llama-cloud 0.0.17__py3-none-any.whl → 0.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +8 -36
- llama_cloud/client.py +0 -3
- llama_cloud/resources/__init__.py +2 -10
- llama_cloud/resources/data_sinks/__init__.py +2 -2
- llama_cloud/resources/data_sinks/client.py +8 -8
- llama_cloud/resources/data_sinks/types/__init__.py +1 -2
- llama_cloud/resources/data_sinks/types/data_sink_update_component.py +15 -2
- llama_cloud/resources/data_sources/__init__.py +2 -2
- llama_cloud/resources/data_sources/client.py +6 -6
- llama_cloud/resources/data_sources/types/__init__.py +1 -2
- llama_cloud/resources/data_sources/types/data_source_update_component.py +23 -2
- llama_cloud/resources/extraction/client.py +14 -14
- llama_cloud/resources/files/client.py +10 -10
- llama_cloud/resources/organizations/client.py +2 -2
- llama_cloud/resources/parsing/client.py +100 -60
- llama_cloud/resources/pipelines/__init__.py +0 -4
- llama_cloud/resources/pipelines/client.py +50 -340
- llama_cloud/resources/pipelines/types/__init__.py +1 -7
- llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py +15 -15
- llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py +1 -24
- llama_cloud/types/__init__.py +9 -29
- llama_cloud/types/azure_open_ai_embedding.py +7 -39
- llama_cloud/types/base_prompt_template.py +3 -14
- llama_cloud/types/bedrock_embedding.py +7 -20
- llama_cloud/types/box_auth_mechanism.py +0 -4
- llama_cloud/types/character_splitter.py +3 -4
- llama_cloud/types/chat_data.py +0 -5
- llama_cloud/types/chat_message.py +1 -6
- llama_cloud/types/cloud_az_storage_blob_data_source.py +7 -18
- llama_cloud/types/cloud_box_data_source.py +6 -16
- llama_cloud/types/cloud_confluence_data_source.py +6 -10
- llama_cloud/types/cloud_document.py +1 -3
- llama_cloud/types/cloud_document_create.py +1 -3
- llama_cloud/types/cloud_google_drive_data_source.py +0 -4
- llama_cloud/types/cloud_jira_data_source.py +4 -6
- llama_cloud/types/cloud_notion_page_data_source.py +2 -6
- llama_cloud/types/cloud_one_drive_data_source.py +2 -6
- llama_cloud/types/cloud_pinecone_vector_store.py +1 -1
- llama_cloud/types/cloud_postgres_vector_store.py +0 -4
- llama_cloud/types/cloud_s_3_data_source.py +4 -12
- llama_cloud/types/cloud_sharepoint_data_source.py +5 -9
- llama_cloud/types/cloud_slack_data_source.py +6 -10
- llama_cloud/types/code_splitter.py +2 -1
- llama_cloud/types/cohere_embedding.py +6 -15
- llama_cloud/types/configurable_data_sink_names.py +0 -12
- llama_cloud/types/configurable_data_source_names.py +0 -4
- llama_cloud/types/configurable_transformation_names.py +0 -32
- llama_cloud/types/configured_transformation_item_component.py +15 -2
- llama_cloud/types/data_sink.py +2 -2
- llama_cloud/types/data_sink_component.py +15 -2
- llama_cloud/types/data_sink_create_component.py +15 -2
- llama_cloud/types/data_source.py +3 -5
- llama_cloud/types/data_source_component.py +23 -2
- llama_cloud/types/data_source_create.py +1 -3
- llama_cloud/types/data_source_create_component.py +23 -2
- llama_cloud/types/eval_dataset.py +2 -2
- llama_cloud/types/eval_dataset_job_record.py +7 -13
- llama_cloud/types/eval_execution_params_override.py +2 -6
- llama_cloud/types/eval_metric.py +17 -0
- llama_cloud/types/eval_question.py +2 -6
- llama_cloud/types/extraction_result.py +5 -3
- llama_cloud/types/extraction_schema.py +3 -5
- llama_cloud/types/file.py +7 -11
- llama_cloud/types/gemini_embedding.py +7 -22
- llama_cloud/types/hugging_face_inference_api_embedding.py +9 -34
- llama_cloud/types/input_message.py +2 -4
- llama_cloud/types/llama_parse_parameters.py +5 -0
- llama_cloud/types/llama_parse_supported_file_extensions.py +0 -4
- llama_cloud/types/llm.py +9 -8
- llama_cloud/types/llm_parameters.py +2 -7
- llama_cloud/types/local_eval.py +8 -10
- llama_cloud/types/local_eval_results.py +1 -1
- llama_cloud/types/managed_ingestion_status_response.py +3 -5
- llama_cloud/types/markdown_element_node_parser.py +4 -5
- llama_cloud/types/markdown_node_parser.py +2 -1
- llama_cloud/types/message_annotation.py +1 -6
- llama_cloud/types/metric_result.py +3 -3
- llama_cloud/types/node_parser.py +2 -1
- llama_cloud/types/node_relationship.py +44 -0
- llama_cloud/types/object_type.py +0 -4
- llama_cloud/types/open_ai_embedding.py +7 -36
- llama_cloud/types/organization.py +2 -2
- llama_cloud/types/page_splitter_node_parser.py +3 -2
- llama_cloud/types/parsing_job_json_result.py +2 -2
- llama_cloud/types/parsing_job_markdown_result.py +1 -1
- llama_cloud/types/parsing_job_text_result.py +1 -1
- llama_cloud/types/partition_names.py +45 -0
- llama_cloud/types/pipeline.py +7 -17
- llama_cloud/types/pipeline_configuration_hashes.py +3 -3
- llama_cloud/types/pipeline_create.py +6 -18
- llama_cloud/types/pipeline_create_embedding_config.py +15 -15
- llama_cloud/types/pipeline_create_transform_config.py +1 -24
- llama_cloud/types/pipeline_data_source.py +5 -11
- llama_cloud/types/pipeline_data_source_component.py +23 -2
- llama_cloud/types/pipeline_data_source_create.py +1 -3
- llama_cloud/types/pipeline_deployment.py +4 -8
- llama_cloud/types/pipeline_embedding_config.py +15 -15
- llama_cloud/types/pipeline_file.py +10 -18
- llama_cloud/types/pipeline_file_create.py +1 -3
- llama_cloud/types/playground_session.py +2 -2
- llama_cloud/types/preset_retrieval_params.py +8 -11
- llama_cloud/types/presigned_url.py +1 -3
- llama_cloud/types/project.py +2 -2
- llama_cloud/types/prompt_mixin_prompts.py +1 -1
- llama_cloud/types/prompt_spec.py +2 -4
- llama_cloud/types/related_node_info.py +0 -4
- llama_cloud/types/retrieval_mode.py +0 -4
- llama_cloud/types/sentence_splitter.py +3 -4
- llama_cloud/types/supported_llm_model_names.py +0 -4
- llama_cloud/types/text_node.py +3 -9
- llama_cloud/types/token_text_splitter.py +2 -1
- llama_cloud/types/transformation_category_names.py +0 -4
- llama_cloud/types/user_organization.py +5 -9
- llama_cloud/types/user_organization_create.py +2 -2
- llama_cloud/types/user_organization_delete.py +2 -2
- llama_cloud/types/vertex_ai_embedding_config.py +2 -2
- llama_cloud/types/{extend_vertex_text_embedding.py → vertex_text_embedding.py} +10 -23
- {llama_cloud-0.0.17.dist-info → llama_cloud-0.1.1.dist-info}/METADATA +1 -1
- llama_cloud-0.1.1.dist-info/RECORD +224 -0
- llama_cloud/resources/auth/__init__.py +0 -2
- llama_cloud/resources/auth/client.py +0 -124
- llama_cloud/resources/data_sinks/types/data_sink_update_component_one.py +0 -23
- llama_cloud/resources/data_sources/types/data_source_update_component_one.py +0 -27
- llama_cloud/types/cloud_chroma_vector_store.py +0 -43
- llama_cloud/types/cloud_weaviate_vector_store.py +0 -41
- llama_cloud/types/configured_transformation_item_component_one.py +0 -35
- llama_cloud/types/custom_claims.py +0 -58
- llama_cloud/types/data_sink_component_one.py +0 -23
- llama_cloud/types/data_sink_create_component_one.py +0 -23
- llama_cloud/types/data_source_component_one.py +0 -27
- llama_cloud/types/data_source_create_component_one.py +0 -27
- llama_cloud/types/pipeline_data_source_component_one.py +0 -27
- llama_cloud/types/user.py +0 -35
- llama_cloud-0.0.17.dist-info/RECORD +0 -235
- {llama_cloud-0.0.17.dist-info → llama_cloud-0.1.1.dist-info}/LICENSE +0 -0
- {llama_cloud-0.0.17.dist-info → llama_cloud-0.1.1.dist-info}/WHEEL +0 -0
|
@@ -15,8 +15,8 @@ from .open_ai_embedding_config import OpenAiEmbeddingConfig
|
|
|
15
15
|
from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
|
|
16
16
|
|
|
17
17
|
|
|
18
|
-
class
|
|
19
|
-
type: typing_extensions.Literal["
|
|
18
|
+
class PipelineCreateEmbeddingConfig_AzureEmbedding(AzureOpenAiEmbeddingConfig):
|
|
19
|
+
type: typing_extensions.Literal["AZURE_EMBEDDING"]
|
|
20
20
|
|
|
21
21
|
class Config:
|
|
22
22
|
frozen = True
|
|
@@ -24,8 +24,8 @@ class PipelineCreateEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
|
|
|
24
24
|
allow_population_by_field_name = True
|
|
25
25
|
|
|
26
26
|
|
|
27
|
-
class
|
|
28
|
-
type: typing_extensions.Literal["
|
|
27
|
+
class PipelineCreateEmbeddingConfig_BedrockEmbedding(BedrockEmbeddingConfig):
|
|
28
|
+
type: typing_extensions.Literal["BEDROCK_EMBEDDING"]
|
|
29
29
|
|
|
30
30
|
class Config:
|
|
31
31
|
frozen = True
|
|
@@ -33,8 +33,8 @@ class PipelineCreateEmbeddingConfig_AzureEmbedding(AzureOpenAiEmbeddingConfig):
|
|
|
33
33
|
allow_population_by_field_name = True
|
|
34
34
|
|
|
35
35
|
|
|
36
|
-
class
|
|
37
|
-
type: typing_extensions.Literal["
|
|
36
|
+
class PipelineCreateEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
|
|
37
|
+
type: typing_extensions.Literal["COHERE_EMBEDDING"]
|
|
38
38
|
|
|
39
39
|
class Config:
|
|
40
40
|
frozen = True
|
|
@@ -42,8 +42,8 @@ class PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding(HuggingFaceInference
|
|
|
42
42
|
allow_population_by_field_name = True
|
|
43
43
|
|
|
44
44
|
|
|
45
|
-
class
|
|
46
|
-
type: typing_extensions.Literal["
|
|
45
|
+
class PipelineCreateEmbeddingConfig_GeminiEmbedding(GeminiEmbeddingConfig):
|
|
46
|
+
type: typing_extensions.Literal["GEMINI_EMBEDDING"]
|
|
47
47
|
|
|
48
48
|
class Config:
|
|
49
49
|
frozen = True
|
|
@@ -51,8 +51,8 @@ class PipelineCreateEmbeddingConfig_BedrockEmbedding(BedrockEmbeddingConfig):
|
|
|
51
51
|
allow_population_by_field_name = True
|
|
52
52
|
|
|
53
53
|
|
|
54
|
-
class
|
|
55
|
-
type: typing_extensions.Literal["
|
|
54
|
+
class PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding(HuggingFaceInferenceApiEmbeddingConfig):
|
|
55
|
+
type: typing_extensions.Literal["HUGGINGFACE_API_EMBEDDING"]
|
|
56
56
|
|
|
57
57
|
class Config:
|
|
58
58
|
frozen = True
|
|
@@ -60,8 +60,8 @@ class PipelineCreateEmbeddingConfig_GeminiEmbedding(GeminiEmbeddingConfig):
|
|
|
60
60
|
allow_population_by_field_name = True
|
|
61
61
|
|
|
62
62
|
|
|
63
|
-
class
|
|
64
|
-
type: typing_extensions.Literal["
|
|
63
|
+
class PipelineCreateEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
|
|
64
|
+
type: typing_extensions.Literal["OPENAI_EMBEDDING"]
|
|
65
65
|
|
|
66
66
|
class Config:
|
|
67
67
|
frozen = True
|
|
@@ -79,11 +79,11 @@ class PipelineCreateEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
|
|
|
79
79
|
|
|
80
80
|
|
|
81
81
|
PipelineCreateEmbeddingConfig = typing.Union[
|
|
82
|
-
PipelineCreateEmbeddingConfig_OpenaiEmbedding,
|
|
83
82
|
PipelineCreateEmbeddingConfig_AzureEmbedding,
|
|
84
|
-
PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
85
83
|
PipelineCreateEmbeddingConfig_BedrockEmbedding,
|
|
86
|
-
PipelineCreateEmbeddingConfig_GeminiEmbedding,
|
|
87
84
|
PipelineCreateEmbeddingConfig_CohereEmbedding,
|
|
85
|
+
PipelineCreateEmbeddingConfig_GeminiEmbedding,
|
|
86
|
+
PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
87
|
+
PipelineCreateEmbeddingConfig_OpenaiEmbedding,
|
|
88
88
|
PipelineCreateEmbeddingConfig_VertexaiEmbedding,
|
|
89
89
|
]
|
|
@@ -1,31 +1,8 @@
|
|
|
1
1
|
# This file was auto-generated by Fern from our API Definition.
|
|
2
2
|
|
|
3
|
-
from __future__ import annotations
|
|
4
|
-
|
|
5
3
|
import typing
|
|
6
4
|
|
|
7
|
-
import typing_extensions
|
|
8
|
-
|
|
9
5
|
from .advanced_mode_transform_config import AdvancedModeTransformConfig
|
|
10
6
|
from .auto_transform_config import AutoTransformConfig
|
|
11
7
|
|
|
12
|
-
|
|
13
|
-
class PipelineCreateTransformConfig_Auto(AutoTransformConfig):
|
|
14
|
-
mode: typing_extensions.Literal["auto"]
|
|
15
|
-
|
|
16
|
-
class Config:
|
|
17
|
-
frozen = True
|
|
18
|
-
smart_union = True
|
|
19
|
-
allow_population_by_field_name = True
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
class PipelineCreateTransformConfig_Advanced(AdvancedModeTransformConfig):
|
|
23
|
-
mode: typing_extensions.Literal["advanced"]
|
|
24
|
-
|
|
25
|
-
class Config:
|
|
26
|
-
frozen = True
|
|
27
|
-
smart_union = True
|
|
28
|
-
allow_population_by_field_name = True
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
PipelineCreateTransformConfig = typing.Union[PipelineCreateTransformConfig_Auto, PipelineCreateTransformConfig_Advanced]
|
|
8
|
+
PipelineCreateTransformConfig = typing.Union[AutoTransformConfig, AdvancedModeTransformConfig]
|
|
@@ -23,24 +23,18 @@ class PipelineDataSource(pydantic.BaseModel):
|
|
|
23
23
|
"""
|
|
24
24
|
|
|
25
25
|
id: str = pydantic.Field(description="Unique identifier")
|
|
26
|
-
created_at: typing.Optional[dt.datetime]
|
|
27
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
created_at: typing.Optional[dt.datetime]
|
|
27
|
+
updated_at: typing.Optional[dt.datetime]
|
|
28
28
|
name: str = pydantic.Field(description="The name of the data source.")
|
|
29
29
|
source_type: ConfigurableDataSourceNames
|
|
30
|
-
custom_metadata: typing.Optional[typing.Dict[str, PipelineDataSourceCustomMetadataValue]]
|
|
31
|
-
description="Custom metadata that will be present on all data loaded from the data source"
|
|
32
|
-
)
|
|
30
|
+
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineDataSourceCustomMetadataValue]]]
|
|
33
31
|
component: PipelineDataSourceComponent
|
|
34
32
|
project_id: str
|
|
35
33
|
data_source_id: str = pydantic.Field(description="The ID of the data source.")
|
|
36
34
|
pipeline_id: str = pydantic.Field(description="The ID of the pipeline.")
|
|
37
35
|
last_synced_at: dt.datetime = pydantic.Field(description="The last time the data source was automatically synced.")
|
|
38
|
-
sync_interval: typing.Optional[float]
|
|
39
|
-
|
|
40
|
-
)
|
|
41
|
-
sync_schedule_set_by: typing.Optional[str] = pydantic.Field(
|
|
42
|
-
description="The id of the user who set the sync schedule."
|
|
43
|
-
)
|
|
36
|
+
sync_interval: typing.Optional[float]
|
|
37
|
+
sync_schedule_set_by: typing.Optional[str]
|
|
44
38
|
|
|
45
39
|
def json(self, **kwargs: typing.Any) -> str:
|
|
46
40
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -2,6 +2,27 @@
|
|
|
2
2
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
|
-
from .
|
|
5
|
+
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_box_data_source import CloudBoxDataSource
|
|
7
|
+
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
8
|
+
from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
|
|
9
|
+
from .cloud_jira_data_source import CloudJiraDataSource
|
|
10
|
+
from .cloud_notion_page_data_source import CloudNotionPageDataSource
|
|
11
|
+
from .cloud_one_drive_data_source import CloudOneDriveDataSource
|
|
12
|
+
from .cloud_s_3_data_source import CloudS3DataSource
|
|
13
|
+
from .cloud_sharepoint_data_source import CloudSharepointDataSource
|
|
14
|
+
from .cloud_slack_data_source import CloudSlackDataSource
|
|
6
15
|
|
|
7
|
-
PipelineDataSourceComponent = typing.Union[
|
|
16
|
+
PipelineDataSourceComponent = typing.Union[
|
|
17
|
+
typing.Dict[str, typing.Any],
|
|
18
|
+
CloudS3DataSource,
|
|
19
|
+
CloudAzStorageBlobDataSource,
|
|
20
|
+
CloudGoogleDriveDataSource,
|
|
21
|
+
CloudOneDriveDataSource,
|
|
22
|
+
CloudSharepointDataSource,
|
|
23
|
+
CloudSlackDataSource,
|
|
24
|
+
CloudNotionPageDataSource,
|
|
25
|
+
CloudConfluenceDataSource,
|
|
26
|
+
CloudJiraDataSource,
|
|
27
|
+
CloudBoxDataSource,
|
|
28
|
+
]
|
|
@@ -20,9 +20,7 @@ class PipelineDataSourceCreate(pydantic.BaseModel):
|
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
22
|
data_source_id: str = pydantic.Field(description="The ID of the data source.")
|
|
23
|
-
sync_interval: typing.Optional[float]
|
|
24
|
-
description="The interval at which the data source should be synced."
|
|
25
|
-
)
|
|
23
|
+
sync_interval: typing.Optional[float]
|
|
26
24
|
|
|
27
25
|
def json(self, **kwargs: typing.Any) -> str:
|
|
28
26
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -16,16 +16,12 @@ except ImportError:
|
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class PipelineDeployment(pydantic.BaseModel):
|
|
19
|
-
"""
|
|
20
|
-
Base schema model containing common database fields.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
19
|
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
20
|
+
created_at: typing.Optional[dt.datetime]
|
|
21
|
+
updated_at: typing.Optional[dt.datetime]
|
|
26
22
|
status: ManagedIngestionStatus = pydantic.Field(description="Status of the pipeline deployment.")
|
|
27
|
-
started_at: typing.Optional[dt.datetime]
|
|
28
|
-
ended_at: typing.Optional[dt.datetime]
|
|
23
|
+
started_at: typing.Optional[dt.datetime]
|
|
24
|
+
ended_at: typing.Optional[dt.datetime]
|
|
29
25
|
|
|
30
26
|
def json(self, **kwargs: typing.Any) -> str:
|
|
31
27
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -15,8 +15,8 @@ from .open_ai_embedding_config import OpenAiEmbeddingConfig
|
|
|
15
15
|
from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
|
|
16
16
|
|
|
17
17
|
|
|
18
|
-
class
|
|
19
|
-
type: typing_extensions.Literal["
|
|
18
|
+
class PipelineEmbeddingConfig_AzureEmbedding(AzureOpenAiEmbeddingConfig):
|
|
19
|
+
type: typing_extensions.Literal["AZURE_EMBEDDING"]
|
|
20
20
|
|
|
21
21
|
class Config:
|
|
22
22
|
frozen = True
|
|
@@ -24,8 +24,8 @@ class PipelineEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
|
|
|
24
24
|
allow_population_by_field_name = True
|
|
25
25
|
|
|
26
26
|
|
|
27
|
-
class
|
|
28
|
-
type: typing_extensions.Literal["
|
|
27
|
+
class PipelineEmbeddingConfig_BedrockEmbedding(BedrockEmbeddingConfig):
|
|
28
|
+
type: typing_extensions.Literal["BEDROCK_EMBEDDING"]
|
|
29
29
|
|
|
30
30
|
class Config:
|
|
31
31
|
frozen = True
|
|
@@ -33,8 +33,8 @@ class PipelineEmbeddingConfig_AzureEmbedding(AzureOpenAiEmbeddingConfig):
|
|
|
33
33
|
allow_population_by_field_name = True
|
|
34
34
|
|
|
35
35
|
|
|
36
|
-
class
|
|
37
|
-
type: typing_extensions.Literal["
|
|
36
|
+
class PipelineEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
|
|
37
|
+
type: typing_extensions.Literal["COHERE_EMBEDDING"]
|
|
38
38
|
|
|
39
39
|
class Config:
|
|
40
40
|
frozen = True
|
|
@@ -42,8 +42,8 @@ class PipelineEmbeddingConfig_HuggingfaceApiEmbedding(HuggingFaceInferenceApiEmb
|
|
|
42
42
|
allow_population_by_field_name = True
|
|
43
43
|
|
|
44
44
|
|
|
45
|
-
class
|
|
46
|
-
type: typing_extensions.Literal["
|
|
45
|
+
class PipelineEmbeddingConfig_GeminiEmbedding(GeminiEmbeddingConfig):
|
|
46
|
+
type: typing_extensions.Literal["GEMINI_EMBEDDING"]
|
|
47
47
|
|
|
48
48
|
class Config:
|
|
49
49
|
frozen = True
|
|
@@ -51,8 +51,8 @@ class PipelineEmbeddingConfig_BedrockEmbedding(BedrockEmbeddingConfig):
|
|
|
51
51
|
allow_population_by_field_name = True
|
|
52
52
|
|
|
53
53
|
|
|
54
|
-
class
|
|
55
|
-
type: typing_extensions.Literal["
|
|
54
|
+
class PipelineEmbeddingConfig_HuggingfaceApiEmbedding(HuggingFaceInferenceApiEmbeddingConfig):
|
|
55
|
+
type: typing_extensions.Literal["HUGGINGFACE_API_EMBEDDING"]
|
|
56
56
|
|
|
57
57
|
class Config:
|
|
58
58
|
frozen = True
|
|
@@ -60,8 +60,8 @@ class PipelineEmbeddingConfig_GeminiEmbedding(GeminiEmbeddingConfig):
|
|
|
60
60
|
allow_population_by_field_name = True
|
|
61
61
|
|
|
62
62
|
|
|
63
|
-
class
|
|
64
|
-
type: typing_extensions.Literal["
|
|
63
|
+
class PipelineEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
|
|
64
|
+
type: typing_extensions.Literal["OPENAI_EMBEDDING"]
|
|
65
65
|
|
|
66
66
|
class Config:
|
|
67
67
|
frozen = True
|
|
@@ -79,11 +79,11 @@ class PipelineEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
|
|
|
79
79
|
|
|
80
80
|
|
|
81
81
|
PipelineEmbeddingConfig = typing.Union[
|
|
82
|
-
PipelineEmbeddingConfig_OpenaiEmbedding,
|
|
83
82
|
PipelineEmbeddingConfig_AzureEmbedding,
|
|
84
|
-
PipelineEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
85
83
|
PipelineEmbeddingConfig_BedrockEmbedding,
|
|
86
|
-
PipelineEmbeddingConfig_GeminiEmbedding,
|
|
87
84
|
PipelineEmbeddingConfig_CohereEmbedding,
|
|
85
|
+
PipelineEmbeddingConfig_GeminiEmbedding,
|
|
86
|
+
PipelineEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
87
|
+
PipelineEmbeddingConfig_OpenaiEmbedding,
|
|
88
88
|
PipelineEmbeddingConfig_VertexaiEmbedding,
|
|
89
89
|
]
|
|
@@ -23,27 +23,19 @@ class PipelineFile(pydantic.BaseModel):
|
|
|
23
23
|
"""
|
|
24
24
|
|
|
25
25
|
id: str = pydantic.Field(description="Unique identifier")
|
|
26
|
-
created_at: typing.Optional[dt.datetime]
|
|
27
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
created_at: typing.Optional[dt.datetime]
|
|
27
|
+
updated_at: typing.Optional[dt.datetime]
|
|
28
28
|
name: typing.Optional[str]
|
|
29
|
-
file_size: typing.Optional[int]
|
|
30
|
-
file_type: typing.Optional[str]
|
|
29
|
+
file_size: typing.Optional[int]
|
|
30
|
+
file_type: typing.Optional[str]
|
|
31
31
|
project_id: str = pydantic.Field(description="The ID of the project that the file belongs to")
|
|
32
|
-
last_modified_at: typing.Optional[dt.datetime]
|
|
33
|
-
resource_info: typing.Optional[typing.Dict[str, PipelineFileResourceInfoValue]]
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
data_source_id: typing.Optional[str] = pydantic.Field(
|
|
37
|
-
description="The ID of the data source that the file belongs to"
|
|
38
|
-
)
|
|
39
|
-
file_id: typing.Optional[str] = pydantic.Field(description="The ID of the file")
|
|
32
|
+
last_modified_at: typing.Optional[dt.datetime]
|
|
33
|
+
resource_info: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileResourceInfoValue]]]
|
|
34
|
+
data_source_id: typing.Optional[str]
|
|
35
|
+
file_id: typing.Optional[str]
|
|
40
36
|
pipeline_id: str = pydantic.Field(description="The ID of the pipeline that the file is associated with")
|
|
41
|
-
custom_metadata: typing.Optional[typing.Dict[str, PipelineFileCustomMetadataValue]]
|
|
42
|
-
|
|
43
|
-
)
|
|
44
|
-
config_hash: typing.Optional[typing.Dict[str, PipelineFileConfigHashValue]] = pydantic.Field(
|
|
45
|
-
description="Hashes for the configuration of the pipeline."
|
|
46
|
-
)
|
|
37
|
+
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileCustomMetadataValue]]]
|
|
38
|
+
config_hash: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileConfigHashValue]]]
|
|
47
39
|
|
|
48
40
|
def json(self, **kwargs: typing.Any) -> str:
|
|
49
41
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -21,9 +21,7 @@ class PipelineFileCreate(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
file_id: str = pydantic.Field(description="The ID of the file")
|
|
24
|
-
custom_metadata: typing.Optional[typing.Dict[str, PipelineFileCreateCustomMetadataValue]]
|
|
25
|
-
description="Custom metadata for the file"
|
|
26
|
-
)
|
|
24
|
+
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileCreateCustomMetadataValue]]]
|
|
27
25
|
|
|
28
26
|
def json(self, **kwargs: typing.Any) -> str:
|
|
29
27
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -23,8 +23,8 @@ class PlaygroundSession(pydantic.BaseModel):
|
|
|
23
23
|
"""
|
|
24
24
|
|
|
25
25
|
id: str = pydantic.Field(description="Unique identifier")
|
|
26
|
-
created_at: typing.Optional[dt.datetime]
|
|
27
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
created_at: typing.Optional[dt.datetime]
|
|
27
|
+
updated_at: typing.Optional[dt.datetime]
|
|
28
28
|
pipeline_id: str
|
|
29
29
|
user_id: str
|
|
30
30
|
llm_params_id: str
|
|
@@ -21,19 +21,16 @@ class PresetRetrievalParams(pydantic.BaseModel):
|
|
|
21
21
|
Schema for the search params for an retrieval execution that can be preset for a pipeline.
|
|
22
22
|
"""
|
|
23
23
|
|
|
24
|
-
dense_similarity_top_k: typing.Optional[int]
|
|
25
|
-
sparse_similarity_top_k: typing.Optional[int]
|
|
26
|
-
enable_reranking: typing.Optional[bool]
|
|
27
|
-
rerank_top_n: typing.Optional[int]
|
|
28
|
-
alpha: typing.Optional[float]
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
search_filters: typing.Optional[MetadataFilters] = pydantic.Field(description="Search filters for retrieval.")
|
|
32
|
-
files_top_k: typing.Optional[int] = pydantic.Field(
|
|
33
|
-
description="Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content)."
|
|
34
|
-
)
|
|
24
|
+
dense_similarity_top_k: typing.Optional[int]
|
|
25
|
+
sparse_similarity_top_k: typing.Optional[int]
|
|
26
|
+
enable_reranking: typing.Optional[bool]
|
|
27
|
+
rerank_top_n: typing.Optional[int]
|
|
28
|
+
alpha: typing.Optional[float]
|
|
29
|
+
search_filters: typing.Optional[MetadataFilters]
|
|
30
|
+
files_top_k: typing.Optional[int]
|
|
35
31
|
retrieval_mode: typing.Optional[RetrievalMode] = pydantic.Field(description="The retrieval mode for the query.")
|
|
36
32
|
retrieve_image_nodes: typing.Optional[bool] = pydantic.Field(description="Whether to retrieve image nodes.")
|
|
33
|
+
class_name: typing.Optional[str]
|
|
37
34
|
|
|
38
35
|
def json(self, **kwargs: typing.Any) -> str:
|
|
39
36
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -21,9 +21,7 @@ class PresignedUrl(pydantic.BaseModel):
|
|
|
21
21
|
|
|
22
22
|
url: str = pydantic.Field(description="A presigned URL for IO operations against a private file")
|
|
23
23
|
expires_at: dt.datetime = pydantic.Field(description="The time at which the presigned URL expires")
|
|
24
|
-
form_fields: typing.Optional[typing.Dict[str, str]]
|
|
25
|
-
description="Form fields for a presigned POST request"
|
|
26
|
-
)
|
|
24
|
+
form_fields: typing.Optional[typing.Dict[str, typing.Optional[str]]]
|
|
27
25
|
|
|
28
26
|
def json(self, **kwargs: typing.Any) -> str:
|
|
29
27
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/project.py
CHANGED
|
@@ -21,8 +21,8 @@ class Project(pydantic.BaseModel):
|
|
|
21
21
|
|
|
22
22
|
name: str
|
|
23
23
|
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
24
|
+
created_at: typing.Optional[dt.datetime]
|
|
25
|
+
updated_at: typing.Optional[dt.datetime]
|
|
26
26
|
ad_hoc_eval_dataset_id: typing.Optional[str]
|
|
27
27
|
organization_id: str = pydantic.Field(description="The Organization ID the project is under.")
|
|
28
28
|
is_default: typing.Optional[bool] = pydantic.Field(
|
|
@@ -21,7 +21,7 @@ class PromptMixinPrompts(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
project_id: str = pydantic.Field(description="The ID of the project.")
|
|
24
|
-
id: typing.Optional[str]
|
|
24
|
+
id: typing.Optional[str]
|
|
25
25
|
name: str = pydantic.Field(description="The name of the prompt set.")
|
|
26
26
|
prompts: typing.List[PromptSpec] = pydantic.Field(description="The prompts.")
|
|
27
27
|
|
llama_cloud/types/prompt_spec.py
CHANGED
|
@@ -19,10 +19,8 @@ class PromptSpec(pydantic.BaseModel):
|
|
|
19
19
|
prompt_key: str = pydantic.Field(description="The key of the prompt in the PromptMixin.")
|
|
20
20
|
prompt_class: str = pydantic.Field(description="The class of the prompt (PromptTemplate or ChatPromptTemplate).")
|
|
21
21
|
prompt_type: str = pydantic.Field(description="The type of prompt.")
|
|
22
|
-
template: typing.Optional[str]
|
|
23
|
-
message_templates: typing.Optional[typing.List[ChatMessage]]
|
|
24
|
-
description="The chat message templates of the prompt."
|
|
25
|
-
)
|
|
22
|
+
template: typing.Optional[str]
|
|
23
|
+
message_templates: typing.Optional[typing.List[ChatMessage]]
|
|
26
24
|
|
|
27
25
|
def json(self, **kwargs: typing.Any) -> str:
|
|
28
26
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -27,14 +27,13 @@ class SentenceSplitter(pydantic.BaseModel):
|
|
|
27
27
|
description="Whether or not to consider metadata when splitting."
|
|
28
28
|
)
|
|
29
29
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
30
|
-
callback_manager: typing.Optional[typing.
|
|
30
|
+
callback_manager: typing.Optional[typing.Any]
|
|
31
|
+
id_func: typing.Optional[str]
|
|
31
32
|
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
32
33
|
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
33
34
|
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
34
35
|
paragraph_separator: typing.Optional[str] = pydantic.Field(description="Separator between paragraphs.")
|
|
35
|
-
secondary_chunking_regex: typing.Optional[str]
|
|
36
|
-
description="Backup regex for splitting into sentences."
|
|
37
|
-
)
|
|
36
|
+
secondary_chunking_regex: typing.Optional[str]
|
|
38
37
|
class_name: typing.Optional[str]
|
|
39
38
|
|
|
40
39
|
def json(self, **kwargs: typing.Any) -> str:
|
llama_cloud/types/text_node.py
CHANGED
|
@@ -16,14 +16,8 @@ except ImportError:
|
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class TextNode(pydantic.BaseModel):
|
|
19
|
-
"""
|
|
20
|
-
Base node Object.
|
|
21
|
-
|
|
22
|
-
Generic abstract interface for retrievable nodes
|
|
23
|
-
"""
|
|
24
|
-
|
|
25
19
|
id: typing.Optional[str] = pydantic.Field(alias="id_", description="Unique ID of the node.")
|
|
26
|
-
embedding: typing.Optional[typing.List[float]]
|
|
20
|
+
embedding: typing.Optional[typing.List[float]]
|
|
27
21
|
extra_info: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
28
22
|
description="A flat dictionary of metadata fields"
|
|
29
23
|
)
|
|
@@ -38,8 +32,8 @@ class TextNode(pydantic.BaseModel):
|
|
|
38
32
|
)
|
|
39
33
|
text: typing.Optional[str] = pydantic.Field(description="Text content of the node.")
|
|
40
34
|
mimetype: typing.Optional[str] = pydantic.Field(description="MIME type of the node content.")
|
|
41
|
-
start_char_idx: typing.Optional[int]
|
|
42
|
-
end_char_idx: typing.Optional[int]
|
|
35
|
+
start_char_idx: typing.Optional[int]
|
|
36
|
+
end_char_idx: typing.Optional[int]
|
|
43
37
|
text_template: typing.Optional[str] = pydantic.Field(
|
|
44
38
|
description="Template for how text is formatted, with {content} and {metadata_str} placeholders."
|
|
45
39
|
)
|
|
@@ -23,7 +23,8 @@ class TokenTextSplitter(pydantic.BaseModel):
|
|
|
23
23
|
description="Whether or not to consider metadata when splitting."
|
|
24
24
|
)
|
|
25
25
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
26
|
-
callback_manager: typing.Optional[typing.
|
|
26
|
+
callback_manager: typing.Optional[typing.Any]
|
|
27
|
+
id_func: typing.Optional[str]
|
|
27
28
|
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
28
29
|
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
29
30
|
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
@@ -20,20 +20,16 @@ class UserOrganization(pydantic.BaseModel):
|
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
22
|
id: str = pydantic.Field(description="Unique identifier")
|
|
23
|
-
created_at: typing.Optional[dt.datetime]
|
|
24
|
-
updated_at: typing.Optional[dt.datetime]
|
|
23
|
+
created_at: typing.Optional[dt.datetime]
|
|
24
|
+
updated_at: typing.Optional[dt.datetime]
|
|
25
25
|
email: str = pydantic.Field(description="The user's email address.")
|
|
26
|
-
user_id: typing.Optional[str]
|
|
26
|
+
user_id: typing.Optional[str]
|
|
27
27
|
organization_id: str = pydantic.Field(description="The organization's ID.")
|
|
28
28
|
pending: typing.Optional[bool] = pydantic.Field(
|
|
29
29
|
description="Whether the user's membership is pending account signup."
|
|
30
30
|
)
|
|
31
|
-
invited_by_user_id: typing.Optional[str]
|
|
32
|
-
|
|
33
|
-
)
|
|
34
|
-
invited_by_user_email: typing.Optional[str] = pydantic.Field(
|
|
35
|
-
description="The email address of the user who added the user to the organization."
|
|
36
|
-
)
|
|
31
|
+
invited_by_user_id: typing.Optional[str]
|
|
32
|
+
invited_by_user_email: typing.Optional[str]
|
|
37
33
|
|
|
38
34
|
def json(self, **kwargs: typing.Any) -> str:
|
|
39
35
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -19,8 +19,8 @@ class UserOrganizationCreate(pydantic.BaseModel):
|
|
|
19
19
|
Schema for creating a user's membership to an organization.
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
|
-
user_id: typing.Optional[str]
|
|
23
|
-
email: typing.Optional[str]
|
|
22
|
+
user_id: typing.Optional[str]
|
|
23
|
+
email: typing.Optional[str]
|
|
24
24
|
|
|
25
25
|
def json(self, **kwargs: typing.Any) -> str:
|
|
26
26
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -19,8 +19,8 @@ class UserOrganizationDelete(pydantic.BaseModel):
|
|
|
19
19
|
Schema for deleting a user's membership to an organization.
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
|
-
user_id: typing.Optional[str]
|
|
23
|
-
email: typing.Optional[str]
|
|
22
|
+
user_id: typing.Optional[str]
|
|
23
|
+
email: typing.Optional[str]
|
|
24
24
|
|
|
25
25
|
def json(self, **kwargs: typing.Any) -> str:
|
|
26
26
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -4,7 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
7
|
+
from .vertex_text_embedding import VertexTextEmbedding
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
import pydantic
|
|
@@ -16,7 +16,7 @@ except ImportError:
|
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class VertexAiEmbeddingConfig(pydantic.BaseModel):
|
|
19
|
-
component: typing.Optional[
|
|
19
|
+
component: typing.Optional[VertexTextEmbedding] = pydantic.Field(
|
|
20
20
|
description="Configuration for the VertexAI embedding model."
|
|
21
21
|
)
|
|
22
22
|
|