@ except ImportError:
15
15
 
16
16
 
17
17
  class AzureOpenAiEmbedding(pydantic.BaseModel):
18
- model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
18
+ model_name: typing.Optional[str] = pydantic.Field(description="The name of the OpenAI embedding model.")
19
19
  embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
20
- callback_manager: typing.Optional[typing.Any]
21
20
  num_workers: typing.Optional[int]
22
21
  additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
23
22
  description="Additional kwargs for the OpenAI API."
24
23
  )
25
- api_key: str = pydantic.Field(description="The OpenAI API key.")
24
+ api_key: typing.Optional[str]
26
25
  api_base: typing.Optional[str] = pydantic.Field(description="The base URL for Azure deployment.")
27
26
  api_version: typing.Optional[str] = pydantic.Field(description="The version for Azure OpenAI API.")
28
27
  max_retries: typing.Optional[int] = pydantic.Field(description="Maximum number of retries.")
@@ -34,10 +33,6 @@ class AzureOpenAiEmbedding(pydantic.BaseModel):
34
33
  dimensions: typing.Optional[int]
35
34
  azure_endpoint: typing.Optional[str]
36
35
  azure_deployment: typing.Optional[str]
37
- azure_ad_token_provider: typing.Optional[str]
38
- use_azure_ad: bool = pydantic.Field(
39
- description="Indicates if Microsoft Entra ID (former Azure AD) is used for token authentication"
40
- )
41
36
  class_name: typing.Optional[str]
42
37
 
43
38
  def json(self, **kwargs: typing.Any) -> str:
@@ -15,17 +15,14 @@ except ImportError:
15
15
 
16
16
 
17
17
  class BedrockEmbedding(pydantic.BaseModel):
18
- model_name: str = pydantic.Field(description="The modelId of the Bedrock model to use.")
18
+ model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Bedrock model to use.")
19
19
  embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
20
- callback_manager: typing.Optional[typing.Any]
21
20
  num_workers: typing.Optional[int]
22
21
  profile_name: typing.Optional[str]
23
22
  aws_access_key_id: typing.Optional[str]
24
23
  aws_secret_access_key: typing.Optional[str]
25
24
  aws_session_token: typing.Optional[str]
26
25
  region_name: typing.Optional[str]
27
- botocore_session: typing.Optional[typing.Any]
28
- botocore_config: typing.Optional[typing.Any]
29
26
  max_retries: typing.Optional[int] = pydantic.Field(description="The maximum number of API retries.")
30
27
  timeout: typing.Optional[float] = pydantic.Field(
31
28
  description="The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts."
@@ -29,7 +29,7 @@ class CloudPineconeVectorStore(pydantic.BaseModel):
29
29
  """
30
30
 
31
31
  supports_nested_metadata_filters: typing.Optional[bool]
32
- api_key: str
32
+ api_key: str = pydantic.Field(description="The API key for authenticating with Pinecone")
33
33
  index_name: str
34
34
  namespace: typing.Optional[str]
35
35
  insert_kwargs: typing.Optional[typing.Dict[str, typing.Any]]
@@ -15,18 +15,13 @@ except ImportError:
15
15
 
16
16
 
17
17
  class CohereEmbedding(pydantic.BaseModel):
18
- """
19
- CohereEmbedding uses the Cohere API to generate embeddings for text.
20
- """
21
-
22
- model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
18
+ model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Cohere model to use.")
23
19
  embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
24
- callback_manager: typing.Optional[typing.Any]
25
20
  num_workers: typing.Optional[int]
26
- api_key: str = pydantic.Field(description="The Cohere API key.")
27
- truncate: str = pydantic.Field(description="Truncation type - START/ END/ NONE")
21
+ api_key: typing.Optional[str]
22
+ truncate: typing.Optional[str] = pydantic.Field(description="Truncation type - START/ END/ NONE")
28
23
  input_type: typing.Optional[str]
29
- embedding_type: str = pydantic.Field(
24
+ embedding_type: typing.Optional[str] = pydantic.Field(
30
25
  description="Embedding type. If not provided float embedding_type is used when needed."
31
26
  )
32
27
  class_name: typing.Optional[str]
@@ -7,36 +7,28 @@ T_Result = typing.TypeVar("T_Result")
7
7
 
8
8
 
9
9
  class ConfigurableDataSinkNames(str, enum.Enum):
10
- CHROMA = "CHROMA"
11
10
  PINECONE = "PINECONE"
12
11
  POSTGRES = "POSTGRES"
13
12
  QDRANT = "QDRANT"
14
- WEAVIATE = "WEAVIATE"
15
13
  AZUREAI_SEARCH = "AZUREAI_SEARCH"
16
14
  MONGODB_ATLAS = "MONGODB_ATLAS"
17
15
  MILVUS = "MILVUS"
18
16
 
19
17
  def visit(
20
18
  self,
21
- chroma: typing.Callable[[], T_Result],
22
19
  pinecone: typing.Callable[[], T_Result],
23
20
  postgres: typing.Callable[[], T_Result],
24
21
  qdrant: typing.Callable[[], T_Result],
25
- weaviate: typing.Callable[[], T_Result],
26
22
  azureai_search: typing.Callable[[], T_Result],
27
23
  mongodb_atlas: typing.Callable[[], T_Result],
28
24
  milvus: typing.Callable[[], T_Result],
29
25
  ) -> T_Result:
30
- if self is ConfigurableDataSinkNames.CHROMA:
31
- return chroma()
32
26
  if self is ConfigurableDataSinkNames.PINECONE:
33
27
  return pinecone()
34
28
  if self is ConfigurableDataSinkNames.POSTGRES:
35
29
  return postgres()
36
30
  if self is ConfigurableDataSinkNames.QDRANT:
37
31
  return qdrant()
38
- if self is ConfigurableDataSinkNames.WEAVIATE:
39
- return weaviate()
40
32
  if self is ConfigurableDataSinkNames.AZUREAI_SEARCH:
41
33
  return azureai_search()
42
34
  if self is ConfigurableDataSinkNames.MONGODB_ATLAS:
@@ -14,13 +14,6 @@ class ConfigurableTransformationNames(str, enum.Enum):
14
14
  TOKEN_AWARE_NODE_PARSER = "TOKEN_AWARE_NODE_PARSER"
15
15
  MARKDOWN_NODE_PARSER = "MARKDOWN_NODE_PARSER"
16
16
  MARKDOWN_ELEMENT_NODE_PARSER = "MARKDOWN_ELEMENT_NODE_PARSER"
17
- OPENAI_EMBEDDING = "OPENAI_EMBEDDING"
18
- AZURE_EMBEDDING = "AZURE_EMBEDDING"
19
- COHERE_EMBEDDING = "COHERE_EMBEDDING"
20
- BEDROCK_EMBEDDING = "BEDROCK_EMBEDDING"
21
- HUGGINGFACE_API_EMBEDDING = "HUGGINGFACE_API_EMBEDDING"
22
- GEMINI_EMBEDDING = "GEMINI_EMBEDDING"
23
- VERTEXAI_EMBEDDING = "VERTEXAI_EMBEDDING"
24
17
 
25
18
  def visit(
26
19
  self,
@@ -31,13 +24,6 @@ class ConfigurableTransformationNames(str, enum.Enum):
31
24
  token_aware_node_parser: typing.Callable[[], T_Result],
32
25
  markdown_node_parser: typing.Callable[[], T_Result],
33
26
  markdown_element_node_parser: typing.Callable[[], T_Result],
34
- openai_embedding: typing.Callable[[], T_Result],
35
- azure_embedding: typing.Callable[[], T_Result],
36
- cohere_embedding: typing.Callable[[], T_Result],
37
- bedrock_embedding: typing.Callable[[], T_Result],
38
- huggingface_api_embedding: typing.Callable[[], T_Result],
39
- gemini_embedding: typing.Callable[[], T_Result],
40
- vertexai_embedding: typing.Callable[[], T_Result],
41
27
  ) -> T_Result:
42
28
  if self is ConfigurableTransformationNames.CHARACTER_SPLITTER:
43
29
  return character_splitter()
@@ -53,17 +39,3 @@ class ConfigurableTransformationNames(str, enum.Enum):
53
39
  return markdown_node_parser()
54
40
  if self is ConfigurableTransformationNames.MARKDOWN_ELEMENT_NODE_PARSER:
55
41
  return markdown_element_node_parser()
56
- if self is ConfigurableTransformationNames.OPENAI_EMBEDDING:
57
- return openai_embedding()
58
- if self is ConfigurableTransformationNames.AZURE_EMBEDDING:
59
- return azure_embedding()
60
- if self is ConfigurableTransformationNames.COHERE_EMBEDDING:
61
- return cohere_embedding()
62
- if self is ConfigurableTransformationNames.BEDROCK_EMBEDDING:
63
- return bedrock_embedding()
64
- if self is ConfigurableTransformationNames.HUGGINGFACE_API_EMBEDDING:
65
- return huggingface_api_embedding()
66
- if self is ConfigurableTransformationNames.GEMINI_EMBEDDING:
67
- return gemini_embedding()
68
- if self is ConfigurableTransformationNames.VERTEXAI_EMBEDDING:
69
- return vertexai_embedding()
@@ -2,17 +2,10 @@
2
2
 
3
3
  import typing
4
4
 
5
- from .azure_open_ai_embedding import AzureOpenAiEmbedding
6
- from .bedrock_embedding import BedrockEmbedding
7
5
  from .character_splitter import CharacterSplitter
8
6
  from .code_splitter import CodeSplitter
9
- from .cohere_embedding import CohereEmbedding
10
- from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
11
- from .gemini_embedding import GeminiEmbedding
12
- from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
13
7
  from .markdown_element_node_parser import MarkdownElementNodeParser
14
8
  from .markdown_node_parser import MarkdownNodeParser
15
- from .open_ai_embedding import OpenAiEmbedding
16
9
  from .page_splitter_node_parser import PageSplitterNodeParser
17
10
  from .sentence_splitter import SentenceSplitter
18
11
  from .token_text_splitter import TokenTextSplitter
@@ -26,11 +19,4 @@ ConfiguredTransformationItemComponent = typing.Union[
26
19
  TokenTextSplitter,
27
20
  MarkdownNodeParser,
28
21
  MarkdownElementNodeParser,
29
- OpenAiEmbedding,
30
- AzureOpenAiEmbedding,
31
- CohereEmbedding,
32
- BedrockEmbedding,
33
- HuggingFaceInferenceApiEmbedding,
34
- GeminiEmbedding,
35
- ExtendVertexTextEmbedding,
36
22
  ]
@@ -3,21 +3,17 @@
3
3
  import typing
4
4
 
5
5
  from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
6
- from .cloud_chroma_vector_store import CloudChromaVectorStore
7
6
  from .cloud_milvus_vector_store import CloudMilvusVectorStore
8
7
  from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
9
8
  from .cloud_pinecone_vector_store import CloudPineconeVectorStore
10
9
  from .cloud_postgres_vector_store import CloudPostgresVectorStore
11
10
  from .cloud_qdrant_vector_store import CloudQdrantVectorStore
12
- from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
13
11
 
14
12
  DataSinkComponent = typing.Union[
15
13
  typing.Dict[str, typing.Any],
16
- CloudChromaVectorStore,
17
14
  CloudPineconeVectorStore,
18
15
  CloudPostgresVectorStore,
19
16
  CloudQdrantVectorStore,
20
- CloudWeaviateVectorStore,
21
17
  CloudAzureAiSearchVectorStore,
22
18
  CloudMongoDbAtlasVectorSearch,
23
19
  CloudMilvusVectorStore,
@@ -3,21 +3,17 @@
3
3
  import typing
4
4
 
5
5
  from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
6
- from .cloud_chroma_vector_store import CloudChromaVectorStore
7
6
  from .cloud_milvus_vector_store import CloudMilvusVectorStore
8
7
  from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
9
8
  from .cloud_pinecone_vector_store import CloudPineconeVectorStore
10
9
  from .cloud_postgres_vector_store import CloudPostgresVectorStore
11
10
  from .cloud_qdrant_vector_store import CloudQdrantVectorStore
12
- from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
13
11
 
14
12
  DataSinkCreateComponent = typing.Union[
15
13
  typing.Dict[str, typing.Any],
16
- CloudChromaVectorStore,
17
14
  CloudPineconeVectorStore,
18
15
  CloudPostgresVectorStore,
19
16
  CloudQdrantVectorStore,
20
- CloudWeaviateVectorStore,
21
17
  CloudAzureAiSearchVectorStore,
22
18
  CloudMongoDbAtlasVectorSearch,
23
19
  CloudMilvusVectorStore,
@@ -15,25 +15,14 @@ except ImportError:
15
15
 
16
16
 
17
17
  class GeminiEmbedding(pydantic.BaseModel):
18
- """
19
- Google Gemini embeddings.
20
-
21
- Args:
22
- model_name (str): Model for embedding.
23
- Defaults to "models/embedding-001".
24
-
25
- api_key (Optional[str]): API key to access the model. Defaults to None.
26
- api_base (Optional[str]): API base to access the model. Defaults to Official Base.
27
- transport (Optional[str]): Transport to access the model.
28
- """
29
-
30
- model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
18
+ model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Gemini model to use.")
31
19
  embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
32
- callback_manager: typing.Optional[typing.Any]
33
20
  num_workers: typing.Optional[int]
34
21
  title: typing.Optional[str]
35
22
  task_type: typing.Optional[str]
36
23
  api_key: typing.Optional[str]
24
+ api_base: typing.Optional[str]
25
+ transport: typing.Optional[str]
37
26
  class_name: typing.Optional[str]
38
27
 
39
28
  def json(self, **kwargs: typing.Any) -> str:
@@ -17,17 +17,8 @@ except ImportError:
17
17
 
18
18
 
19
19
  class HuggingFaceInferenceApiEmbedding(pydantic.BaseModel):
20
- """
21
- Wrapper on the Hugging Face's Inference API for embeddings.
22
-
23
- Overview of the design:
24
-
25
- - Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction
26
- """
27
-
28
20
  model_name: typing.Optional[str]
29
21
  embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
30
- callback_manager: typing.Optional[typing.Any]
31
22
  num_workers: typing.Optional[int]
32
23
  pooling: typing.Optional[Pooling]
33
24
  query_instruction: typing.Optional[str]
@@ -20,7 +20,7 @@ class InputMessage(pydantic.BaseModel):
20
20
  This is distinct from a ChatMessage because this schema is enforced by the AI Chat library used in the frontend
21
21
  """
22
22
 
23
- id: typing.Optional[str]
23
+ id: str = pydantic.Field(description="ID of the message, if any. a UUID.")
24
24
  role: MessageRole
25
25
  content: str
26
26
  data: typing.Optional[typing.Dict[str, typing.Any]]
@@ -44,6 +44,10 @@ class LlamaParseParameters(pydantic.BaseModel):
44
44
  premium_mode: typing.Optional[bool]
45
45
  s_3_input_path: typing.Optional[str] = pydantic.Field(alias="s3_input_path")
46
46
  s_3_output_path_prefix: typing.Optional[str] = pydantic.Field(alias="s3_output_path_prefix")
47
+ azure_openai_deployment_name: typing.Optional[str]
48
+ azure_openai_endpoint: typing.Optional[str]
49
+ azure_openai_api_version: typing.Optional[str]
50
+ azure_openai_key: typing.Optional[str]
47
51
 
48
52
  def json(self, **kwargs: typing.Any) -> str:
49
53
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -15,36 +15,13 @@ except ImportError:
15
15
 
16
16
 
17
17
  class OpenAiEmbedding(pydantic.BaseModel):
18
- """
19
- OpenAI class for embeddings.
20
-
21
- Args:
22
- mode (str): Mode for embedding.
23
- Defaults to OpenAIEmbeddingMode.TEXT_SEARCH_MODE.
24
- Options are:
25
-
26
- - OpenAIEmbeddingMode.SIMILARITY_MODE
27
- - OpenAIEmbeddingMode.TEXT_SEARCH_MODE
28
-
29
- model (str): Model for embedding.
30
- Defaults to OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002.
31
- Options are:
32
-
33
- - OpenAIEmbeddingModelType.DAVINCI
34
- - OpenAIEmbeddingModelType.CURIE
35
- - OpenAIEmbeddingModelType.BABBAGE
36
- - OpenAIEmbeddingModelType.ADA
37
- - OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002
38
- """
39
-
40
- model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
18
+ model_name: typing.Optional[str] = pydantic.Field(description="The name of the OpenAI embedding model.")
41
19
  embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
42
- callback_manager: typing.Optional[typing.Any]
43
20
  num_workers: typing.Optional[int]
44
21
  additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
45
22
  description="Additional kwargs for the OpenAI API."
46
23
  )
47
- api_key: str = pydantic.Field(description="The OpenAI API key.")
24
+ api_key: typing.Optional[str]
48
25
  api_base: typing.Optional[str]
49
26
  api_version: typing.Optional[str]
50
27
  max_retries: typing.Optional[int] = pydantic.Field(description="Maximum number of retries.")
@@ -4,7 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
- from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
7
+ from .vertex_text_embedding import VertexTextEmbedding
8
8
 
9
9
  try:
10
10
  import pydantic
@@ -16,7 +16,7 @@ except ImportError:
16
16
 
17
17
 
18
18
  class VertexAiEmbeddingConfig(pydantic.BaseModel):
19
- component: typing.Optional[ExtendVertexTextEmbedding] = pydantic.Field(
19
+ component: typing.Optional[VertexTextEmbedding] = pydantic.Field(
20
20
  description="Configuration for the VertexAI embedding model."
21
21
  )
22
22
 
@@ -15,12 +15,13 @@ except ImportError:
15
15
  import pydantic # type: ignore
16
16
 
17
17
 
18
- class ExtendVertexTextEmbedding(pydantic.BaseModel):
19
- model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
18
+ class VertexTextEmbedding(pydantic.BaseModel):
19
+ model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the VertexAI model to use.")
20
20
  embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
21
- callback_manager: typing.Optional[typing.Any]
22
21
  num_workers: typing.Optional[int]
23
- embed_mode: VertexEmbeddingMode = pydantic.Field(description="The embedding mode to use.")
22
+ location: str = pydantic.Field(description="The default location to use when making API calls.")
23
+ project: str = pydantic.Field(description="The default GCP project to use when making Vertex API calls.")
24
+ embed_mode: typing.Optional[VertexEmbeddingMode] = pydantic.Field(description="The embedding mode to use.")
24
25
  additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
25
26
  description="Additional kwargs for the Vertex."
26
27
  )
@@ -28,8 +29,6 @@ class ExtendVertexTextEmbedding(pydantic.BaseModel):
28
29
  token_uri: typing.Optional[str]
29
30
  private_key_id: typing.Optional[str]
30
31
  private_key: typing.Optional[str]
31
- project: str = pydantic.Field(description="The default GCP project to use when making Vertex API calls.")
32
- location: str = pydantic.Field(description="The default location to use when making API calls.")
33
32
  class_name: typing.Optional[str]
34
33
 
35
34
  def json(self, **kwargs: typing.Any) -> str:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
4
  Summary:
5
5
  Author: Logan Markewich
6
6
  Author-email: logan@runllama.ai
@@ -1,4 +1,4 @@
1
- llama_cloud/__init__.py,sha256=F0nHXD7y5hfi_R3ri4pX9m2Ivy2zgc3AOkLen8HB5Pc,13913
1
+ llama_cloud/__init__.py,sha256=KlJJ33jmA3Tq3FxZu1a04nSK_NeydK9qsu21-YYXL-c,13781
2
2
  llama_cloud/client.py,sha256=bhZPiYd1TQSn3PRgHZ66MgMnBneG4Skc9g6UsT0wQnE,4299
3
3
  llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
@@ -13,9 +13,9 @@ llama_cloud/resources/__init__.py,sha256=kAoOhKnSzhvnTDvehUjRUDYi3MS0FfFdyt3qKod
13
13
  llama_cloud/resources/component_definitions/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
14
14
  llama_cloud/resources/component_definitions/client.py,sha256=YYfoXNa1qim2OdD5y4N5mvoBZKtrCuXS560mtqH_-1c,7569
15
15
  llama_cloud/resources/data_sinks/__init__.py,sha256=ZHUjn3HbKhq_7QS1q74r2m5RGKF5lxcvF2P6pGvpcis,147
16
- llama_cloud/resources/data_sinks/client.py,sha256=nTBUe6nEuuynBXpInKpvukEE_OlADvyZ0lxkpmzAvq0,20377
16
+ llama_cloud/resources/data_sinks/client.py,sha256=5IrtmBAugPEnHwRA3kpEXZi4Vf-1xjipWoyaaoFLhcQ,20389
17
17
  llama_cloud/resources/data_sinks/types/__init__.py,sha256=M1aTcufJwiEZo9B0KmYj9PfkSd6I1ooFt9tpIRGwgg8,168
18
- llama_cloud/resources/data_sinks/types/data_sink_update_component.py,sha256=fVOnQdL1FrwI52PVjBeUnpaVlLraLluJjRpt5ELSoAM,1013
18
+ llama_cloud/resources/data_sinks/types/data_sink_update_component.py,sha256=EWbsPt3k_w_vySf01iiFanyN7UVNzSOM3weHzx-Y_rk,809
19
19
  llama_cloud/resources/data_sources/__init__.py,sha256=McURkcNBGHXH1hmRDRmZI1dRzJrekCTHZsgv03r2oZI,227
20
20
  llama_cloud/resources/data_sources/client.py,sha256=kBU8-LhYVXI1OzlTbHgw_mOrr-WQDC7OTyVOf90s7f0,21771
21
21
  llama_cloud/resources/data_sources/types/__init__.py,sha256=Cd5xEECTzXqQSfJALfJPSjudlSLeb3RENeJVi8vwPbM,303
@@ -35,7 +35,7 @@ llama_cloud/resources/files/types/file_create_resource_info_value.py,sha256=R7Y-
35
35
  llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
36
36
  llama_cloud/resources/organizations/client.py,sha256=P2u7AhSDXSpHOHe-tnyWqJAcKLLfLNxcc4-mfUqr7zs,34109
37
37
  llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
38
- llama_cloud/resources/parsing/client.py,sha256=Azp8tQkTO3_SJo_jXhbYTf7YytWwB1kGZnCAzNCisfI,41976
38
+ llama_cloud/resources/parsing/client.py,sha256=W5lpAvLdtJNgCyTu9jZD_nxbDE9dSLuid9BoA3GxYkY,43128
39
39
  llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
40
40
  llama_cloud/resources/pipelines/client.py,sha256=wGmcHdHXojUtZURaXLKeJEB0v4J6ImKbygvMUp8W-ic,125954
41
41
  llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
@@ -44,16 +44,16 @@ llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256
44
44
  llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py,sha256=KbkyULMv-qeS3qRd31ia6pd5rOdypS0o2UL42NRcA7E,321
45
45
  llama_cloud/resources/projects/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
46
46
  llama_cloud/resources/projects/client.py,sha256=nK81HdhGbWY1rh8rSEsKzRuvyvCQ-IkhLHIPDqEqVFU,47754
47
- llama_cloud/types/__init__.py,sha256=3jdEnwGYFai2LcEtKm6x9a1Kl8sTR1Ecw6W4CdXcehI,17413
47
+ llama_cloud/types/__init__.py,sha256=_BhNDO3MaagDL3Zr0zlJySmXYWbBmtBbTP7l_C3ElIo,17204
48
48
  llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
49
49
  llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
50
50
  llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
51
51
  llama_cloud/types/auto_transform_config.py,sha256=HVeHZM75DMRznScqLTfrMwcZwIdyWPuaEYbPewnHqwc,1168
52
- llama_cloud/types/azure_open_ai_embedding.py,sha256=5r39rVwvP5eYSOOQwgY7C97h0q-BkCaalXDMkhP4VrY,2544
52
+ llama_cloud/types/azure_open_ai_embedding.py,sha256=MeDqZoPYFN7Nv_imY9cfqDU9SPlEyAY4HcQZ4PF5X3g,2264
53
53
  llama_cloud/types/azure_open_ai_embedding_config.py,sha256=o1zZhzcGElH3SeixFErrm7P_WFHQ6LvrLem_nKJWunw,1170
54
54
  llama_cloud/types/base.py,sha256=cn_Zn61yLMDCMm1iZTPvKILSRlqRzOqZtSYyYBY5dIE,938
55
55
  llama_cloud/types/base_prompt_template.py,sha256=Cw3887tnytHZ5bJBSlniyU9k5ASidv9VYR86--IbNqo,1248
56
- llama_cloud/types/bedrock_embedding.py,sha256=0L0DEODkcbggjYwPEJJ10cqat_N6ej7RjwR2ArVLU3M,2040
56
+ llama_cloud/types/bedrock_embedding.py,sha256=qrUoVW9Q2DLg-3nBRfGsZqUWGszfzc6ZHR8LJiXTZk4,1908
57
57
  llama_cloud/types/bedrock_embedding_config.py,sha256=32dMhoA2cLx1jeogDnCl9WPVb83Hn99nAALnt5BM208,1147
58
58
  llama_cloud/types/box_auth_mechanism.py,sha256=EwEdpWYytw_dRtSElfSMPhh5dxalYH8mGW3UAUpkUfY,502
59
59
  llama_cloud/types/character_chunking_config.py,sha256=2ooAnrlVVbKj4nDi_lR66x5E6nWOmj5YDWhSMQD0ubc,1035
@@ -63,7 +63,6 @@ llama_cloud/types/chat_message.py,sha256=Yl53CTyGf7uZEez-FxHeD_IL69pF2WL6tZHUUUb
63
63
  llama_cloud/types/cloud_az_storage_blob_data_source.py,sha256=SH--TXe-bHHMmZI5kBdFFucHqDrTwebOIrEuxpO9nBE,1483
64
64
  llama_cloud/types/cloud_azure_ai_search_vector_store.py,sha256=9GTaft7BaKsR9RJQp5dlpbslXUlTMA1AcDdKV1ApfqI,1513
65
65
  llama_cloud/types/cloud_box_data_source.py,sha256=2hkAIwQ97rLk5Pjq2_I-2nGT-kwMD8H9Npw3gh6XJGg,1419
66
- llama_cloud/types/cloud_chroma_vector_store.py,sha256=2jphozK9qLpvU3ElxU9xlKFoXzwz5EY6oImY1hTPMV4,1348
67
66
  llama_cloud/types/cloud_confluence_data_source.py,sha256=H1afuJGkM75y5QJPcMo_yXdQruks5FBT_c1oOI3nuHI,1435
68
67
  llama_cloud/types/cloud_document.py,sha256=Rg_H8lcz2TzxEAIdU-m5mGpkM7s0j1Cn4JHkXYddmGs,1255
69
68
  llama_cloud/types/cloud_document_create.py,sha256=fQ1gZAtLCpr-a-sPbMez_5fK9JMU3uyp2tNvIzWNG3U,1278
@@ -73,26 +72,25 @@ llama_cloud/types/cloud_milvus_vector_store.py,sha256=CHFTJSYPZKYPUU-jpB1MG8OwRv
73
72
  llama_cloud/types/cloud_mongo_db_atlas_vector_search.py,sha256=R-3zF5aH1PvkhXpGLGCFdfgS6Ehey8iYQFX6N0GZNA8,1725
74
73
  llama_cloud/types/cloud_notion_page_data_source.py,sha256=-BC28uhoWX0IzmgyEluGR9OCJQj2UbcWV3DxJswM8E0,1179
75
74
  llama_cloud/types/cloud_one_drive_data_source.py,sha256=q1FGDiaZCIrdPcKjCE-G3FEBvr6hHm00pBghOiXl-os,1465
76
- llama_cloud/types/cloud_pinecone_vector_store.py,sha256=UyCFAawIDnmPAmTcWjrFCKatypqc4cC4LpuAUOsyzUc,1647
75
+ llama_cloud/types/cloud_pinecone_vector_store.py,sha256=d1jEezwE6ndNG-2izgoO_m9tG3N1ZFvmeCXI2r3miFc,1724
77
76
  llama_cloud/types/cloud_postgres_vector_store.py,sha256=Q0pH880w2JEAYaUso5prmMurAbSzgL_N-XxtHVPD3UQ,1235
78
77
  llama_cloud/types/cloud_qdrant_vector_store.py,sha256=F-gjNArzwLWmqgPcC-ZxRqSrhTFZbv5kqmIXmnLPB5o,1718
79
78
  llama_cloud/types/cloud_s_3_data_source.py,sha256=8UazWcol_fg7jJ7vQiGjEeYO-1io39M_kZXtSDdJeq8,1325
80
79
  llama_cloud/types/cloud_sharepoint_data_source.py,sha256=HiPYU189GBdqCEfYKGRU-43z0eYRl5a6DffxKEi9bHI,1462
81
80
  llama_cloud/types/cloud_slack_data_source.py,sha256=dDsYcBLchGrd9xMGJqIqNBAazDwc5OJvD-07a5U0G5I,1323
82
- llama_cloud/types/cloud_weaviate_vector_store.py,sha256=fM0xPrg4eh_iO4cbMP_e6UviUGL9-qbKzMypjgunGpQ,1252
83
81
  llama_cloud/types/code_splitter.py,sha256=8MJScSxk9LzByufokcWG3AHAnOjUt13VlV2w0SCXTLc,1987
84
- llama_cloud/types/cohere_embedding.py,sha256=mOhW0M7uHNYqQnp7OM4HM89jdP9KabTLiBATrM3aSFM,1713
82
+ llama_cloud/types/cohere_embedding.py,sha256=wkv_fVCA1WEroGawzPFExwmiJ75gPfzeeemty7NBlsM,1579
85
83
  llama_cloud/types/cohere_embedding_config.py,sha256=c0Kj1wuSsBX9TQ2AondKv5ZtX5PmkivsHj6P0M7tVB4,1142
86
- llama_cloud/types/configurable_data_sink_names.py,sha256=dDFE2InjXrKeeInACYSrVMa_AOMBrODNFwA5zlSMkWk,1535
84
+ llama_cloud/types/configurable_data_sink_names.py,sha256=0Yk9i8hcNXKCcSKpa5KwsCwy_EDeodqbny7qmF86_lM,1225
87
85
  llama_cloud/types/configurable_data_source_names.py,sha256=mNW71sSgcVhU3kePAOUgRxeqK1Vo7F_J1xIzmYKPRq0,1971
88
86
  llama_cloud/types/configurable_transformation_definition.py,sha256=LDOhI5IDxlLDWM_p_xwCFM7qq1y-aGA8UxN7dnplDlU,1886
89
- llama_cloud/types/configurable_transformation_names.py,sha256=ngx3-WsZ5OMX8DXTLWMhrbRr2Bi6ZeRga6qIT63ajfc,3395
87
+ llama_cloud/types/configurable_transformation_names.py,sha256=N_YhY8IuQxsqBteCibaQwEaY0zd6Ncb6jW69d9mjrdU,1898
90
88
  llama_cloud/types/configured_transformation_item.py,sha256=9caK5ZOKgGCZc6ynJJIWwpxpScKHOHkZwHFlsBy-Fog,1826
91
- llama_cloud/types/configured_transformation_item_component.py,sha256=9DgCbWFTkzpCLmWJQDSXWgRgO84WuSbgLzVD5YpOtkE,1288
89
+ llama_cloud/types/configured_transformation_item_component.py,sha256=VEwtkbnImKGtzaSaIb9q46xu7ZPZliqK7oMh_-ftiq8,712
92
90
  llama_cloud/types/data_sink.py,sha256=-4RIM1U5wjXm1Jfl6GmAnVLIRVKcd_j-AFigvQcXliA,1426
93
- llama_cloud/types/data_sink_component.py,sha256=z_CvmivmCx1PFN77tblhRJKCi1XI2ksbJ-RYE1Iq0KM,935
91
+ llama_cloud/types/data_sink_component.py,sha256=uvuxLY3MPDpv_bkT0y-tHSZVPRSHCkDBDHVff-036Dg,749
94
92
  llama_cloud/types/data_sink_create.py,sha256=7hFoMZwd9YoP6pUjmXnzKsS1Ey5OeEQ-mIlNoh8tYAE,1288
95
- llama_cloud/types/data_sink_create_component.py,sha256=oOKgf2TdfftcrYdKXHwtyfl6JTZql0CshQJN0iwpnGE,941
93
+ llama_cloud/types/data_sink_create_component.py,sha256=8QfNKSTJV_sQ0nJxlpfh0fBkMTSnQD1DTJR8ZMYaesI,755
96
94
  llama_cloud/types/data_sink_definition.py,sha256=5ve_pq02s8szc34-wWobMe6BAPj_c7e9n9FFsfDqEQ0,1561
97
95
  llama_cloud/types/data_source.py,sha256=Qo6BZI8W2yIR6NWN1JdjBPPNbQxeUHy57nWmCBhSJe4,1626
98
96
  llama_cloud/types/data_source_component.py,sha256=yfXHoeHaqUMum7fIs3tZB0pOFMhDbAq7oCJtnob0gWY,1077
@@ -111,7 +109,6 @@ llama_cloud/types/eval_metric.py,sha256=vhO_teMLiyzBdzKpOBW8Bm9qCw2h6m3unp2XotB7
111
109
  llama_cloud/types/eval_question.py,sha256=UG042gXLw1uIW9hQOffCzIoGHVSve8Wk9ZeYGzwhHDU,1432
112
110
  llama_cloud/types/eval_question_create.py,sha256=oOwxkE5gPj8RAwgr3uuTHfTvLSXmYkkxNHqsT7oUHjI,1031
113
111
  llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQbToiVJqm41ArY,2168
114
- llama_cloud/types/extend_vertex_text_embedding.py,sha256=Vc3pPymLG6pcyw6d2QvZFF7klv3_5aw0fU5YbWbVVeo,1962
115
112
  llama_cloud/types/extraction_job.py,sha256=Y8Vp8zmWEl3m9-hy0v2EIbwfm9c2b6oGTUWw3eip_II,1260
116
113
  llama_cloud/types/extraction_result.py,sha256=A-BMKdbkObQRcKr_wxB9FoEMGhZuEvYzdp_r7bFp_48,1562
117
114
  llama_cloud/types/extraction_result_data_value.py,sha256=YwtoAi0U511CVX4L91Nx0udAT4ejV6wn0AfJOyETt-o,199
@@ -121,16 +118,16 @@ llama_cloud/types/file.py,sha256=p-9C2FIrZU1u2jB9F1v05EI3S_X0rRp0YpYWf7yWFzQ,156
121
118
  llama_cloud/types/file_resource_info_value.py,sha256=g6T6ELeLK9jgcvX6r-EuAl_4JkwnyqdS0RRoabMReSU,195
122
119
  llama_cloud/types/filter_condition.py,sha256=in8L0rP6KO3kd8rRakDjrxBZTWZen6VWVojQnZELORc,520
123
120
  llama_cloud/types/filter_operator.py,sha256=DPS9ZziC7HYNHVtaTLqWLmur6sKSSybFFEUiTpVCOgk,2220
124
- llama_cloud/types/gemini_embedding.py,sha256=k70AQu1cJTaYMo5UF-fliughF1dsMD85kD26t2gLdZg,1769
121
+ llama_cloud/types/gemini_embedding.py,sha256=n9vuxFbXt_VNuaZvp7BlkFWmGMgehpJz_ICacIafdYw,1418
125
122
  llama_cloud/types/gemini_embedding_config.py,sha256=ycLaAkl9TQgUkvdbFyrz1cYXg1Wxmf0C-THNk4LWg1s,1142
126
123
  llama_cloud/types/http_validation_error.py,sha256=iOSKYv0dJGjyIq8DAeLVKNJY-GiM1b6yiXGpXrm4QS4,1058
127
- llama_cloud/types/hugging_face_inference_api_embedding.py,sha256=TuGZtCNX2wWMTzC0l7bgaR9FAGftUNg41_DC359tVjo,2136
124
+ llama_cloud/types/hugging_face_inference_api_embedding.py,sha256=c-O87QJZHaBWl0RobjD4tMsmtJCeUOc_oTl6oHZHDYU,1887
128
125
  llama_cloud/types/hugging_face_inference_api_embedding_config.py,sha256=EFHhuPCxU0g3Jcc3k-8X-uH_OLCoRfWNbOCUpZ3Ygd4,1232
129
126
  llama_cloud/types/hugging_face_inference_api_embedding_token.py,sha256=A7-_YryBcsP4G5uRyJ9acao3XwX5-YC3NRndTeDAPj4,144
130
127
  llama_cloud/types/ingestion_error_response.py,sha256=8u0cyT44dnpkNeUKemTvJMUqi_WyPcYQKP_DMTqaFPY,1259
131
- llama_cloud/types/input_message.py,sha256=BwRnd6BJT2NglF73_qNTBrscCmRCCPvkFG_NDX1u1Bs,1279
128
+ llama_cloud/types/input_message.py,sha256=H0vsGsIo_J71d3NnHGzs7WytjEhNPzhOEDY9e_9Y_w0,1329
132
129
  llama_cloud/types/job_name_mapping.py,sha256=scAbHrxvowCE3jHRZyYr2bBE5wvMMdBw7zpQ-lp5dY0,1433
133
- llama_cloud/types/llama_parse_parameters.py,sha256=lmq9ap1viL2p4HgPgRZid4s3cOAVmfq6o969JU9v5bA,2398
130
+ llama_cloud/types/llama_parse_parameters.py,sha256=DoG4u2ZOemavuCMNWxwryGDFfAk-6z-y0Afr_0B19Yo,2595
134
131
  llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9FbsH50mGBUiyWTIXQjHFl739uAyaQw,11207
135
132
  llama_cloud/types/llm.py,sha256=v5a7Cq4oSUh3LYYIpECOpV0llDVP7XbFvdlxsIXnmhI,2197
136
133
  llama_cloud/types/llm_model_data.py,sha256=QgyFe03psw5Aon3w1LC6ovCa1o9MVNcaGcmpapw-4D0,1263
@@ -154,7 +151,7 @@ llama_cloud/types/node_relationship.py,sha256=2e2PqWm0LOTiImvtsyiuaAPNIl0BItjSrQ
154
151
  llama_cloud/types/none_chunking_config.py,sha256=D062t314Vp-s4n9h8wNgsYfElI4PonPKmihvjEmaqdA,952
155
152
  llama_cloud/types/none_segmentation_config.py,sha256=j3jUA6E8uFtwDMEu4TFG3Q4ZGCGiuUfUW9AMO1NNqXU,956
156
153
  llama_cloud/types/object_type.py,sha256=oYzizJl4Z5IS5lyhG5UHEAQMmjN9ZYEp27nS7uJwLuE,699
157
- llama_cloud/types/open_ai_embedding.py,sha256=FJqIqe4cmOjy-NHf9T6vo6iCbxiDzFviirVRYxUhGRE,2768
154
+ llama_cloud/types/open_ai_embedding.py,sha256=RQijkvKyzbISy92LnBSEpjmIU8p7kMpdc4sdx5-btrM,2042
158
155
  llama_cloud/types/open_ai_embedding_config.py,sha256=Mquc0JrtCo8lVYA2WW7q0ZikS3HRkiMtzDFu5XA-20o,1143
159
156
  llama_cloud/types/organization.py,sha256=WI37HYVLsqf8ljT5ZcWUBIex7br6ZSzHUMpqCIHdSNA,1223
160
157
  llama_cloud/types/organization_create.py,sha256=hUXRwArIx_0D_lilpL7z-B0oJJ5yEX8Sbu2xqfH_9so,1086
@@ -218,9 +215,10 @@ llama_cloud/types/user_organization_create.py,sha256=bxm6mLTu-gOgiw4L_o-fwZYz27q
218
215
  llama_cloud/types/user_organization_delete.py,sha256=IDYLKfFAXfcJfkEpA0ARbaA0JDcEBe7fTLv833DZXHs,1104
219
216
  llama_cloud/types/validation_error.py,sha256=yZDLtjUHDY5w82Ra6CW0H9sLAr18R0RY1UNgJKR72DQ,1084
220
217
  llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPXjdtN9EB7HrLVo6EP0,128
221
- llama_cloud/types/vertex_ai_embedding_config.py,sha256=Xzn_S19D7daVUhJ86f-O4ILh1tizAj1CuIC4KAn6IUU,1178
218
+ llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
222
219
  llama_cloud/types/vertex_embedding_mode.py,sha256=AkoY7nzOF5MHb4bCnEy-FJol7WxFNBLcQ8PHHtBWH_o,1605
223
- llama_cloud-0.1.0.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
224
- llama_cloud-0.1.0.dist-info/METADATA,sha256=QaD1H3y5-YfczbbQcHP-nkGr9PMfZOYFWb64u_zUCDw,750
225
- llama_cloud-0.1.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
226
- llama_cloud-0.1.0.dist-info/RECORD,,
220
+ llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
221
+ llama_cloud-0.1.1.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
222
+ llama_cloud-0.1.1.dist-info/METADATA,sha256=YB7klRrfxoZYnluP2wVXhhMIt28M0jcP4mkMpB9QaHo,750
223
+ llama_cloud-0.1.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
224
+ llama_cloud-0.1.1.dist-info/RECORD,,
@@ -1,39 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class CloudChromaVectorStore(pydantic.BaseModel):
18
- supports_nested_metadata_filters: typing.Optional[bool]
19
- collection_name: typing.Optional[str]
20
- host: typing.Optional[str]
21
- port: typing.Optional[str]
22
- ssl: bool
23
- headers: typing.Optional[typing.Dict[str, typing.Optional[str]]]
24
- persist_dir: typing.Optional[str]
25
- collection_kwargs: typing.Optional[typing.Dict[str, typing.Any]]
26
- class_name: typing.Optional[str]
27
-
28
- def json(self, **kwargs: typing.Any) -> str:
29
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
- return super().json(**kwargs_with_defaults)
31
-
32
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
33
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
34
- return super().dict(**kwargs_with_defaults)
35
-
36
- class Config:
37
- frozen = True
38
- smart_union = True
39
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,37 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
-
8
- try:
9
- import pydantic
10
- if pydantic.__version__.startswith("1."):
11
- raise ImportError
12
- import pydantic.v1 as pydantic # type: ignore
13
- except ImportError:
14
- import pydantic # type: ignore
15
-
16
-
17
- class CloudWeaviateVectorStore(pydantic.BaseModel):
18
- supports_nested_metadata_filters: typing.Optional[bool]
19
- index_name: str
20
- url: typing.Optional[str]
21
- text_key: str
22
- auth_config: typing.Optional[typing.Dict[str, typing.Any]]
23
- client_kwargs: typing.Optional[typing.Dict[str, typing.Any]]
24
- class_name: typing.Optional[str]
25
-
26
- def json(self, **kwargs: typing.Any) -> str:
27
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
- return super().json(**kwargs_with_defaults)
29
-
30
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
- return super().dict(**kwargs_with_defaults)
33
-
34
- class Config:
35
- frozen = True
36
- smart_union = True
37
- json_encoders = {dt.datetime: serialize_datetime}