llama-cloud 0.0.9__py3-none-any.whl → 0.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +22 -2
- llama_cloud/resources/__init__.py +2 -1
- llama_cloud/resources/data_sources/types/data_source_update_component_one.py +2 -0
- llama_cloud/resources/extraction/__init__.py +2 -2
- llama_cloud/resources/extraction/client.py +172 -48
- llama_cloud/resources/extraction/types/__init__.py +2 -1
- llama_cloud/resources/extraction/types/extraction_schema_create_data_schema_value.py +7 -0
- llama_cloud/resources/organizations/client.py +81 -0
- llama_cloud/resources/parsing/client.py +104 -0
- llama_cloud/resources/pipelines/client.py +315 -43
- llama_cloud/types/__init__.py +20 -2
- llama_cloud/types/auto_transform_config.py +32 -0
- llama_cloud/types/{chat_params.py → chat_data.py} +3 -3
- llama_cloud/types/cloud_azure_ai_search_vector_store.py +1 -1
- llama_cloud/types/cloud_confluence_data_source.py +45 -0
- llama_cloud/types/configurable_data_source_names.py +4 -0
- llama_cloud/types/data_source_component_one.py +2 -0
- llama_cloud/types/data_source_create_component_one.py +2 -0
- llama_cloud/types/embedding_config.py +36 -0
- llama_cloud/types/embedding_config_component.py +19 -0
- llama_cloud/types/embedding_config_type.py +41 -0
- llama_cloud/types/extraction_job.py +35 -0
- llama_cloud/types/extraction_schema.py +1 -1
- llama_cloud/types/llama_parse_parameters.py +5 -0
- llama_cloud/types/pipeline.py +0 -3
- llama_cloud/types/pipeline_create.py +8 -3
- llama_cloud/types/pipeline_data_source_component_one.py +2 -0
- llama_cloud/types/transform_config.py +36 -0
- llama_cloud/types/transform_config_mode.py +21 -0
- llama_cloud/types/user_organization.py +10 -1
- llama_cloud/types/user_organization_delete.py +36 -0
- {llama_cloud-0.0.9.dist-info → llama_cloud-0.0.11.dist-info}/METADATA +1 -1
- {llama_cloud-0.0.9.dist-info → llama_cloud-0.0.11.dist-info}/RECORD +35 -25
- {llama_cloud-0.0.9.dist-info → llama_cloud-0.0.11.dist-info}/WHEEL +1 -1
- {llama_cloud-0.0.9.dist-info → llama_cloud-0.0.11.dist-info}/LICENSE +0 -0
llama_cloud/types/__init__.py
CHANGED
|
@@ -1,14 +1,16 @@
|
|
|
1
1
|
# This file was auto-generated by Fern from our API Definition.
|
|
2
2
|
|
|
3
|
+
from .auto_transform_config import AutoTransformConfig
|
|
3
4
|
from .azure_open_ai_embedding import AzureOpenAiEmbedding
|
|
4
5
|
from .base import Base
|
|
5
6
|
from .base_prompt_template import BasePromptTemplate
|
|
6
7
|
from .bedrock_embedding import BedrockEmbedding
|
|
8
|
+
from .chat_data import ChatData
|
|
7
9
|
from .chat_message import ChatMessage
|
|
8
|
-
from .chat_params import ChatParams
|
|
9
10
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
10
11
|
from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
11
12
|
from .cloud_chroma_vector_store import CloudChromaVectorStore
|
|
13
|
+
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
12
14
|
from .cloud_document import CloudDocument
|
|
13
15
|
from .cloud_document_create import CloudDocumentCreate
|
|
14
16
|
from .cloud_jira_data_source import CloudJiraDataSource
|
|
@@ -46,6 +48,9 @@ from .data_source_create_component_one import DataSourceCreateComponentOne
|
|
|
46
48
|
from .data_source_create_custom_metadata_value import DataSourceCreateCustomMetadataValue
|
|
47
49
|
from .data_source_custom_metadata_value import DataSourceCustomMetadataValue
|
|
48
50
|
from .data_source_definition import DataSourceDefinition
|
|
51
|
+
from .embedding_config import EmbeddingConfig
|
|
52
|
+
from .embedding_config_component import EmbeddingConfigComponent
|
|
53
|
+
from .embedding_config_type import EmbeddingConfigType
|
|
49
54
|
from .eval_dataset import EvalDataset
|
|
50
55
|
from .eval_dataset_job_params import EvalDatasetJobParams
|
|
51
56
|
from .eval_dataset_job_record import EvalDatasetJobRecord
|
|
@@ -55,6 +60,7 @@ from .eval_llm_model_data import EvalLlmModelData
|
|
|
55
60
|
from .eval_question import EvalQuestion
|
|
56
61
|
from .eval_question_create import EvalQuestionCreate
|
|
57
62
|
from .eval_question_result import EvalQuestionResult
|
|
63
|
+
from .extraction_job import ExtractionJob
|
|
58
64
|
from .extraction_result import ExtractionResult
|
|
59
65
|
from .extraction_result_data_value import ExtractionResultDataValue
|
|
60
66
|
from .extraction_schema import ExtractionSchema
|
|
@@ -131,22 +137,27 @@ from .text_node import TextNode
|
|
|
131
137
|
from .text_node_relationships_value import TextNodeRelationshipsValue
|
|
132
138
|
from .text_node_with_score import TextNodeWithScore
|
|
133
139
|
from .token_text_splitter import TokenTextSplitter
|
|
140
|
+
from .transform_config import TransformConfig
|
|
141
|
+
from .transform_config_mode import TransformConfigMode
|
|
134
142
|
from .transformation_category_names import TransformationCategoryNames
|
|
135
143
|
from .user_organization import UserOrganization
|
|
136
144
|
from .user_organization_create import UserOrganizationCreate
|
|
145
|
+
from .user_organization_delete import UserOrganizationDelete
|
|
137
146
|
from .validation_error import ValidationError
|
|
138
147
|
from .validation_error_loc_item import ValidationErrorLocItem
|
|
139
148
|
|
|
140
149
|
__all__ = [
|
|
150
|
+
"AutoTransformConfig",
|
|
141
151
|
"AzureOpenAiEmbedding",
|
|
142
152
|
"Base",
|
|
143
153
|
"BasePromptTemplate",
|
|
144
154
|
"BedrockEmbedding",
|
|
155
|
+
"ChatData",
|
|
145
156
|
"ChatMessage",
|
|
146
|
-
"ChatParams",
|
|
147
157
|
"CloudAzStorageBlobDataSource",
|
|
148
158
|
"CloudAzureAiSearchVectorStore",
|
|
149
159
|
"CloudChromaVectorStore",
|
|
160
|
+
"CloudConfluenceDataSource",
|
|
150
161
|
"CloudDocument",
|
|
151
162
|
"CloudDocumentCreate",
|
|
152
163
|
"CloudJiraDataSource",
|
|
@@ -184,6 +195,9 @@ __all__ = [
|
|
|
184
195
|
"DataSourceCreateCustomMetadataValue",
|
|
185
196
|
"DataSourceCustomMetadataValue",
|
|
186
197
|
"DataSourceDefinition",
|
|
198
|
+
"EmbeddingConfig",
|
|
199
|
+
"EmbeddingConfigComponent",
|
|
200
|
+
"EmbeddingConfigType",
|
|
187
201
|
"EvalDataset",
|
|
188
202
|
"EvalDatasetJobParams",
|
|
189
203
|
"EvalDatasetJobRecord",
|
|
@@ -193,6 +207,7 @@ __all__ = [
|
|
|
193
207
|
"EvalQuestion",
|
|
194
208
|
"EvalQuestionCreate",
|
|
195
209
|
"EvalQuestionResult",
|
|
210
|
+
"ExtractionJob",
|
|
196
211
|
"ExtractionResult",
|
|
197
212
|
"ExtractionResultDataValue",
|
|
198
213
|
"ExtractionSchema",
|
|
@@ -269,9 +284,12 @@ __all__ = [
|
|
|
269
284
|
"TextNodeRelationshipsValue",
|
|
270
285
|
"TextNodeWithScore",
|
|
271
286
|
"TokenTextSplitter",
|
|
287
|
+
"TransformConfig",
|
|
288
|
+
"TransformConfigMode",
|
|
272
289
|
"TransformationCategoryNames",
|
|
273
290
|
"UserOrganization",
|
|
274
291
|
"UserOrganizationCreate",
|
|
292
|
+
"UserOrganizationDelete",
|
|
275
293
|
"ValidationError",
|
|
276
294
|
"ValidationErrorLocItem",
|
|
277
295
|
]
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class AutoTransformConfig(pydantic.BaseModel):
|
|
18
|
+
chunk_size: typing.Optional[int] = pydantic.Field(description="Chunk size for the transformation.")
|
|
19
|
+
chunk_overlap: typing.Optional[int] = pydantic.Field(description="Chunk overlap for the transformation.")
|
|
20
|
+
|
|
21
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
23
|
+
return super().json(**kwargs_with_defaults)
|
|
24
|
+
|
|
25
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().dict(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
class Config:
|
|
30
|
+
frozen = True
|
|
31
|
+
smart_union = True
|
|
32
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -4,7 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
7
|
+
from .preset_retrieval_params import PresetRetrievalParams
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
import pydantic
|
|
@@ -15,13 +15,13 @@ except ImportError:
|
|
|
15
15
|
import pydantic # type: ignore
|
|
16
16
|
|
|
17
17
|
|
|
18
|
-
class
|
|
18
|
+
class ChatData(pydantic.BaseModel):
|
|
19
19
|
"""
|
|
20
20
|
Base schema model for BaseComponent classes used in the platform.
|
|
21
21
|
Comes with special serialization logic for types used commonly in platform codebase.
|
|
22
22
|
"""
|
|
23
23
|
|
|
24
|
-
|
|
24
|
+
retrieval_parameters: PresetRetrievalParams
|
|
25
25
|
class_name: typing.Optional[str]
|
|
26
26
|
|
|
27
27
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -24,7 +24,7 @@ class CloudAzureAiSearchVectorStore(pydantic.BaseModel):
|
|
|
24
24
|
search_service_endpoint: str
|
|
25
25
|
search_service_api_version: typing.Optional[str]
|
|
26
26
|
index_name: typing.Optional[str]
|
|
27
|
-
filterable_metadata_field_keys: typing.Optional[typing.
|
|
27
|
+
filterable_metadata_field_keys: typing.Optional[typing.Dict[str, typing.Any]]
|
|
28
28
|
embedding_dimension: typing.Optional[int]
|
|
29
29
|
class_name: typing.Optional[str]
|
|
30
30
|
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class CloudConfluenceDataSource(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Base component object to capture class names.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
server_url: str = pydantic.Field(description="The server URL of the Confluence instance.")
|
|
23
|
+
authentication_mechanism: str = pydantic.Field(
|
|
24
|
+
description="Type of Authentication for connecting to Confluence APIs."
|
|
25
|
+
)
|
|
26
|
+
user_name: typing.Optional[str] = pydantic.Field(description="The username to use for authentication.")
|
|
27
|
+
api_token: typing.Optional[str] = pydantic.Field(description="The API token to use for authentication.")
|
|
28
|
+
space_key: typing.Optional[str] = pydantic.Field(description="The space key to read from.")
|
|
29
|
+
page_ids: typing.Optional[str] = pydantic.Field(description="The page IDs of the Confluence to read from.")
|
|
30
|
+
cql: typing.Optional[str] = pydantic.Field(description="The CQL query to use for fetching pages.")
|
|
31
|
+
label: typing.Optional[str] = pydantic.Field(description="The label to use for fetching pages.")
|
|
32
|
+
class_name: typing.Optional[str]
|
|
33
|
+
|
|
34
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
35
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
36
|
+
return super().json(**kwargs_with_defaults)
|
|
37
|
+
|
|
38
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
39
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
40
|
+
return super().dict(**kwargs_with_defaults)
|
|
41
|
+
|
|
42
|
+
class Config:
|
|
43
|
+
frozen = True
|
|
44
|
+
smart_union = True
|
|
45
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -17,6 +17,7 @@ class ConfigurableDataSourceNames(str, enum.Enum):
|
|
|
17
17
|
MICROSOFT_SHAREPOINT = "MICROSOFT_SHAREPOINT"
|
|
18
18
|
SLACK = "SLACK"
|
|
19
19
|
NOTION_PAGE = "NOTION_PAGE"
|
|
20
|
+
CONFLUENCE = "CONFLUENCE"
|
|
20
21
|
JIRA = "JIRA"
|
|
21
22
|
|
|
22
23
|
def visit(
|
|
@@ -27,6 +28,7 @@ class ConfigurableDataSourceNames(str, enum.Enum):
|
|
|
27
28
|
microsoft_sharepoint: typing.Callable[[], T_Result],
|
|
28
29
|
slack: typing.Callable[[], T_Result],
|
|
29
30
|
notion_page: typing.Callable[[], T_Result],
|
|
31
|
+
confluence: typing.Callable[[], T_Result],
|
|
30
32
|
jira: typing.Callable[[], T_Result],
|
|
31
33
|
) -> T_Result:
|
|
32
34
|
if self is ConfigurableDataSourceNames.S_3:
|
|
@@ -41,5 +43,7 @@ class ConfigurableDataSourceNames(str, enum.Enum):
|
|
|
41
43
|
return slack()
|
|
42
44
|
if self is ConfigurableDataSourceNames.NOTION_PAGE:
|
|
43
45
|
return notion_page()
|
|
46
|
+
if self is ConfigurableDataSourceNames.CONFLUENCE:
|
|
47
|
+
return confluence()
|
|
44
48
|
if self is ConfigurableDataSourceNames.JIRA:
|
|
45
49
|
return jira()
|
|
@@ -3,6 +3,7 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
6
7
|
from .cloud_jira_data_source import CloudJiraDataSource
|
|
7
8
|
from .cloud_notion_page_data_source import CloudNotionPageDataSource
|
|
8
9
|
from .cloud_one_drive_data_source import CloudOneDriveDataSource
|
|
@@ -17,5 +18,6 @@ DataSourceComponentOne = typing.Union[
|
|
|
17
18
|
CloudSharepointDataSource,
|
|
18
19
|
CloudSlackDataSource,
|
|
19
20
|
CloudNotionPageDataSource,
|
|
21
|
+
CloudConfluenceDataSource,
|
|
20
22
|
CloudJiraDataSource,
|
|
21
23
|
]
|
|
@@ -3,6 +3,7 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
6
7
|
from .cloud_jira_data_source import CloudJiraDataSource
|
|
7
8
|
from .cloud_notion_page_data_source import CloudNotionPageDataSource
|
|
8
9
|
from .cloud_one_drive_data_source import CloudOneDriveDataSource
|
|
@@ -17,5 +18,6 @@ DataSourceCreateComponentOne = typing.Union[
|
|
|
17
18
|
CloudSharepointDataSource,
|
|
18
19
|
CloudSlackDataSource,
|
|
19
20
|
CloudNotionPageDataSource,
|
|
21
|
+
CloudConfluenceDataSource,
|
|
20
22
|
CloudJiraDataSource,
|
|
21
23
|
]
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .embedding_config_component import EmbeddingConfigComponent
|
|
8
|
+
from .embedding_config_type import EmbeddingConfigType
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class EmbeddingConfig(pydantic.BaseModel):
|
|
20
|
+
type: typing.Optional[EmbeddingConfigType] = pydantic.Field(description="Type of the embedding model.")
|
|
21
|
+
component: typing.Optional[EmbeddingConfigComponent] = pydantic.Field(
|
|
22
|
+
description="Configuration for the transformation."
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from .azure_open_ai_embedding import AzureOpenAiEmbedding
|
|
6
|
+
from .bedrock_embedding import BedrockEmbedding
|
|
7
|
+
from .cohere_embedding import CohereEmbedding
|
|
8
|
+
from .gemini_embedding import GeminiEmbedding
|
|
9
|
+
from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
|
|
10
|
+
from .open_ai_embedding import OpenAiEmbedding
|
|
11
|
+
|
|
12
|
+
EmbeddingConfigComponent = typing.Union[
|
|
13
|
+
OpenAiEmbedding,
|
|
14
|
+
AzureOpenAiEmbedding,
|
|
15
|
+
BedrockEmbedding,
|
|
16
|
+
CohereEmbedding,
|
|
17
|
+
GeminiEmbedding,
|
|
18
|
+
HuggingFaceInferenceApiEmbedding,
|
|
19
|
+
]
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class EmbeddingConfigType(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
An enumeration.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
OPENAI_EMBEDDING = "OPENAI_EMBEDDING"
|
|
15
|
+
AZURE_EMBEDDING = "AZURE_EMBEDDING"
|
|
16
|
+
BEDROCK_EMBEDDING = "BEDROCK_EMBEDDING"
|
|
17
|
+
COHERE_EMBEDDING = "COHERE_EMBEDDING"
|
|
18
|
+
GEMINI_EMBEDDING = "GEMINI_EMBEDDING"
|
|
19
|
+
HUGGINGFACE_API_EMBEDDING = "HUGGINGFACE_API_EMBEDDING"
|
|
20
|
+
|
|
21
|
+
def visit(
|
|
22
|
+
self,
|
|
23
|
+
openai_embedding: typing.Callable[[], T_Result],
|
|
24
|
+
azure_embedding: typing.Callable[[], T_Result],
|
|
25
|
+
bedrock_embedding: typing.Callable[[], T_Result],
|
|
26
|
+
cohere_embedding: typing.Callable[[], T_Result],
|
|
27
|
+
gemini_embedding: typing.Callable[[], T_Result],
|
|
28
|
+
huggingface_api_embedding: typing.Callable[[], T_Result],
|
|
29
|
+
) -> T_Result:
|
|
30
|
+
if self is EmbeddingConfigType.OPENAI_EMBEDDING:
|
|
31
|
+
return openai_embedding()
|
|
32
|
+
if self is EmbeddingConfigType.AZURE_EMBEDDING:
|
|
33
|
+
return azure_embedding()
|
|
34
|
+
if self is EmbeddingConfigType.BEDROCK_EMBEDDING:
|
|
35
|
+
return bedrock_embedding()
|
|
36
|
+
if self is EmbeddingConfigType.COHERE_EMBEDDING:
|
|
37
|
+
return cohere_embedding()
|
|
38
|
+
if self is EmbeddingConfigType.GEMINI_EMBEDDING:
|
|
39
|
+
return gemini_embedding()
|
|
40
|
+
if self is EmbeddingConfigType.HUGGINGFACE_API_EMBEDDING:
|
|
41
|
+
return huggingface_api_embedding()
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .file import File
|
|
8
|
+
from .status_enum import StatusEnum
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class ExtractionJob(pydantic.BaseModel):
|
|
20
|
+
id: str = pydantic.Field(description="The id of the extraction job")
|
|
21
|
+
status: StatusEnum = pydantic.Field(description="The status of the extraction job")
|
|
22
|
+
file: File = pydantic.Field(description="The file that the extract was extracted from")
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -25,7 +25,7 @@ class ExtractionSchema(pydantic.BaseModel):
|
|
|
25
25
|
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
26
26
|
name: str = pydantic.Field(description="The name of the extraction schema")
|
|
27
27
|
project_id: str = pydantic.Field(description="The ID of the project that the extraction schema belongs to")
|
|
28
|
-
data_schema: typing.Dict[str, ExtractionSchemaDataSchemaValue] = pydantic.Field(
|
|
28
|
+
data_schema: typing.Optional[typing.Dict[str, ExtractionSchemaDataSchemaValue]] = pydantic.Field(
|
|
29
29
|
description="The schema of the data"
|
|
30
30
|
)
|
|
31
31
|
|
|
@@ -33,6 +33,11 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
33
33
|
page_separator: typing.Optional[str]
|
|
34
34
|
bounding_box: typing.Optional[str]
|
|
35
35
|
target_pages: typing.Optional[str]
|
|
36
|
+
use_vendor_multimodal_model: typing.Optional[str]
|
|
37
|
+
vendor_multimodal_model_name: typing.Optional[str]
|
|
38
|
+
vendor_multimodal_api_key: typing.Optional[str]
|
|
39
|
+
page_prefix: typing.Optional[str]
|
|
40
|
+
page_suffix: typing.Optional[str]
|
|
36
41
|
|
|
37
42
|
def json(self, **kwargs: typing.Any) -> str:
|
|
38
43
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/pipeline.py
CHANGED
|
@@ -43,9 +43,6 @@ class Pipeline(pydantic.BaseModel):
|
|
|
43
43
|
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
44
44
|
description="Eval parameters for the pipeline."
|
|
45
45
|
)
|
|
46
|
-
llama_parse_enabled: typing.Optional[bool] = pydantic.Field(
|
|
47
|
-
description="Whether to use LlamaParse during pipeline execution."
|
|
48
|
-
)
|
|
49
46
|
llama_parse_parameters: typing.Optional[LlamaParseParameters] = pydantic.Field(
|
|
50
47
|
description="Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline."
|
|
51
48
|
)
|
|
@@ -6,10 +6,12 @@ import typing
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .configured_transformation_item import ConfiguredTransformationItem
|
|
8
8
|
from .data_sink_create import DataSinkCreate
|
|
9
|
+
from .embedding_config import EmbeddingConfig
|
|
9
10
|
from .eval_execution_params import EvalExecutionParams
|
|
10
11
|
from .llama_parse_parameters import LlamaParseParameters
|
|
11
12
|
from .pipeline_type import PipelineType
|
|
12
13
|
from .preset_retrieval_params import PresetRetrievalParams
|
|
14
|
+
from .transform_config import TransformConfig
|
|
13
15
|
|
|
14
16
|
try:
|
|
15
17
|
import pydantic
|
|
@@ -25,6 +27,12 @@ class PipelineCreate(pydantic.BaseModel):
|
|
|
25
27
|
Schema for creating a pipeline.
|
|
26
28
|
"""
|
|
27
29
|
|
|
30
|
+
embedding_config: typing.Optional[EmbeddingConfig] = pydantic.Field(
|
|
31
|
+
description="Configuration for the embedding model."
|
|
32
|
+
)
|
|
33
|
+
transform_config: typing.Optional[TransformConfig] = pydantic.Field(
|
|
34
|
+
description="Configuration for the transformation."
|
|
35
|
+
)
|
|
28
36
|
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = pydantic.Field(
|
|
29
37
|
description="List of configured transformations."
|
|
30
38
|
)
|
|
@@ -40,9 +48,6 @@ class PipelineCreate(pydantic.BaseModel):
|
|
|
40
48
|
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
41
49
|
description="Eval parameters for the pipeline."
|
|
42
50
|
)
|
|
43
|
-
llama_parse_enabled: typing.Optional[bool] = pydantic.Field(
|
|
44
|
-
description="Whether to use LlamaParse during pipeline execution."
|
|
45
|
-
)
|
|
46
51
|
llama_parse_parameters: typing.Optional[LlamaParseParameters] = pydantic.Field(
|
|
47
52
|
description="Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline."
|
|
48
53
|
)
|
|
@@ -3,6 +3,7 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
6
7
|
from .cloud_jira_data_source import CloudJiraDataSource
|
|
7
8
|
from .cloud_notion_page_data_source import CloudNotionPageDataSource
|
|
8
9
|
from .cloud_one_drive_data_source import CloudOneDriveDataSource
|
|
@@ -17,5 +18,6 @@ PipelineDataSourceComponentOne = typing.Union[
|
|
|
17
18
|
CloudSharepointDataSource,
|
|
18
19
|
CloudSlackDataSource,
|
|
19
20
|
CloudNotionPageDataSource,
|
|
21
|
+
CloudConfluenceDataSource,
|
|
20
22
|
CloudJiraDataSource,
|
|
21
23
|
]
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .auto_transform_config import AutoTransformConfig
|
|
8
|
+
from .transform_config_mode import TransformConfigMode
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class TransformConfig(pydantic.BaseModel):
|
|
20
|
+
mode: typing.Optional[TransformConfigMode] = pydantic.Field(
|
|
21
|
+
description="Mode for the transformation configuration."
|
|
22
|
+
)
|
|
23
|
+
config: typing.Optional[AutoTransformConfig] = pydantic.Field(description="Configuration for the transformation.")
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class TransformConfigMode(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
An enumeration.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
AUTO = "AUTO"
|
|
15
|
+
ADVANCED = "ADVANCED"
|
|
16
|
+
|
|
17
|
+
def visit(self, auto: typing.Callable[[], T_Result], advanced: typing.Callable[[], T_Result]) -> T_Result:
|
|
18
|
+
if self is TransformConfigMode.AUTO:
|
|
19
|
+
return auto()
|
|
20
|
+
if self is TransformConfigMode.ADVANCED:
|
|
21
|
+
return advanced()
|
|
@@ -23,8 +23,17 @@ class UserOrganization(pydantic.BaseModel):
|
|
|
23
23
|
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
24
24
|
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
25
25
|
email: str = pydantic.Field(description="The user's email address.")
|
|
26
|
-
user_id: str = pydantic.Field(description="The user's ID.")
|
|
26
|
+
user_id: typing.Optional[str] = pydantic.Field(description="The user's ID.")
|
|
27
27
|
organization_id: str = pydantic.Field(description="The organization's ID.")
|
|
28
|
+
pending: typing.Optional[bool] = pydantic.Field(
|
|
29
|
+
description="Whether the user's membership is pending account signup."
|
|
30
|
+
)
|
|
31
|
+
invited_by_user_id: typing.Optional[str] = pydantic.Field(
|
|
32
|
+
description="The user ID of the user who added the user to the organization."
|
|
33
|
+
)
|
|
34
|
+
invited_by_user_email: typing.Optional[str] = pydantic.Field(
|
|
35
|
+
description="The email address of the user who added the user to the organization."
|
|
36
|
+
)
|
|
28
37
|
|
|
29
38
|
def json(self, **kwargs: typing.Any) -> str:
|
|
30
39
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class UserOrganizationDelete(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Schema for deleting a user's membership to an organization.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
user_id: typing.Optional[str] = pydantic.Field(description="The user's ID.")
|
|
23
|
+
email: typing.Optional[str] = pydantic.Field(description="The user's email address.")
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|