llama-cloud 0.0.14__py3-none-any.whl → 0.0.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (35) hide show
  1. llama_cloud/__init__.py +20 -0
  2. llama_cloud/resources/__init__.py +2 -0
  3. llama_cloud/resources/files/client.py +159 -0
  4. llama_cloud/resources/parsing/client.py +40 -0
  5. llama_cloud/resources/pipelines/__init__.py +2 -0
  6. llama_cloud/resources/pipelines/client.py +188 -2
  7. llama_cloud/resources/pipelines/types/__init__.py +2 -0
  8. llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py +11 -0
  9. llama_cloud/types/__init__.py +18 -0
  10. llama_cloud/types/cloud_az_storage_blob_data_source.py +1 -2
  11. llama_cloud/types/cloud_postgres_vector_store.py +6 -8
  12. llama_cloud/types/configurable_transformation_names.py +4 -0
  13. llama_cloud/types/configured_transformation_item_component_one.py +2 -0
  14. llama_cloud/types/extend_vertex_text_embedding.py +58 -0
  15. llama_cloud/types/llama_parse_parameters.py +3 -1
  16. llama_cloud/types/llm_model_data.py +1 -0
  17. llama_cloud/types/llm_parameters.py +4 -1
  18. llama_cloud/types/page_screenshot_metadata.py +33 -0
  19. llama_cloud/types/page_screenshot_node_with_score.py +38 -0
  20. llama_cloud/types/pipeline.py +4 -0
  21. llama_cloud/types/pipeline_configuration_hashes.py +37 -0
  22. llama_cloud/types/pipeline_create_embedding_config.py +11 -0
  23. llama_cloud/types/pipeline_data_source.py +7 -0
  24. llama_cloud/types/pipeline_data_source_create.py +3 -0
  25. llama_cloud/types/pipeline_embedding_config.py +11 -0
  26. llama_cloud/types/pipeline_file.py +4 -0
  27. llama_cloud/types/pipeline_file_config_hash_value.py +5 -0
  28. llama_cloud/types/preset_retrieval_params.py +1 -0
  29. llama_cloud/types/retrieve_results.py +4 -0
  30. llama_cloud/types/vertex_ai_embedding_config.py +34 -0
  31. llama_cloud/types/vertex_embedding_mode.py +45 -0
  32. {llama_cloud-0.0.14.dist-info → llama_cloud-0.0.16.dist-info}/METADATA +1 -1
  33. {llama_cloud-0.0.14.dist-info → llama_cloud-0.0.16.dist-info}/RECORD +35 -28
  34. {llama_cloud-0.0.14.dist-info → llama_cloud-0.0.16.dist-info}/LICENSE +0 -0
  35. {llama_cloud-0.0.14.dist-info → llama_cloud-0.0.16.dist-info}/WHEEL +0 -0
@@ -0,0 +1,38 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .page_screenshot_metadata import PageScreenshotMetadata
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class PageScreenshotNodeWithScore(pydantic.BaseModel):
19
+ """
20
+ Page screenshot metadata with score
21
+ """
22
+
23
+ node: PageScreenshotMetadata
24
+ score: float = pydantic.Field(description="The score of the screenshot node")
25
+ class_name: typing.Optional[str]
26
+
27
+ def json(self, **kwargs: typing.Any) -> str:
28
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
+ return super().json(**kwargs_with_defaults)
30
+
31
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
32
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
+ return super().dict(**kwargs_with_defaults)
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -8,6 +8,7 @@ from .configured_transformation_item import ConfiguredTransformationItem
8
8
  from .data_sink import DataSink
9
9
  from .eval_execution_params import EvalExecutionParams
10
10
  from .llama_parse_parameters import LlamaParseParameters
11
+ from .pipeline_configuration_hashes import PipelineConfigurationHashes
11
12
  from .pipeline_embedding_config import PipelineEmbeddingConfig
12
13
  from .pipeline_transform_config import PipelineTransformConfig
13
14
  from .pipeline_type import PipelineType
@@ -44,6 +45,9 @@ class Pipeline(pydantic.BaseModel):
44
45
  configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = pydantic.Field(
45
46
  description="Deprecated don't use it, List of configured transformations."
46
47
  )
48
+ config_hash: typing.Optional[PipelineConfigurationHashes] = pydantic.Field(
49
+ description="Hashes for the configuration of the pipeline."
50
+ )
47
51
  transform_config: typing.Optional[PipelineTransformConfig] = pydantic.Field(
48
52
  description="Configuration for the transformation."
49
53
  )
@@ -0,0 +1,37 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class PipelineConfigurationHashes(pydantic.BaseModel):
18
+ """
19
+ Hashes for the configuration of a pipeline.
20
+ """
21
+
22
+ embedding_config_hash: typing.Optional[str] = pydantic.Field(description="Hash of the embedding config.")
23
+ parsing_config_hash: typing.Optional[str] = pydantic.Field(description="Hash of the llama parse parameters.")
24
+ transform_config_hash: typing.Optional[str] = pydantic.Field(description="Hash of the transform config.")
25
+
26
+ def json(self, **kwargs: typing.Any) -> str:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().json(**kwargs_with_defaults)
29
+
30
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
+ return super().dict(**kwargs_with_defaults)
33
+
34
+ class Config:
35
+ frozen = True
36
+ smart_union = True
37
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -12,6 +12,7 @@ from .cohere_embedding_config import CohereEmbeddingConfig
12
12
  from .gemini_embedding_config import GeminiEmbeddingConfig
13
13
  from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
14
14
  from .open_ai_embedding_config import OpenAiEmbeddingConfig
15
+ from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
15
16
 
16
17
 
17
18
  class PipelineCreateEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
@@ -68,6 +69,15 @@ class PipelineCreateEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
68
69
  allow_population_by_field_name = True
69
70
 
70
71
 
72
+ class PipelineCreateEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
73
+ type: typing_extensions.Literal["VERTEXAI_EMBEDDING"]
74
+
75
+ class Config:
76
+ frozen = True
77
+ smart_union = True
78
+ allow_population_by_field_name = True
79
+
80
+
71
81
  PipelineCreateEmbeddingConfig = typing.Union[
72
82
  PipelineCreateEmbeddingConfig_OpenaiEmbedding,
73
83
  PipelineCreateEmbeddingConfig_AzureEmbedding,
@@ -75,4 +85,5 @@ PipelineCreateEmbeddingConfig = typing.Union[
75
85
  PipelineCreateEmbeddingConfig_BedrockEmbedding,
76
86
  PipelineCreateEmbeddingConfig_GeminiEmbedding,
77
87
  PipelineCreateEmbeddingConfig_CohereEmbedding,
88
+ PipelineCreateEmbeddingConfig_VertexaiEmbedding,
78
89
  ]
@@ -34,6 +34,13 @@ class PipelineDataSource(pydantic.BaseModel):
34
34
  project_id: str
35
35
  data_source_id: str = pydantic.Field(description="The ID of the data source.")
36
36
  pipeline_id: str = pydantic.Field(description="The ID of the pipeline.")
37
+ last_synced_at: dt.datetime = pydantic.Field(description="The last time the data source was automatically synced.")
38
+ sync_interval: typing.Optional[float] = pydantic.Field(
39
+ description="The interval at which the data source should be synced."
40
+ )
41
+ sync_schedule_set_by: typing.Optional[str] = pydantic.Field(
42
+ description="The id of the user who set the sync schedule."
43
+ )
37
44
 
38
45
  def json(self, **kwargs: typing.Any) -> str:
39
46
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -20,6 +20,9 @@ class PipelineDataSourceCreate(pydantic.BaseModel):
20
20
  """
21
21
 
22
22
  data_source_id: str = pydantic.Field(description="The ID of the data source.")
23
+ sync_interval: typing.Optional[float] = pydantic.Field(
24
+ description="The interval at which the data source should be synced."
25
+ )
23
26
 
24
27
  def json(self, **kwargs: typing.Any) -> str:
25
28
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -12,6 +12,7 @@ from .cohere_embedding_config import CohereEmbeddingConfig
12
12
  from .gemini_embedding_config import GeminiEmbeddingConfig
13
13
  from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
14
14
  from .open_ai_embedding_config import OpenAiEmbeddingConfig
15
+ from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
15
16
 
16
17
 
17
18
  class PipelineEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
@@ -68,6 +69,15 @@ class PipelineEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
68
69
  allow_population_by_field_name = True
69
70
 
70
71
 
72
+ class PipelineEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
73
+ type: typing_extensions.Literal["VERTEXAI_EMBEDDING"]
74
+
75
+ class Config:
76
+ frozen = True
77
+ smart_union = True
78
+ allow_population_by_field_name = True
79
+
80
+
71
81
  PipelineEmbeddingConfig = typing.Union[
72
82
  PipelineEmbeddingConfig_OpenaiEmbedding,
73
83
  PipelineEmbeddingConfig_AzureEmbedding,
@@ -75,4 +85,5 @@ PipelineEmbeddingConfig = typing.Union[
75
85
  PipelineEmbeddingConfig_BedrockEmbedding,
76
86
  PipelineEmbeddingConfig_GeminiEmbedding,
77
87
  PipelineEmbeddingConfig_CohereEmbedding,
88
+ PipelineEmbeddingConfig_VertexaiEmbedding,
78
89
  ]
@@ -4,6 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
+ from .pipeline_file_config_hash_value import PipelineFileConfigHashValue
7
8
  from .pipeline_file_custom_metadata_value import PipelineFileCustomMetadataValue
8
9
  from .pipeline_file_resource_info_value import PipelineFileResourceInfoValue
9
10
 
@@ -40,6 +41,9 @@ class PipelineFile(pydantic.BaseModel):
40
41
  custom_metadata: typing.Optional[typing.Dict[str, PipelineFileCustomMetadataValue]] = pydantic.Field(
41
42
  description="Custom metadata for the file"
42
43
  )
44
+ config_hash: typing.Optional[typing.Dict[str, PipelineFileConfigHashValue]] = pydantic.Field(
45
+ description="Hashes for the configuration of the pipeline."
46
+ )
43
47
 
44
48
  def json(self, **kwargs: typing.Any) -> str:
45
49
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ PipelineFileConfigHashValue = typing.Union[typing.Dict[str, typing.Any], typing.List[typing.Any], str, int, float, bool]
@@ -33,6 +33,7 @@ class PresetRetrievalParams(pydantic.BaseModel):
33
33
  description="Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content)."
34
34
  )
35
35
  retrieval_mode: typing.Optional[RetrievalMode] = pydantic.Field(description="The retrieval mode for the query.")
36
+ retrieve_image_nodes: typing.Optional[bool] = pydantic.Field(description="Whether to retrieve image nodes.")
36
37
 
37
38
  def json(self, **kwargs: typing.Any) -> str:
38
39
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -4,6 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
+ from .page_screenshot_node_with_score import PageScreenshotNodeWithScore
7
8
  from .text_node_with_score import TextNodeWithScore
8
9
 
9
10
  try:
@@ -24,6 +25,9 @@ class RetrieveResults(pydantic.BaseModel):
24
25
  retrieval_nodes: typing.List[TextNodeWithScore] = pydantic.Field(
25
26
  description="The nodes retrieved by the pipeline for the given query."
26
27
  )
28
+ image_nodes: typing.Optional[typing.List[PageScreenshotNodeWithScore]] = pydantic.Field(
29
+ description="The image nodes retrieved by the pipeline for the given query."
30
+ )
27
31
  retrieval_latency: typing.Dict[str, float] = pydantic.Field(
28
32
  description="The end-to-end latency for retrieval and reranking."
29
33
  )
@@ -0,0 +1,34 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class VertexAiEmbeddingConfig(pydantic.BaseModel):
19
+ component: typing.Optional[ExtendVertexTextEmbedding] = pydantic.Field(
20
+ description="Configuration for the VertexAI embedding model."
21
+ )
22
+
23
+ def json(self, **kwargs: typing.Any) -> str:
24
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
25
+ return super().json(**kwargs_with_defaults)
26
+
27
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
28
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
+ return super().dict(**kwargs_with_defaults)
30
+
31
+ class Config:
32
+ frozen = True
33
+ smart_union = True
34
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,45 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class VertexEmbeddingMode(str, enum.Enum):
10
+ """
11
+ VertexAI embedding mode.
12
+
13
+ Attributes:
14
+ DEFAULT_MODE (str): The default embedding mode, for older models before August 2023,
15
+ that does not support task_type
16
+ CLASSIFICATION_MODE (str): Optimizes embeddings for classification tasks.
17
+ CLUSTERING_MODE (str): Optimizes embeddings for clustering tasks.
18
+ SEMANTIC_SIMILARITY_MODE (str): Optimizes embeddings for tasks that require assessments of semantic similarity.
19
+ RETRIEVAL_MODE (str): Optimizes embeddings for retrieval tasks, including search and document retrieval.
20
+ """
21
+
22
+ DEFAULT = "default"
23
+ CLASSIFICATION = "classification"
24
+ CLUSTERING = "clustering"
25
+ SIMILARITY = "similarity"
26
+ RETRIEVAL = "retrieval"
27
+
28
+ def visit(
29
+ self,
30
+ default: typing.Callable[[], T_Result],
31
+ classification: typing.Callable[[], T_Result],
32
+ clustering: typing.Callable[[], T_Result],
33
+ similarity: typing.Callable[[], T_Result],
34
+ retrieval: typing.Callable[[], T_Result],
35
+ ) -> T_Result:
36
+ if self is VertexEmbeddingMode.DEFAULT:
37
+ return default()
38
+ if self is VertexEmbeddingMode.CLASSIFICATION:
39
+ return classification()
40
+ if self is VertexEmbeddingMode.CLUSTERING:
41
+ return clustering()
42
+ if self is VertexEmbeddingMode.SIMILARITY:
43
+ return similarity()
44
+ if self is VertexEmbeddingMode.RETRIEVAL:
45
+ return retrieval()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.0.14
3
+ Version: 0.0.16
4
4
  Summary:
5
5
  Author: Logan Markewich
6
6
  Author-email: logan@runllama.ai
@@ -1,4 +1,4 @@
1
- llama_cloud/__init__.py,sha256=-sINnDTiq_fVrFp7agsMffIl-pE_oxgD6RutJG8DmHo,13953
1
+ llama_cloud/__init__.py,sha256=JeJcG15poj5efkSLQPMQP2c2e6f-ytMCigjF23U00_E,14703
2
2
  llama_cloud/client.py,sha256=kITbWAZl-xw19xv9ouSiT1wQ1i7yWHhNG5XDTjb-EVc,4503
3
3
  llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
@@ -9,7 +9,7 @@ llama_cloud/core/remove_none_from_dict.py,sha256=8m91FC3YuVem0Gm9_sXhJ2tGvP33owJ
9
9
  llama_cloud/environment.py,sha256=q4q-uY5WgcSlzfHwEANOqFQPu0lstqvMnVOsSfifMKo,168
10
10
  llama_cloud/errors/__init__.py,sha256=pbbVUFtB9LCocA1RMWMMF_RKjsy5YkOKX5BAuE49w6g,170
11
11
  llama_cloud/errors/unprocessable_entity_error.py,sha256=FvR7XPlV3Xx5nu8HNlmLhBRdk4so_gCHjYT5PyZe6sM,313
12
- llama_cloud/resources/__init__.py,sha256=GBRtOHhgDAfP3eI1I8sBcerJOgv9UjkmosnU8rdFTnE,2176
12
+ llama_cloud/resources/__init__.py,sha256=pcvU9SsDc2agUuBkXP0AFxrAiTvN85mqY0CUcLEEj78,2284
13
13
  llama_cloud/resources/auth/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
14
14
  llama_cloud/resources/auth/client.py,sha256=kUfPUIXNS95MBKsknEvdqsDojlVJfVnxmHkAaiYVxCY,4560
15
15
  llama_cloud/resources/component_definitions/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
@@ -33,22 +33,22 @@ llama_cloud/resources/extraction/types/__init__.py,sha256=ePJKSJ6hGIsPnfpe0Sp5w4
33
33
  llama_cloud/resources/extraction/types/extraction_schema_create_data_schema_value.py,sha256=igTdUjMeB-PI5xKrloRKHY-EvL6_V8OLshABu6Dyx4A,217
34
34
  llama_cloud/resources/extraction/types/extraction_schema_update_data_schema_value.py,sha256=z_4tkLkWnHnd3Xa9uUctk9hG9Mo7GKU4dK4s2pm8qow,217
35
35
  llama_cloud/resources/files/__init__.py,sha256=aZpyTj6KpZvA5XVwmuo1sIlRs7ba98btxVBZ6j5vIsI,155
36
- llama_cloud/resources/files/client.py,sha256=pU7ugpqW4dAXJycVg3KxUI82ixiH6vZtcwAaHyPdsDA,22186
36
+ llama_cloud/resources/files/client.py,sha256=qk-54lG1eWEAh4CmORd0aTcC4EG89-c3J9HeyV2St8Q,28323
37
37
  llama_cloud/resources/files/types/__init__.py,sha256=ZWnnYWuDYZSfUJc7Jv3HyovzijdB--DTK4YB-uPcDsA,181
38
38
  llama_cloud/resources/files/types/file_create_resource_info_value.py,sha256=R7Y-CJf7fnbvIqE3xOI5XOrmPwLbVJLC7zpxMu8Zopk,201
39
39
  llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
40
40
  llama_cloud/resources/organizations/client.py,sha256=akn_3sytJW_VhuLVBbP0TKiKKbBGuuAPDtGVIbW4kdA,34167
41
41
  llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
42
- llama_cloud/resources/parsing/client.py,sha256=epdS59BEsxx9nQryTV_Eemd3RAhESyMN2K4uP2gSpPQ,40700
43
- llama_cloud/resources/pipelines/__init__.py,sha256=Ww7n75XUkq-aqy7WuxhO9rRbBmi_VsYMpkZpDyw8oYs,1147
44
- llama_cloud/resources/pipelines/client.py,sha256=iDfmxzrxHpmJo9sKaFrHLStM0bvPKKeNGsgbM3dc8h8,129938
45
- llama_cloud/resources/pipelines/types/__init__.py,sha256=PFl5hsq0GHQRwZLR-L7igQ5NBO8GH_rJPOcRR_16ODk,1275
42
+ llama_cloud/resources/parsing/client.py,sha256=JwlSwIkHHQGO85tWqwKz7jJvbV3Zl26rWmXxeKRwRRc,41974
43
+ llama_cloud/resources/pipelines/__init__.py,sha256=64jDyMUqnwjawvCQ5f5Y9HiMMulbCsoZA67v0GrTMWs,1255
44
+ llama_cloud/resources/pipelines/client.py,sha256=35rH25EEwdz6AzjTmpxpctXfUK5QklLawgoonLdyXCM,137448
45
+ llama_cloud/resources/pipelines/types/__init__.py,sha256=SBIy3XdKfQFTmhozQJkP8tsAFCAkz-UkMvK8EGTYvck,1383
46
46
  llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py,sha256=trI48WLxPcAqV9207Q6-3cj1nl4EGlZpw7En56ZsPgg,217
47
- llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=0XHOqSS-yiSREOi8-kE9yjgKNzxqzAcxDhHDHfDHEkk,2494
47
+ llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=o2SzAvQbsvu9fViWUXZVst0zxWm8T7l0RuZEEXYXB74,2874
48
48
  llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py,sha256=QhoTMm88VYbc9EktYuA8qhbUFqwIpHmO5LhML7Z4Sjk,872
49
49
  llama_cloud/resources/projects/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
50
50
  llama_cloud/resources/projects/client.py,sha256=nK81HdhGbWY1rh8rSEsKzRuvyvCQ-IkhLHIPDqEqVFU,47754
51
- llama_cloud/types/__init__.py,sha256=_-QQmxInSXIAPL6qcOihrwRU2MLxcgzJMOlBPZepHtc,17155
51
+ llama_cloud/types/__init__.py,sha256=2ejujFfsEIcCoLpWVGLxmX3l__MylEQNB1zAhQwceNk,18050
52
52
  llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
53
53
  llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
54
54
  llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
@@ -64,7 +64,7 @@ llama_cloud/types/character_chunking_config.py,sha256=2ooAnrlVVbKj4nDi_lR66x5E6n
64
64
  llama_cloud/types/character_splitter.py,sha256=tA8Eob62cs3geVMVkFvDp17nxijYVUQyjpvV0wGyLpQ,1969
65
65
  llama_cloud/types/chat_data.py,sha256=iwPmxUFKy9QS4OHoMi0HcFs9I4DVYpRcIlHEUvk1PR8,1373
66
66
  llama_cloud/types/chat_message.py,sha256=jp1GrnrRb3-nQ8KoMdLchzCSfoEczChnUgbD6xJJ65U,1762
67
- llama_cloud/types/cloud_az_storage_blob_data_source.py,sha256=T4zqGF2KUoJ3g9sQbVcmJI2Rae5tvsUm0ML0Lvh8JMU,2196
67
+ llama_cloud/types/cloud_az_storage_blob_data_source.py,sha256=rq1xhVh69QcZec326f5cizj7IdHTYqyzb6C8I1owHbM,2156
68
68
  llama_cloud/types/cloud_azure_ai_search_vector_store.py,sha256=9GTaft7BaKsR9RJQp5dlpbslXUlTMA1AcDdKV1ApfqI,1513
69
69
  llama_cloud/types/cloud_box_data_source.py,sha256=myL71JjQ6vK6uQWWW884I6n_0jFuQD_jA8WG3KtxPRg,2076
70
70
  llama_cloud/types/cloud_chroma_vector_store.py,sha256=-PKWkXWRpypeVy6nSbFDDkypdBgHgeqsXtfjGKygjXM,1388
@@ -77,7 +77,7 @@ llama_cloud/types/cloud_mongo_db_atlas_vector_search.py,sha256=R-3zF5aH1PvkhXpGL
77
77
  llama_cloud/types/cloud_notion_page_data_source.py,sha256=XMbp5dbcR3uTwamV8JlXYk_2UteNJUbvH43caVE0A48,1397
78
78
  llama_cloud/types/cloud_one_drive_data_source.py,sha256=anI5y6si0PtrEiN9kTxF0UplDFHr-_yhL373fToUkdg,1686
79
79
  llama_cloud/types/cloud_pinecone_vector_store.py,sha256=UyCFAawIDnmPAmTcWjrFCKatypqc4cC4LpuAUOsyzUc,1647
80
- llama_cloud/types/cloud_postgres_vector_store.py,sha256=H2-yD-j7SPGk6G6pt28ZA778d6_jyBsO2QOPFd7-lKY,1364
80
+ llama_cloud/types/cloud_postgres_vector_store.py,sha256=s34U31gl2y4YSw7lyCmTtoib4wRK_pGJDUMc4bs_kKU,1292
81
81
  llama_cloud/types/cloud_qdrant_vector_store.py,sha256=F-gjNArzwLWmqgPcC-ZxRqSrhTFZbv5kqmIXmnLPB5o,1718
82
82
  llama_cloud/types/cloud_s_3_data_source.py,sha256=bRrHinGoXt89Q2aMp8VSBYrJ5MNYQCAB0q6esYo89ok,1715
83
83
  llama_cloud/types/cloud_sharepoint_data_source.py,sha256=jZ4cqnzPttDhTvaSe-xex3lyS388zRCECr6KBdZYLg8,1928
@@ -89,10 +89,10 @@ llama_cloud/types/cohere_embedding_config.py,sha256=c0Kj1wuSsBX9TQ2AondKv5ZtX5Pm
89
89
  llama_cloud/types/configurable_data_sink_names.py,sha256=Cue3CIK0jXSOlbQ2Z44tyDW1fpObzbXiCe0zilxt7Xk,1572
90
90
  llama_cloud/types/configurable_data_source_names.py,sha256=eD17s-N_pTV5YgMAcKe2MIsHmNChdcLrJydV2JUV9Ug,1826
91
91
  llama_cloud/types/configurable_transformation_definition.py,sha256=LDOhI5IDxlLDWM_p_xwCFM7qq1y-aGA8UxN7dnplDlU,1886
92
- llama_cloud/types/configurable_transformation_names.py,sha256=tQ8x9-NVisUd-I5vkY1Y_edNHM9pRjQ5cw0POjXUS2E,3216
92
+ llama_cloud/types/configurable_transformation_names.py,sha256=djcri_rEXZSXHIMVaTyZhGVKUflDm8kqGS6UFoBpl8k,3432
93
93
  llama_cloud/types/configured_transformation_item.py,sha256=9caK5ZOKgGCZc6ynJJIWwpxpScKHOHkZwHFlsBy-Fog,1826
94
94
  llama_cloud/types/configured_transformation_item_component.py,sha256=RXQ1Ed2HlqQ-V7RSDA9sndPBbJUhwfczVpCWHRKQigY,311
95
- llama_cloud/types/configured_transformation_item_component_one.py,sha256=yO_3dv2u0i0RQI_ODrEpPx9aJpMTuqrUKhmDJUbfehU,1158
95
+ llama_cloud/types/configured_transformation_item_component_one.py,sha256=eAYyyFqJyp6ac4zO2hL3kuf853Du9307He3vfAfdEwM,1257
96
96
  llama_cloud/types/custom_claims.py,sha256=KWaS1YWwbqAlJD47GhDDp_jCijZO7EZDi8_JywR09VE,2553
97
97
  llama_cloud/types/data_sink.py,sha256=11LlzUEMkgT-20OsMlvZYgbOnOvtxD4Y0NGyiVpP1_M,1524
98
98
  llama_cloud/types/data_sink_component.py,sha256=AMOlCar00ApJarc4sEVqYGoPWqjuiV19suOUvpIQtlg,224
@@ -119,6 +119,7 @@ llama_cloud/types/eval_execution_params_override.py,sha256=JZtB9HHnx582J7L3-mD2G
119
119
  llama_cloud/types/eval_question.py,sha256=0801Wo8Em5EnWV4DaCJKXGHWqG9urIgAS2mJekeGj3U,1604
120
120
  llama_cloud/types/eval_question_create.py,sha256=oOwxkE5gPj8RAwgr3uuTHfTvLSXmYkkxNHqsT7oUHjI,1031
121
121
  llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQbToiVJqm41ArY,2168
122
+ llama_cloud/types/extend_vertex_text_embedding.py,sha256=saAm_Mt6f8ydvD_8ZHzWvk9kweqZPlj8RgjPGe8B-lo,2514
122
123
  llama_cloud/types/extraction_job.py,sha256=Y8Vp8zmWEl3m9-hy0v2EIbwfm9c2b6oGTUWw3eip_II,1260
123
124
  llama_cloud/types/extraction_result.py,sha256=tjVF9feYcjtbO3kTBPSrXES9ANj6_e_WT6scMCU6Kxc,1629
124
125
  llama_cloud/types/extraction_result_data_value.py,sha256=YwtoAi0U511CVX4L91Nx0udAT4ejV6wn0AfJOyETt-o,199
@@ -137,11 +138,11 @@ llama_cloud/types/hugging_face_inference_api_embedding_token.py,sha256=A7-_YryBc
137
138
  llama_cloud/types/ingestion_error_response.py,sha256=8u0cyT44dnpkNeUKemTvJMUqi_WyPcYQKP_DMTqaFPY,1259
138
139
  llama_cloud/types/input_message.py,sha256=AP-5oU3SGXsaT0VLQP_mBVMwlX8h0dduClD7N3tSvW4,1455
139
140
  llama_cloud/types/job_name_mapping.py,sha256=scAbHrxvowCE3jHRZyYr2bBE5wvMMdBw7zpQ-lp5dY0,1433
140
- llama_cloud/types/llama_parse_parameters.py,sha256=AErCh0qlqxwlPNCxnL07sNyH42amJ5L4LMn0n7Ey4gg,2269
141
+ llama_cloud/types/llama_parse_parameters.py,sha256=j5v-yzuwSeY8lyeyzudupiRbkhZUQDTdswq4lICB_JY,2358
141
142
  llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=0IurzDxhIwdxCuTh1J9NXA_bU9VnKagDCs3853iREWY,11244
142
143
  llama_cloud/types/llm.py,sha256=T-Uv5OO0E6Rscpn841302jx3c7G1uo9LJkdrGlNGk30,2238
143
- llama_cloud/types/llm_model_data.py,sha256=KERZChR7wA1PLMDMp7BzOeTgrle47HM4OA5fX33e8uU,1158
144
- llama_cloud/types/llm_parameters.py,sha256=tEXW_SEhci7PAw8BKQzMbpJHLRCsX3jIVmZhqBp9ljQ,1506
144
+ llama_cloud/types/llm_model_data.py,sha256=QgyFe03psw5Aon3w1LC6ovCa1o9MVNcaGcmpapw-4D0,1263
145
+ llama_cloud/types/llm_parameters.py,sha256=2N_7EmWWyMfP2rUzhHDWuvc__8h3k5T23jGjr8mBF90,1601
145
146
  llama_cloud/types/local_eval.py,sha256=77NY_rq4zr0V3iB-PXE7Om6LcjRrytLbQ55f_ovAF-M,2050
146
147
  llama_cloud/types/local_eval_results.py,sha256=G1rLE6vO2lEziHQ6bAbZvpJMTrkSYWFvsS1iyZZ44Jw,1449
147
148
  llama_cloud/types/local_eval_sets.py,sha256=XJSSriwRvkma889pPiBQrpRakKejKOX3tWPu1TGb1ug,1181
@@ -164,6 +165,8 @@ llama_cloud/types/open_ai_embedding.py,sha256=vAiDcIV129M7YT5hI99A2kheN42793m4kE
164
165
  llama_cloud/types/open_ai_embedding_config.py,sha256=Mquc0JrtCo8lVYA2WW7q0ZikS3HRkiMtzDFu5XA-20o,1143
165
166
  llama_cloud/types/organization.py,sha256=6mVWJDaDxrnMHuufnpQEhgWTPZW9bhsjGFtgtf4VyJg,1321
166
167
  llama_cloud/types/organization_create.py,sha256=hUXRwArIx_0D_lilpL7z-B0oJJ5yEX8Sbu2xqfH_9so,1086
168
+ llama_cloud/types/page_screenshot_metadata.py,sha256=dXwWNDS7670xvIIuB1C_gLlsvAzQH4BRR3jLOojRvGs,1268
169
+ llama_cloud/types/page_screenshot_node_with_score.py,sha256=EdqoXbmARCz1DV14E2saCPshIeII709uM4cLwxw_mkM,1232
167
170
  llama_cloud/types/page_segmentation_config.py,sha256=VH8uuxnubnJak1gSpS64OoMueHidhsDB-2eq2tVHbag,998
168
171
  llama_cloud/types/page_splitter_node_parser.py,sha256=AwdDkxX-WgJEMOc8Jvz_IByfYULNdVIM9CoD6gEcnhU,1476
169
172
  llama_cloud/types/parser_languages.py,sha256=Ps3IlaSt6tyxEI657N3-vZL96r2puk8wsf31cWnO-SI,10840
@@ -173,18 +176,20 @@ llama_cloud/types/parsing_job_json_result.py,sha256=vC0FNMklitCgcB0esthMfv_RbbyF
173
176
  llama_cloud/types/parsing_job_markdown_result.py,sha256=E3-CVNFH1IMyuGs_xzYfYdNgq9AdnDshA_CxOTXz_dQ,1094
174
177
  llama_cloud/types/parsing_job_text_result.py,sha256=1QZielAWXuzPFOgr_DWshXPjmbExAAgAHKAEYVQVtJ8,1082
175
178
  llama_cloud/types/parsing_usage.py,sha256=JLlozu-vIkcRKqWaOVJ9Z2TrY7peJRTzOpYjOThGKGQ,1012
176
- llama_cloud/types/pipeline.py,sha256=u1EoHhP9UQab3y0rolNiLEd51JqzxfAZeMyRDPencE8,3206
179
+ llama_cloud/types/pipeline.py,sha256=8g4W8ooNlK0FrUZmoKEEJSPz0-hfEKnI_md-4XYrfyM,3431
180
+ llama_cloud/types/pipeline_configuration_hashes.py,sha256=2V7U-wzzMPsIimfkZgYdfIVWqv7LCLajlxWUWxPzscc,1361
177
181
  llama_cloud/types/pipeline_create.py,sha256=Dv9wh5Uu4MoITP6bunhaem1ToRcs3Fw2gr3fw7HO7Fk,3217
178
- llama_cloud/types/pipeline_create_embedding_config.py,sha256=Lu03mWVS7XrqvhSsjV4H2OE69Qf32kw7k67ZoV-P5Kg,2440
182
+ llama_cloud/types/pipeline_create_embedding_config.py,sha256=hjw-CH9Q3Byqy1cWS9HJBhRyagKSvuMCKO-RlZfflJs,2811
179
183
  llama_cloud/types/pipeline_create_transform_config.py,sha256=CiMil0NrwvxR34CAzrSWw9Uo0117tz409sptH1k_r48,854
180
- llama_cloud/types/pipeline_data_source.py,sha256=A3AlRzTD7zr1y-u5O5LFESqIupbbG-fqUndQgeYj77w,2062
184
+ llama_cloud/types/pipeline_data_source.py,sha256=uiTu6BkXgizhkuqr6GHiS8ZBhtnLcwcitMFkwS6woaE,2465
181
185
  llama_cloud/types/pipeline_data_source_component.py,sha256=Pk_K0Gv7xSWe5BKCdxz82EFd6AQDvZGN-6t3zg9h8NY,265
182
186
  llama_cloud/types/pipeline_data_source_component_one.py,sha256=W9ntkcrg6bNOJgSe1GCUX8AjnY0RDwBYo9QQiFWGZio,951
183
- llama_cloud/types/pipeline_data_source_create.py,sha256=dAxf2mHQTegDbev1MJnEpFEpOpgRhj2sCnnKtTit8tQ,1136
187
+ llama_cloud/types/pipeline_data_source_create.py,sha256=0QPQNT6dvLaO5bZGX4QJWo5-2T44dQRjs2R5HwDaFa4,1280
184
188
  llama_cloud/types/pipeline_data_source_custom_metadata_value.py,sha256=8n3r60sxMx4_udW0yzJZxzyWeK6L3cc2-jLGZFW4EDs,217
185
189
  llama_cloud/types/pipeline_deployment.py,sha256=3sWAIdeov3CYFZMCAWwCR46ShHA6XAzSqmc18qryHzM,1669
186
- llama_cloud/types/pipeline_embedding_config.py,sha256=ucK2AZdIgOYCQaR87Wt2H3Jq4OX25iG5JFovZeo4UQo,2362
187
- llama_cloud/types/pipeline_file.py,sha256=CN_WpZs7OkBJMiG32T6BQQO2GVItxZtiazA0_JDpa9o,2532
190
+ llama_cloud/types/pipeline_embedding_config.py,sha256=x1Keinz_LMM79IUczA_kkd_793OqMrA8mZ3jYvHdLa4,2721
191
+ llama_cloud/types/pipeline_file.py,sha256=z4uz_nKFnlVgAg-zmNlv5chP7rttPqory-V155KbRZQ,2777
192
+ llama_cloud/types/pipeline_file_config_hash_value.py,sha256=4lvLnDpzNAHdiMkGJTTNDTu3p3H7Nxw5MR1Mzte7-_M,201
188
193
  llama_cloud/types/pipeline_file_create.py,sha256=2h7EVJk2Hez8FJ5AVqynWUpWDOkLmTO2M41tJcERjJg,1368
189
194
  llama_cloud/types/pipeline_file_create_custom_metadata_value.py,sha256=olVj5yhQFx1QqWO1Wv9d6AtL-YyYO9_OYtOfcD2ZeGY,217
190
195
  llama_cloud/types/pipeline_file_custom_metadata_value.py,sha256=ClFphYDNlHxeyLF5BWxIUhs2rooS0Xtqxr_Ae8dn8zE,211
@@ -193,7 +198,7 @@ llama_cloud/types/pipeline_transform_config.py,sha256=zMr-ePLKGjbaScxbAHaSwYBL7r
193
198
  llama_cloud/types/pipeline_type.py,sha256=tTqrhxHP5xd7W2dQGD0e5FOv886nwJssyaVlXpWrtRo,551
194
199
  llama_cloud/types/playground_session.py,sha256=m2Ellv49qc2ffBRobmqFYqpgDW15akfoRYBXYl0E6hM,1914
195
200
  llama_cloud/types/pooling.py,sha256=5Fr6c8rx9SDWwWzEvD78suob2d79ktodUtLUAUHMbP8,651
196
- llama_cloud/types/preset_retrieval_params.py,sha256=Tixn6xkbAIvRyNBZk8qquHeyR_PhsjuO9w_uipNKsgw,2246
201
+ llama_cloud/types/preset_retrieval_params.py,sha256=r7zxZvvJSxSwj9ceaws1MsRZDpar1OnTcIcj98j1r8U,2359
197
202
  llama_cloud/types/presigned_url.py,sha256=pUOIs2hFESZCuiqMsnn7pB6dgh_XO6w7vAV4OhKrq94,1345
198
203
  llama_cloud/types/project.py,sha256=MbaT01ewS3mio4Bd6XY5SS-2dTyRyMqM-g5XG7Ly0YA,1539
199
204
  llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
@@ -202,7 +207,7 @@ llama_cloud/types/prompt_spec.py,sha256=dCJOp3Gn5Y7EmC3iDIH4mM_fBtCMCwCPwPRgzyDY
202
207
  llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
203
208
  llama_cloud/types/related_node_info.py,sha256=YqdYiBxtj8njp-UiLMaTBqoYKTTCEu0-DBta4ZnFVo4,1241
204
209
  llama_cloud/types/retrieval_mode.py,sha256=lVfSVelJCKMK1Da4yx7B9m9y6Rj35SGKTx-3Z2UOAPE,784
205
- llama_cloud/types/retrieve_results.py,sha256=ysSEHTHKBmASTZchcfmD42YAAOoB0KJOyqsYokfTAmE,1523
210
+ llama_cloud/types/retrieve_results.py,sha256=ZHBoNOO3Ta2vg8579XM0oEI18BUr656hk17F0_e9gbE,1780
206
211
  llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Ztd-l-YrHII7U-yM-k,1053
207
212
  llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
208
213
  llama_cloud/types/sentence_splitter.py,sha256=mkP5vQsXnLhn6iZZN4MrAfVoFdBYhZTIHoA5AewXwZY,2213
@@ -221,7 +226,9 @@ llama_cloud/types/user_organization_create.py,sha256=YESlfcI64710OFdQzgGD4a7aItg
221
226
  llama_cloud/types/user_organization_delete.py,sha256=Z8RSRXc0AGAuGxv6eQPC2S1XIdRfNCXBggfEefgPseM,1209
222
227
  llama_cloud/types/validation_error.py,sha256=yZDLtjUHDY5w82Ra6CW0H9sLAr18R0RY1UNgJKR72DQ,1084
223
228
  llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPXjdtN9EB7HrLVo6EP0,128
224
- llama_cloud-0.0.14.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
225
- llama_cloud-0.0.14.dist-info/METADATA,sha256=5UmRVYEZcSPcrsoqDsvEWTr8RkVLydnjyGAwpPyweuo,751
226
- llama_cloud-0.0.14.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
227
- llama_cloud-0.0.14.dist-info/RECORD,,
229
+ llama_cloud/types/vertex_ai_embedding_config.py,sha256=Xzn_S19D7daVUhJ86f-O4ILh1tizAj1CuIC4KAn6IUU,1178
230
+ llama_cloud/types/vertex_embedding_mode.py,sha256=AkoY7nzOF5MHb4bCnEy-FJol7WxFNBLcQ8PHHtBWH_o,1605
231
+ llama_cloud-0.0.16.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
232
+ llama_cloud-0.0.16.dist-info/METADATA,sha256=bv1M6ENL-TDDuuaLCz0pf-uKU0gVIVK_Li8RG7C1eWM,751
233
+ llama_cloud-0.0.16.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
234
+ llama_cloud-0.0.16.dist-info/RECORD,,