llama-cloud 0.0.15__py3-none-any.whl → 0.0.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (39) hide show
  1. llama_cloud/__init__.py +22 -0
  2. llama_cloud/resources/__init__.py +2 -0
  3. llama_cloud/resources/data_sources/types/data_source_update_component_one.py +2 -0
  4. llama_cloud/resources/files/client.py +159 -0
  5. llama_cloud/resources/parsing/client.py +40 -0
  6. llama_cloud/resources/pipelines/__init__.py +2 -0
  7. llama_cloud/resources/pipelines/client.py +18 -2
  8. llama_cloud/resources/pipelines/types/__init__.py +2 -0
  9. llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py +11 -0
  10. llama_cloud/types/__init__.py +20 -0
  11. llama_cloud/types/cloud_az_storage_blob_data_source.py +1 -2
  12. llama_cloud/types/cloud_google_drive_data_source.py +39 -0
  13. llama_cloud/types/cloud_postgres_vector_store.py +6 -8
  14. llama_cloud/types/configurable_data_source_names.py +4 -0
  15. llama_cloud/types/configurable_transformation_names.py +4 -0
  16. llama_cloud/types/configured_transformation_item_component_one.py +2 -0
  17. llama_cloud/types/data_source_component_one.py +2 -0
  18. llama_cloud/types/data_source_create_component_one.py +2 -0
  19. llama_cloud/types/extend_vertex_text_embedding.py +58 -0
  20. llama_cloud/types/llama_parse_parameters.py +3 -1
  21. llama_cloud/types/llm_model_data.py +1 -0
  22. llama_cloud/types/llm_parameters.py +4 -1
  23. llama_cloud/types/page_screenshot_metadata.py +33 -0
  24. llama_cloud/types/page_screenshot_node_with_score.py +38 -0
  25. llama_cloud/types/pipeline.py +4 -0
  26. llama_cloud/types/pipeline_configuration_hashes.py +37 -0
  27. llama_cloud/types/pipeline_create_embedding_config.py +11 -0
  28. llama_cloud/types/pipeline_data_source_component_one.py +2 -0
  29. llama_cloud/types/pipeline_embedding_config.py +11 -0
  30. llama_cloud/types/pipeline_file.py +4 -0
  31. llama_cloud/types/pipeline_file_config_hash_value.py +5 -0
  32. llama_cloud/types/preset_retrieval_params.py +1 -0
  33. llama_cloud/types/retrieve_results.py +4 -0
  34. llama_cloud/types/vertex_ai_embedding_config.py +34 -0
  35. llama_cloud/types/vertex_embedding_mode.py +45 -0
  36. {llama_cloud-0.0.15.dist-info → llama_cloud-0.0.17.dist-info}/METADATA +1 -1
  37. {llama_cloud-0.0.15.dist-info → llama_cloud-0.0.17.dist-info}/RECORD +39 -31
  38. {llama_cloud-0.0.15.dist-info → llama_cloud-0.0.17.dist-info}/LICENSE +0 -0
  39. {llama_cloud-0.0.15.dist-info → llama_cloud-0.0.17.dist-info}/WHEEL +0 -0
@@ -34,6 +34,7 @@ from .cloud_chroma_vector_store import CloudChromaVectorStore
34
34
  from .cloud_confluence_data_source import CloudConfluenceDataSource
35
35
  from .cloud_document import CloudDocument
36
36
  from .cloud_document_create import CloudDocumentCreate
37
+ from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
37
38
  from .cloud_jira_data_source import CloudJiraDataSource
38
39
  from .cloud_milvus_vector_store import CloudMilvusVectorStore
39
40
  from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
@@ -82,6 +83,7 @@ from .eval_execution_params_override import EvalExecutionParamsOverride
82
83
  from .eval_question import EvalQuestion
83
84
  from .eval_question_create import EvalQuestionCreate
84
85
  from .eval_question_result import EvalQuestionResult
86
+ from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
85
87
  from .extraction_job import ExtractionJob
86
88
  from .extraction_result import ExtractionResult
87
89
  from .extraction_result_data_value import ExtractionResultDataValue
@@ -127,6 +129,8 @@ from .open_ai_embedding import OpenAiEmbedding
127
129
  from .open_ai_embedding_config import OpenAiEmbeddingConfig
128
130
  from .organization import Organization
129
131
  from .organization_create import OrganizationCreate
132
+ from .page_screenshot_metadata import PageScreenshotMetadata
133
+ from .page_screenshot_node_with_score import PageScreenshotNodeWithScore
130
134
  from .page_segmentation_config import PageSegmentationConfig
131
135
  from .page_splitter_node_parser import PageSplitterNodeParser
132
136
  from .parser_languages import ParserLanguages
@@ -137,6 +141,7 @@ from .parsing_job_markdown_result import ParsingJobMarkdownResult
137
141
  from .parsing_job_text_result import ParsingJobTextResult
138
142
  from .parsing_usage import ParsingUsage
139
143
  from .pipeline import Pipeline
144
+ from .pipeline_configuration_hashes import PipelineConfigurationHashes
140
145
  from .pipeline_create import PipelineCreate
141
146
  from .pipeline_create_embedding_config import (
142
147
  PipelineCreateEmbeddingConfig,
@@ -146,6 +151,7 @@ from .pipeline_create_embedding_config import (
146
151
  PipelineCreateEmbeddingConfig_GeminiEmbedding,
147
152
  PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding,
148
153
  PipelineCreateEmbeddingConfig_OpenaiEmbedding,
154
+ PipelineCreateEmbeddingConfig_VertexaiEmbedding,
149
155
  )
150
156
  from .pipeline_create_transform_config import (
151
157
  PipelineCreateTransformConfig,
@@ -166,8 +172,10 @@ from .pipeline_embedding_config import (
166
172
  PipelineEmbeddingConfig_GeminiEmbedding,
167
173
  PipelineEmbeddingConfig_HuggingfaceApiEmbedding,
168
174
  PipelineEmbeddingConfig_OpenaiEmbedding,
175
+ PipelineEmbeddingConfig_VertexaiEmbedding,
169
176
  )
170
177
  from .pipeline_file import PipelineFile
178
+ from .pipeline_file_config_hash_value import PipelineFileConfigHashValue
171
179
  from .pipeline_file_create import PipelineFileCreate
172
180
  from .pipeline_file_create_custom_metadata_value import PipelineFileCreateCustomMetadataValue
173
181
  from .pipeline_file_custom_metadata_value import PipelineFileCustomMetadataValue
@@ -208,6 +216,8 @@ from .user_organization_create import UserOrganizationCreate
208
216
  from .user_organization_delete import UserOrganizationDelete
209
217
  from .validation_error import ValidationError
210
218
  from .validation_error_loc_item import ValidationErrorLocItem
219
+ from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
220
+ from .vertex_embedding_mode import VertexEmbeddingMode
211
221
 
212
222
  __all__ = [
213
223
  "AdvancedModeTransformConfig",
@@ -240,6 +250,7 @@ __all__ = [
240
250
  "CloudConfluenceDataSource",
241
251
  "CloudDocument",
242
252
  "CloudDocumentCreate",
253
+ "CloudGoogleDriveDataSource",
243
254
  "CloudJiraDataSource",
244
255
  "CloudMilvusVectorStore",
245
256
  "CloudMongoDbAtlasVectorSearch",
@@ -288,6 +299,7 @@ __all__ = [
288
299
  "EvalQuestion",
289
300
  "EvalQuestionCreate",
290
301
  "EvalQuestionResult",
302
+ "ExtendVertexTextEmbedding",
291
303
  "ExtractionJob",
292
304
  "ExtractionResult",
293
305
  "ExtractionResultDataValue",
@@ -333,6 +345,8 @@ __all__ = [
333
345
  "OpenAiEmbeddingConfig",
334
346
  "Organization",
335
347
  "OrganizationCreate",
348
+ "PageScreenshotMetadata",
349
+ "PageScreenshotNodeWithScore",
336
350
  "PageSegmentationConfig",
337
351
  "PageSplitterNodeParser",
338
352
  "ParserLanguages",
@@ -343,6 +357,7 @@ __all__ = [
343
357
  "ParsingJobTextResult",
344
358
  "ParsingUsage",
345
359
  "Pipeline",
360
+ "PipelineConfigurationHashes",
346
361
  "PipelineCreate",
347
362
  "PipelineCreateEmbeddingConfig",
348
363
  "PipelineCreateEmbeddingConfig_AzureEmbedding",
@@ -351,6 +366,7 @@ __all__ = [
351
366
  "PipelineCreateEmbeddingConfig_GeminiEmbedding",
352
367
  "PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding",
353
368
  "PipelineCreateEmbeddingConfig_OpenaiEmbedding",
369
+ "PipelineCreateEmbeddingConfig_VertexaiEmbedding",
354
370
  "PipelineCreateTransformConfig",
355
371
  "PipelineCreateTransformConfig_Advanced",
356
372
  "PipelineCreateTransformConfig_Auto",
@@ -367,7 +383,9 @@ __all__ = [
367
383
  "PipelineEmbeddingConfig_GeminiEmbedding",
368
384
  "PipelineEmbeddingConfig_HuggingfaceApiEmbedding",
369
385
  "PipelineEmbeddingConfig_OpenaiEmbedding",
386
+ "PipelineEmbeddingConfig_VertexaiEmbedding",
370
387
  "PipelineFile",
388
+ "PipelineFileConfigHashValue",
371
389
  "PipelineFileCreate",
372
390
  "PipelineFileCreateCustomMetadataValue",
373
391
  "PipelineFileCustomMetadataValue",
@@ -406,4 +424,6 @@ __all__ = [
406
424
  "UserOrganizationDelete",
407
425
  "ValidationError",
408
426
  "ValidationErrorLocItem",
427
+ "VertexAiEmbeddingConfig",
428
+ "VertexEmbeddingMode",
409
429
  ]
@@ -21,9 +21,8 @@ class CloudAzStorageBlobDataSource(pydantic.BaseModel):
21
21
 
22
22
  container_name: str = pydantic.Field(description="The name of the Azure Storage Blob container to read from.")
23
23
  account_url: str = pydantic.Field(description="The Azure Storage Blob account URL to use for authentication.")
24
- blob: typing.Optional[str] = pydantic.Field(description="The blob name to read from.")
25
24
  prefix: typing.Optional[str] = pydantic.Field(
26
- description="The prefix of the Azure Storage Blob objects to read from."
25
+ description="The prefix of the Azure Storage Blob objects to read from. Use this to filter files at the subdirectory level"
27
26
  )
28
27
  account_name: typing.Optional[str] = pydantic.Field(
29
28
  description="The Azure Storage Blob account name to use for authentication."
@@ -0,0 +1,39 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class CloudGoogleDriveDataSource(pydantic.BaseModel):
18
+ """
19
+ Base component object to capture class names.
20
+ """
21
+
22
+ folder_id: str = pydantic.Field(description="The ID of the Google Drive folder to read from.")
23
+ service_account_key: typing.Dict[str, typing.Any] = pydantic.Field(
24
+ description="The service account key JSON to use for authentication."
25
+ )
26
+ class_name: typing.Optional[str]
27
+
28
+ def json(self, **kwargs: typing.Any) -> str:
29
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
+ return super().json(**kwargs_with_defaults)
31
+
32
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
33
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
34
+ return super().dict(**kwargs_with_defaults)
35
+
36
+ class Config:
37
+ frozen = True
38
+ smart_union = True
39
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -20,17 +20,15 @@ class CloudPostgresVectorStore(pydantic.BaseModel):
20
20
  """
21
21
 
22
22
  supports_nested_metadata_filters: typing.Optional[bool]
23
- connection_string: str
24
- async_connection_string: str
23
+ database: str
24
+ host: str
25
+ password: str
26
+ port: str
27
+ user: str
25
28
  table_name: str
26
29
  schema_name: str
27
30
  embed_dim: int
28
- hybrid_search: bool
29
- text_search_config: str
30
- cache_ok: bool
31
- perform_setup: bool
32
- debug: bool
33
- use_jsonb: bool
31
+ hybrid_search: typing.Optional[bool]
34
32
  class_name: typing.Optional[str]
35
33
 
36
34
  def json(self, **kwargs: typing.Any) -> str:
@@ -13,6 +13,7 @@ class ConfigurableDataSourceNames(str, enum.Enum):
13
13
 
14
14
  S_3 = "S3"
15
15
  AZURE_STORAGE_BLOB = "AZURE_STORAGE_BLOB"
16
+ GOOGLE_DRIVE = "GOOGLE_DRIVE"
16
17
  MICROSOFT_ONEDRIVE = "MICROSOFT_ONEDRIVE"
17
18
  MICROSOFT_SHAREPOINT = "MICROSOFT_SHAREPOINT"
18
19
  SLACK = "SLACK"
@@ -25,6 +26,7 @@ class ConfigurableDataSourceNames(str, enum.Enum):
25
26
  self,
26
27
  s_3: typing.Callable[[], T_Result],
27
28
  azure_storage_blob: typing.Callable[[], T_Result],
29
+ google_drive: typing.Callable[[], T_Result],
28
30
  microsoft_onedrive: typing.Callable[[], T_Result],
29
31
  microsoft_sharepoint: typing.Callable[[], T_Result],
30
32
  slack: typing.Callable[[], T_Result],
@@ -37,6 +39,8 @@ class ConfigurableDataSourceNames(str, enum.Enum):
37
39
  return s_3()
38
40
  if self is ConfigurableDataSourceNames.AZURE_STORAGE_BLOB:
39
41
  return azure_storage_blob()
42
+ if self is ConfigurableDataSourceNames.GOOGLE_DRIVE:
43
+ return google_drive()
40
44
  if self is ConfigurableDataSourceNames.MICROSOFT_ONEDRIVE:
41
45
  return microsoft_onedrive()
42
46
  if self is ConfigurableDataSourceNames.MICROSOFT_SHAREPOINT:
@@ -24,6 +24,7 @@ class ConfigurableTransformationNames(str, enum.Enum):
24
24
  BEDROCK_EMBEDDING = "BEDROCK_EMBEDDING"
25
25
  HUGGINGFACE_API_EMBEDDING = "HUGGINGFACE_API_EMBEDDING"
26
26
  GEMINI_EMBEDDING = "GEMINI_EMBEDDING"
27
+ VERTEXAI_EMBEDDING = "VERTEXAI_EMBEDDING"
27
28
 
28
29
  def visit(
29
30
  self,
@@ -40,6 +41,7 @@ class ConfigurableTransformationNames(str, enum.Enum):
40
41
  bedrock_embedding: typing.Callable[[], T_Result],
41
42
  huggingface_api_embedding: typing.Callable[[], T_Result],
42
43
  gemini_embedding: typing.Callable[[], T_Result],
44
+ vertexai_embedding: typing.Callable[[], T_Result],
43
45
  ) -> T_Result:
44
46
  if self is ConfigurableTransformationNames.CHARACTER_SPLITTER:
45
47
  return character_splitter()
@@ -67,3 +69,5 @@ class ConfigurableTransformationNames(str, enum.Enum):
67
69
  return huggingface_api_embedding()
68
70
  if self is ConfigurableTransformationNames.GEMINI_EMBEDDING:
69
71
  return gemini_embedding()
72
+ if self is ConfigurableTransformationNames.VERTEXAI_EMBEDDING:
73
+ return vertexai_embedding()
@@ -7,6 +7,7 @@ from .bedrock_embedding import BedrockEmbedding
7
7
  from .character_splitter import CharacterSplitter
8
8
  from .code_splitter import CodeSplitter
9
9
  from .cohere_embedding import CohereEmbedding
10
+ from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
10
11
  from .gemini_embedding import GeminiEmbedding
11
12
  from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
12
13
  from .markdown_element_node_parser import MarkdownElementNodeParser
@@ -30,4 +31,5 @@ ConfiguredTransformationItemComponentOne = typing.Union[
30
31
  BedrockEmbedding,
31
32
  HuggingFaceInferenceApiEmbedding,
32
33
  GeminiEmbedding,
34
+ ExtendVertexTextEmbedding,
33
35
  ]
@@ -5,6 +5,7 @@ import typing
5
5
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
6
6
  from .cloud_box_data_source import CloudBoxDataSource
7
7
  from .cloud_confluence_data_source import CloudConfluenceDataSource
8
+ from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
8
9
  from .cloud_jira_data_source import CloudJiraDataSource
9
10
  from .cloud_notion_page_data_source import CloudNotionPageDataSource
10
11
  from .cloud_one_drive_data_source import CloudOneDriveDataSource
@@ -15,6 +16,7 @@ from .cloud_slack_data_source import CloudSlackDataSource
15
16
  DataSourceComponentOne = typing.Union[
16
17
  CloudS3DataSource,
17
18
  CloudAzStorageBlobDataSource,
19
+ CloudGoogleDriveDataSource,
18
20
  CloudOneDriveDataSource,
19
21
  CloudSharepointDataSource,
20
22
  CloudSlackDataSource,
@@ -5,6 +5,7 @@ import typing
5
5
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
6
6
  from .cloud_box_data_source import CloudBoxDataSource
7
7
  from .cloud_confluence_data_source import CloudConfluenceDataSource
8
+ from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
8
9
  from .cloud_jira_data_source import CloudJiraDataSource
9
10
  from .cloud_notion_page_data_source import CloudNotionPageDataSource
10
11
  from .cloud_one_drive_data_source import CloudOneDriveDataSource
@@ -15,6 +16,7 @@ from .cloud_slack_data_source import CloudSlackDataSource
15
16
  DataSourceCreateComponentOne = typing.Union[
16
17
  CloudS3DataSource,
17
18
  CloudAzStorageBlobDataSource,
19
+ CloudGoogleDriveDataSource,
18
20
  CloudOneDriveDataSource,
19
21
  CloudSharepointDataSource,
20
22
  CloudSlackDataSource,
@@ -0,0 +1,58 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .vertex_embedding_mode import VertexEmbeddingMode
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class ExtendVertexTextEmbedding(pydantic.BaseModel):
19
+ """
20
+ Base class for embeddings.
21
+ """
22
+
23
+ model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
24
+ embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
25
+ callback_manager: typing.Optional[typing.Dict[str, typing.Any]]
26
+ num_workers: typing.Optional[int] = pydantic.Field(
27
+ description="The number of workers to use for async embedding calls."
28
+ )
29
+ embed_mode: VertexEmbeddingMode = pydantic.Field(description="The embedding mode to use.")
30
+ additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
31
+ description="Additional kwargs for the Vertex."
32
+ )
33
+ client_email: typing.Optional[str] = pydantic.Field(
34
+ description="The client email to use when making Vertex API calls."
35
+ )
36
+ token_uri: typing.Optional[str] = pydantic.Field(description="The token uri to use when making Vertex API calls.")
37
+ private_key_id: typing.Optional[str] = pydantic.Field(
38
+ description="The private key id to use when making Vertex API calls."
39
+ )
40
+ private_key: typing.Optional[str] = pydantic.Field(
41
+ description="The private key to use when making Vertex API calls."
42
+ )
43
+ project: str = pydantic.Field(description="The default GCP project to use when making Vertex API calls.")
44
+ location: str = pydantic.Field(description="The default location to use when making API calls.")
45
+ class_name: typing.Optional[str]
46
+
47
+ def json(self, **kwargs: typing.Any) -> str:
48
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
49
+ return super().json(**kwargs_with_defaults)
50
+
51
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
52
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
53
+ return super().dict(**kwargs_with_defaults)
54
+
55
+ class Config:
56
+ frozen = True
57
+ smart_union = True
58
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -23,6 +23,7 @@ class LlamaParseParameters(pydantic.BaseModel):
23
23
  languages: typing.Optional[typing.List[ParserLanguages]]
24
24
  parsing_instruction: typing.Optional[str]
25
25
  disable_ocr: typing.Optional[bool]
26
+ disable_reconstruction: typing.Optional[bool]
26
27
  invalidate_cache: typing.Optional[bool]
27
28
  do_not_cache: typing.Optional[bool]
28
29
  fast_mode: typing.Optional[bool]
@@ -33,11 +34,12 @@ class LlamaParseParameters(pydantic.BaseModel):
33
34
  page_separator: typing.Optional[str]
34
35
  bounding_box: typing.Optional[str]
35
36
  target_pages: typing.Optional[str]
36
- use_vendor_multimodal_model: typing.Optional[str]
37
+ use_vendor_multimodal_model: typing.Optional[bool]
37
38
  vendor_multimodal_model_name: typing.Optional[str]
38
39
  vendor_multimodal_api_key: typing.Optional[str]
39
40
  page_prefix: typing.Optional[str]
40
41
  page_suffix: typing.Optional[str]
42
+ webhook_url: typing.Optional[str]
41
43
  take_screenshot: typing.Optional[bool]
42
44
  s_3_input_path: typing.Optional[str] = pydantic.Field(alias="s3_input_path")
43
45
  s_3_output_path_prefix: typing.Optional[str] = pydantic.Field(alias="s3_output_path_prefix")
@@ -21,6 +21,7 @@ class LlmModelData(pydantic.BaseModel):
21
21
 
22
22
  name: str = pydantic.Field(description="The name of the LLM model.")
23
23
  description: str = pydantic.Field(description="The description of the LLM model.")
24
+ multi_modal: bool = pydantic.Field(description="Whether the model supports multi-modal image input")
24
25
 
25
26
  def json(self, **kwargs: typing.Any) -> str:
26
27
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -4,6 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
+ from .supported_llm_model_names import SupportedLlmModelNames
7
8
 
8
9
  try:
9
10
  import pydantic
@@ -20,7 +21,9 @@ class LlmParameters(pydantic.BaseModel):
20
21
  Comes with special serialization logic for types used commonly in platform codebase.
21
22
  """
22
23
 
23
- model_name: typing.Optional[str] = pydantic.Field(description="The name of the model to use for LLM completions.")
24
+ model_name: typing.Optional[SupportedLlmModelNames] = pydantic.Field(
25
+ description="The name of the model to use for LLM completions."
26
+ )
24
27
  system_prompt: typing.Optional[str] = pydantic.Field(description="The system prompt to use for the completion.")
25
28
  temperature: typing.Optional[float] = pydantic.Field(description="The temperature value for the model.")
26
29
  class_name: typing.Optional[str]
@@ -0,0 +1,33 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class PageScreenshotMetadata(pydantic.BaseModel):
18
+ page_index: int = pydantic.Field(description="The index of the page for which the screenshot is taken (0-indexed)")
19
+ file_id: str = pydantic.Field(description="The ID of the file that the page screenshot was taken from")
20
+ image_size: int = pydantic.Field(description="The size of the image in bytes")
21
+
22
+ def json(self, **kwargs: typing.Any) -> str:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().json(**kwargs_with_defaults)
25
+
26
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().dict(**kwargs_with_defaults)
29
+
30
+ class Config:
31
+ frozen = True
32
+ smart_union = True
33
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,38 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .page_screenshot_metadata import PageScreenshotMetadata
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class PageScreenshotNodeWithScore(pydantic.BaseModel):
19
+ """
20
+ Page screenshot metadata with score
21
+ """
22
+
23
+ node: PageScreenshotMetadata
24
+ score: float = pydantic.Field(description="The score of the screenshot node")
25
+ class_name: typing.Optional[str]
26
+
27
+ def json(self, **kwargs: typing.Any) -> str:
28
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
+ return super().json(**kwargs_with_defaults)
30
+
31
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
32
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
+ return super().dict(**kwargs_with_defaults)
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -8,6 +8,7 @@ from .configured_transformation_item import ConfiguredTransformationItem
8
8
  from .data_sink import DataSink
9
9
  from .eval_execution_params import EvalExecutionParams
10
10
  from .llama_parse_parameters import LlamaParseParameters
11
+ from .pipeline_configuration_hashes import PipelineConfigurationHashes
11
12
  from .pipeline_embedding_config import PipelineEmbeddingConfig
12
13
  from .pipeline_transform_config import PipelineTransformConfig
13
14
  from .pipeline_type import PipelineType
@@ -44,6 +45,9 @@ class Pipeline(pydantic.BaseModel):
44
45
  configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = pydantic.Field(
45
46
  description="Deprecated don't use it, List of configured transformations."
46
47
  )
48
+ config_hash: typing.Optional[PipelineConfigurationHashes] = pydantic.Field(
49
+ description="Hashes for the configuration of the pipeline."
50
+ )
47
51
  transform_config: typing.Optional[PipelineTransformConfig] = pydantic.Field(
48
52
  description="Configuration for the transformation."
49
53
  )
@@ -0,0 +1,37 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class PipelineConfigurationHashes(pydantic.BaseModel):
18
+ """
19
+ Hashes for the configuration of a pipeline.
20
+ """
21
+
22
+ embedding_config_hash: typing.Optional[str] = pydantic.Field(description="Hash of the embedding config.")
23
+ parsing_config_hash: typing.Optional[str] = pydantic.Field(description="Hash of the llama parse parameters.")
24
+ transform_config_hash: typing.Optional[str] = pydantic.Field(description="Hash of the transform config.")
25
+
26
+ def json(self, **kwargs: typing.Any) -> str:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().json(**kwargs_with_defaults)
29
+
30
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
+ return super().dict(**kwargs_with_defaults)
33
+
34
+ class Config:
35
+ frozen = True
36
+ smart_union = True
37
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -12,6 +12,7 @@ from .cohere_embedding_config import CohereEmbeddingConfig
12
12
  from .gemini_embedding_config import GeminiEmbeddingConfig
13
13
  from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
14
14
  from .open_ai_embedding_config import OpenAiEmbeddingConfig
15
+ from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
15
16
 
16
17
 
17
18
  class PipelineCreateEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
@@ -68,6 +69,15 @@ class PipelineCreateEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
68
69
  allow_population_by_field_name = True
69
70
 
70
71
 
72
+ class PipelineCreateEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
73
+ type: typing_extensions.Literal["VERTEXAI_EMBEDDING"]
74
+
75
+ class Config:
76
+ frozen = True
77
+ smart_union = True
78
+ allow_population_by_field_name = True
79
+
80
+
71
81
  PipelineCreateEmbeddingConfig = typing.Union[
72
82
  PipelineCreateEmbeddingConfig_OpenaiEmbedding,
73
83
  PipelineCreateEmbeddingConfig_AzureEmbedding,
@@ -75,4 +85,5 @@ PipelineCreateEmbeddingConfig = typing.Union[
75
85
  PipelineCreateEmbeddingConfig_BedrockEmbedding,
76
86
  PipelineCreateEmbeddingConfig_GeminiEmbedding,
77
87
  PipelineCreateEmbeddingConfig_CohereEmbedding,
88
+ PipelineCreateEmbeddingConfig_VertexaiEmbedding,
78
89
  ]
@@ -5,6 +5,7 @@ import typing
5
5
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
6
6
  from .cloud_box_data_source import CloudBoxDataSource
7
7
  from .cloud_confluence_data_source import CloudConfluenceDataSource
8
+ from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
8
9
  from .cloud_jira_data_source import CloudJiraDataSource
9
10
  from .cloud_notion_page_data_source import CloudNotionPageDataSource
10
11
  from .cloud_one_drive_data_source import CloudOneDriveDataSource
@@ -15,6 +16,7 @@ from .cloud_slack_data_source import CloudSlackDataSource
15
16
  PipelineDataSourceComponentOne = typing.Union[
16
17
  CloudS3DataSource,
17
18
  CloudAzStorageBlobDataSource,
19
+ CloudGoogleDriveDataSource,
18
20
  CloudOneDriveDataSource,
19
21
  CloudSharepointDataSource,
20
22
  CloudSlackDataSource,
@@ -12,6 +12,7 @@ from .cohere_embedding_config import CohereEmbeddingConfig
12
12
  from .gemini_embedding_config import GeminiEmbeddingConfig
13
13
  from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
14
14
  from .open_ai_embedding_config import OpenAiEmbeddingConfig
15
+ from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
15
16
 
16
17
 
17
18
  class PipelineEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
@@ -68,6 +69,15 @@ class PipelineEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
68
69
  allow_population_by_field_name = True
69
70
 
70
71
 
72
+ class PipelineEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
73
+ type: typing_extensions.Literal["VERTEXAI_EMBEDDING"]
74
+
75
+ class Config:
76
+ frozen = True
77
+ smart_union = True
78
+ allow_population_by_field_name = True
79
+
80
+
71
81
  PipelineEmbeddingConfig = typing.Union[
72
82
  PipelineEmbeddingConfig_OpenaiEmbedding,
73
83
  PipelineEmbeddingConfig_AzureEmbedding,
@@ -75,4 +85,5 @@ PipelineEmbeddingConfig = typing.Union[
75
85
  PipelineEmbeddingConfig_BedrockEmbedding,
76
86
  PipelineEmbeddingConfig_GeminiEmbedding,
77
87
  PipelineEmbeddingConfig_CohereEmbedding,
88
+ PipelineEmbeddingConfig_VertexaiEmbedding,
78
89
  ]
@@ -4,6 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
+ from .pipeline_file_config_hash_value import PipelineFileConfigHashValue
7
8
  from .pipeline_file_custom_metadata_value import PipelineFileCustomMetadataValue
8
9
  from .pipeline_file_resource_info_value import PipelineFileResourceInfoValue
9
10
 
@@ -40,6 +41,9 @@ class PipelineFile(pydantic.BaseModel):
40
41
  custom_metadata: typing.Optional[typing.Dict[str, PipelineFileCustomMetadataValue]] = pydantic.Field(
41
42
  description="Custom metadata for the file"
42
43
  )
44
+ config_hash: typing.Optional[typing.Dict[str, PipelineFileConfigHashValue]] = pydantic.Field(
45
+ description="Hashes for the configuration of the pipeline."
46
+ )
43
47
 
44
48
  def json(self, **kwargs: typing.Any) -> str:
45
49
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ PipelineFileConfigHashValue = typing.Union[typing.Dict[str, typing.Any], typing.List[typing.Any], str, int, float, bool]
@@ -33,6 +33,7 @@ class PresetRetrievalParams(pydantic.BaseModel):
33
33
  description="Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content)."
34
34
  )
35
35
  retrieval_mode: typing.Optional[RetrievalMode] = pydantic.Field(description="The retrieval mode for the query.")
36
+ retrieve_image_nodes: typing.Optional[bool] = pydantic.Field(description="Whether to retrieve image nodes.")
36
37
 
37
38
  def json(self, **kwargs: typing.Any) -> str:
38
39
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -4,6 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
+ from .page_screenshot_node_with_score import PageScreenshotNodeWithScore
7
8
  from .text_node_with_score import TextNodeWithScore
8
9
 
9
10
  try:
@@ -24,6 +25,9 @@ class RetrieveResults(pydantic.BaseModel):
24
25
  retrieval_nodes: typing.List[TextNodeWithScore] = pydantic.Field(
25
26
  description="The nodes retrieved by the pipeline for the given query."
26
27
  )
28
+ image_nodes: typing.Optional[typing.List[PageScreenshotNodeWithScore]] = pydantic.Field(
29
+ description="The image nodes retrieved by the pipeline for the given query."
30
+ )
27
31
  retrieval_latency: typing.Dict[str, float] = pydantic.Field(
28
32
  description="The end-to-end latency for retrieval and reranking."
29
33
  )