llama-cloud 0.0.12__py3-none-any.whl → 0.0.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +76 -14
- llama_cloud/resources/__init__.py +14 -0
- llama_cloud/resources/data_sources/types/data_source_update_component_one.py +2 -0
- llama_cloud/resources/evals/client.py +5 -5
- llama_cloud/resources/parsing/client.py +8 -0
- llama_cloud/resources/pipelines/__init__.py +14 -0
- llama_cloud/resources/pipelines/client.py +115 -66
- llama_cloud/resources/pipelines/types/__init__.py +16 -0
- llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py +78 -0
- llama_cloud/types/__init__.py +68 -14
- llama_cloud/types/{embedding_config.py → azure_open_ai_embedding_config.py} +4 -6
- llama_cloud/types/bedrock_embedding_config.py +34 -0
- llama_cloud/types/box_auth_mechanism.py +21 -0
- llama_cloud/types/chat_data.py +1 -1
- llama_cloud/types/chat_message.py +14 -4
- llama_cloud/types/cloud_azure_ai_search_vector_store.py +3 -0
- llama_cloud/types/cloud_box_data_source.py +51 -0
- llama_cloud/types/cloud_document.py +3 -0
- llama_cloud/types/cloud_document_create.py +3 -0
- llama_cloud/types/cloud_sharepoint_data_source.py +2 -1
- llama_cloud/types/cohere_embedding_config.py +34 -0
- llama_cloud/types/configurable_data_source_names.py +4 -0
- llama_cloud/types/custom_claims.py +0 -3
- llama_cloud/types/data_source_component_one.py +2 -0
- llama_cloud/types/data_source_create_component_one.py +2 -0
- llama_cloud/types/eval_execution_params.py +2 -2
- llama_cloud/types/eval_execution_params_override.py +2 -2
- llama_cloud/types/filter_operator.py +4 -0
- llama_cloud/types/gemini_embedding_config.py +34 -0
- llama_cloud/types/hugging_face_inference_api_embedding_config.py +34 -0
- llama_cloud/types/input_message.py +42 -0
- llama_cloud/types/llama_parse_parameters.py +4 -1
- llama_cloud/types/{eval_llm_model_data.py → llm_model_data.py} +1 -1
- llama_cloud/types/llm_parameters.py +2 -2
- llama_cloud/types/{supported_eval_llm_model.py → message_annotation.py} +6 -6
- llama_cloud/types/metadata_filter.py +1 -1
- llama_cloud/types/open_ai_embedding_config.py +34 -0
- llama_cloud/types/page_segmentation_config.py +2 -0
- llama_cloud/types/parsing_usage.py +1 -1
- llama_cloud/types/pipeline.py +11 -1
- llama_cloud/types/pipeline_create.py +3 -3
- llama_cloud/types/pipeline_create_embedding_config.py +78 -0
- llama_cloud/types/pipeline_data_source_component_one.py +2 -0
- llama_cloud/types/pipeline_embedding_config.py +78 -0
- llama_cloud/types/pipeline_transform_config.py +31 -0
- llama_cloud/types/playground_session.py +51 -0
- llama_cloud/types/supported_llm_model.py +41 -0
- llama_cloud/types/supported_llm_model_names.py +41 -0
- {llama_cloud-0.0.12.dist-info → llama_cloud-0.0.14.dist-info}/METADATA +1 -1
- {llama_cloud-0.0.12.dist-info → llama_cloud-0.0.14.dist-info}/RECORD +52 -41
- llama_cloud/types/embedding_config_component.py +0 -7
- llama_cloud/types/embedding_config_component_one.py +0 -19
- llama_cloud/types/embedding_config_type.py +0 -41
- llama_cloud/types/supported_eval_llm_model_names.py +0 -29
- {llama_cloud-0.0.12.dist-info → llama_cloud-0.0.14.dist-info}/LICENSE +0 -0
- {llama_cloud-0.0.12.dist-info → llama_cloud-0.0.14.dist-info}/WHEEL +0 -0
llama_cloud/types/__init__.py
CHANGED
|
@@ -17,15 +17,19 @@ from .advanced_mode_transform_config_segmentation_config import (
|
|
|
17
17
|
)
|
|
18
18
|
from .auto_transform_config import AutoTransformConfig
|
|
19
19
|
from .azure_open_ai_embedding import AzureOpenAiEmbedding
|
|
20
|
+
from .azure_open_ai_embedding_config import AzureOpenAiEmbeddingConfig
|
|
20
21
|
from .base import Base
|
|
21
22
|
from .base_prompt_template import BasePromptTemplate
|
|
22
23
|
from .bedrock_embedding import BedrockEmbedding
|
|
24
|
+
from .bedrock_embedding_config import BedrockEmbeddingConfig
|
|
25
|
+
from .box_auth_mechanism import BoxAuthMechanism
|
|
23
26
|
from .character_chunking_config import CharacterChunkingConfig
|
|
24
27
|
from .character_splitter import CharacterSplitter
|
|
25
28
|
from .chat_data import ChatData
|
|
26
29
|
from .chat_message import ChatMessage
|
|
27
30
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
28
31
|
from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
32
|
+
from .cloud_box_data_source import CloudBoxDataSource
|
|
29
33
|
from .cloud_chroma_vector_store import CloudChromaVectorStore
|
|
30
34
|
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
31
35
|
from .cloud_document import CloudDocument
|
|
@@ -44,6 +48,7 @@ from .cloud_slack_data_source import CloudSlackDataSource
|
|
|
44
48
|
from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
|
|
45
49
|
from .code_splitter import CodeSplitter
|
|
46
50
|
from .cohere_embedding import CohereEmbedding
|
|
51
|
+
from .cohere_embedding_config import CohereEmbeddingConfig
|
|
47
52
|
from .configurable_data_sink_names import ConfigurableDataSinkNames
|
|
48
53
|
from .configurable_data_source_names import ConfigurableDataSourceNames
|
|
49
54
|
from .configurable_transformation_definition import ConfigurableTransformationDefinition
|
|
@@ -69,16 +74,11 @@ from .data_source_create_custom_metadata_value import DataSourceCreateCustomMeta
|
|
|
69
74
|
from .data_source_custom_metadata_value import DataSourceCustomMetadataValue
|
|
70
75
|
from .data_source_definition import DataSourceDefinition
|
|
71
76
|
from .element_segmentation_config import ElementSegmentationConfig
|
|
72
|
-
from .embedding_config import EmbeddingConfig
|
|
73
|
-
from .embedding_config_component import EmbeddingConfigComponent
|
|
74
|
-
from .embedding_config_component_one import EmbeddingConfigComponentOne
|
|
75
|
-
from .embedding_config_type import EmbeddingConfigType
|
|
76
77
|
from .eval_dataset import EvalDataset
|
|
77
78
|
from .eval_dataset_job_params import EvalDatasetJobParams
|
|
78
79
|
from .eval_dataset_job_record import EvalDatasetJobRecord
|
|
79
80
|
from .eval_execution_params import EvalExecutionParams
|
|
80
81
|
from .eval_execution_params_override import EvalExecutionParamsOverride
|
|
81
|
-
from .eval_llm_model_data import EvalLlmModelData
|
|
82
82
|
from .eval_question import EvalQuestion
|
|
83
83
|
from .eval_question_create import EvalQuestionCreate
|
|
84
84
|
from .eval_question_result import EvalQuestionResult
|
|
@@ -92,14 +92,18 @@ from .file_resource_info_value import FileResourceInfoValue
|
|
|
92
92
|
from .filter_condition import FilterCondition
|
|
93
93
|
from .filter_operator import FilterOperator
|
|
94
94
|
from .gemini_embedding import GeminiEmbedding
|
|
95
|
+
from .gemini_embedding_config import GeminiEmbeddingConfig
|
|
95
96
|
from .http_validation_error import HttpValidationError
|
|
96
97
|
from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
|
|
98
|
+
from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
|
|
97
99
|
from .hugging_face_inference_api_embedding_token import HuggingFaceInferenceApiEmbeddingToken
|
|
98
100
|
from .ingestion_error_response import IngestionErrorResponse
|
|
101
|
+
from .input_message import InputMessage
|
|
99
102
|
from .job_name_mapping import JobNameMapping
|
|
100
103
|
from .llama_parse_parameters import LlamaParseParameters
|
|
101
104
|
from .llama_parse_supported_file_extensions import LlamaParseSupportedFileExtensions
|
|
102
105
|
from .llm import Llm
|
|
106
|
+
from .llm_model_data import LlmModelData
|
|
103
107
|
from .llm_parameters import LlmParameters
|
|
104
108
|
from .local_eval import LocalEval
|
|
105
109
|
from .local_eval_results import LocalEvalResults
|
|
@@ -108,6 +112,7 @@ from .managed_ingestion_status import ManagedIngestionStatus
|
|
|
108
112
|
from .managed_ingestion_status_response import ManagedIngestionStatusResponse
|
|
109
113
|
from .markdown_element_node_parser import MarkdownElementNodeParser
|
|
110
114
|
from .markdown_node_parser import MarkdownNodeParser
|
|
115
|
+
from .message_annotation import MessageAnnotation
|
|
111
116
|
from .message_role import MessageRole
|
|
112
117
|
from .metadata_filter import MetadataFilter
|
|
113
118
|
from .metadata_filter_value import MetadataFilterValue
|
|
@@ -119,6 +124,7 @@ from .none_chunking_config import NoneChunkingConfig
|
|
|
119
124
|
from .none_segmentation_config import NoneSegmentationConfig
|
|
120
125
|
from .object_type import ObjectType
|
|
121
126
|
from .open_ai_embedding import OpenAiEmbedding
|
|
127
|
+
from .open_ai_embedding_config import OpenAiEmbeddingConfig
|
|
122
128
|
from .organization import Organization
|
|
123
129
|
from .organization_create import OrganizationCreate
|
|
124
130
|
from .page_segmentation_config import PageSegmentationConfig
|
|
@@ -132,6 +138,15 @@ from .parsing_job_text_result import ParsingJobTextResult
|
|
|
132
138
|
from .parsing_usage import ParsingUsage
|
|
133
139
|
from .pipeline import Pipeline
|
|
134
140
|
from .pipeline_create import PipelineCreate
|
|
141
|
+
from .pipeline_create_embedding_config import (
|
|
142
|
+
PipelineCreateEmbeddingConfig,
|
|
143
|
+
PipelineCreateEmbeddingConfig_AzureEmbedding,
|
|
144
|
+
PipelineCreateEmbeddingConfig_BedrockEmbedding,
|
|
145
|
+
PipelineCreateEmbeddingConfig_CohereEmbedding,
|
|
146
|
+
PipelineCreateEmbeddingConfig_GeminiEmbedding,
|
|
147
|
+
PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
148
|
+
PipelineCreateEmbeddingConfig_OpenaiEmbedding,
|
|
149
|
+
)
|
|
135
150
|
from .pipeline_create_transform_config import (
|
|
136
151
|
PipelineCreateTransformConfig,
|
|
137
152
|
PipelineCreateTransformConfig_Advanced,
|
|
@@ -143,12 +158,27 @@ from .pipeline_data_source_component_one import PipelineDataSourceComponentOne
|
|
|
143
158
|
from .pipeline_data_source_create import PipelineDataSourceCreate
|
|
144
159
|
from .pipeline_data_source_custom_metadata_value import PipelineDataSourceCustomMetadataValue
|
|
145
160
|
from .pipeline_deployment import PipelineDeployment
|
|
161
|
+
from .pipeline_embedding_config import (
|
|
162
|
+
PipelineEmbeddingConfig,
|
|
163
|
+
PipelineEmbeddingConfig_AzureEmbedding,
|
|
164
|
+
PipelineEmbeddingConfig_BedrockEmbedding,
|
|
165
|
+
PipelineEmbeddingConfig_CohereEmbedding,
|
|
166
|
+
PipelineEmbeddingConfig_GeminiEmbedding,
|
|
167
|
+
PipelineEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
168
|
+
PipelineEmbeddingConfig_OpenaiEmbedding,
|
|
169
|
+
)
|
|
146
170
|
from .pipeline_file import PipelineFile
|
|
147
171
|
from .pipeline_file_create import PipelineFileCreate
|
|
148
172
|
from .pipeline_file_create_custom_metadata_value import PipelineFileCreateCustomMetadataValue
|
|
149
173
|
from .pipeline_file_custom_metadata_value import PipelineFileCustomMetadataValue
|
|
150
174
|
from .pipeline_file_resource_info_value import PipelineFileResourceInfoValue
|
|
175
|
+
from .pipeline_transform_config import (
|
|
176
|
+
PipelineTransformConfig,
|
|
177
|
+
PipelineTransformConfig_Advanced,
|
|
178
|
+
PipelineTransformConfig_Auto,
|
|
179
|
+
)
|
|
151
180
|
from .pipeline_type import PipelineType
|
|
181
|
+
from .playground_session import PlaygroundSession
|
|
152
182
|
from .pooling import Pooling
|
|
153
183
|
from .preset_retrieval_params import PresetRetrievalParams
|
|
154
184
|
from .presigned_url import PresignedUrl
|
|
@@ -164,8 +194,8 @@ from .semantic_chunking_config import SemanticChunkingConfig
|
|
|
164
194
|
from .sentence_chunking_config import SentenceChunkingConfig
|
|
165
195
|
from .sentence_splitter import SentenceSplitter
|
|
166
196
|
from .status_enum import StatusEnum
|
|
167
|
-
from .
|
|
168
|
-
from .
|
|
197
|
+
from .supported_llm_model import SupportedLlmModel
|
|
198
|
+
from .supported_llm_model_names import SupportedLlmModelNames
|
|
169
199
|
from .text_node import TextNode
|
|
170
200
|
from .text_node_relationships_value import TextNodeRelationshipsValue
|
|
171
201
|
from .text_node_with_score import TextNodeWithScore
|
|
@@ -193,15 +223,19 @@ __all__ = [
|
|
|
193
223
|
"AdvancedModeTransformConfigSegmentationConfig_Page",
|
|
194
224
|
"AutoTransformConfig",
|
|
195
225
|
"AzureOpenAiEmbedding",
|
|
226
|
+
"AzureOpenAiEmbeddingConfig",
|
|
196
227
|
"Base",
|
|
197
228
|
"BasePromptTemplate",
|
|
198
229
|
"BedrockEmbedding",
|
|
230
|
+
"BedrockEmbeddingConfig",
|
|
231
|
+
"BoxAuthMechanism",
|
|
199
232
|
"CharacterChunkingConfig",
|
|
200
233
|
"CharacterSplitter",
|
|
201
234
|
"ChatData",
|
|
202
235
|
"ChatMessage",
|
|
203
236
|
"CloudAzStorageBlobDataSource",
|
|
204
237
|
"CloudAzureAiSearchVectorStore",
|
|
238
|
+
"CloudBoxDataSource",
|
|
205
239
|
"CloudChromaVectorStore",
|
|
206
240
|
"CloudConfluenceDataSource",
|
|
207
241
|
"CloudDocument",
|
|
@@ -220,6 +254,7 @@ __all__ = [
|
|
|
220
254
|
"CloudWeaviateVectorStore",
|
|
221
255
|
"CodeSplitter",
|
|
222
256
|
"CohereEmbedding",
|
|
257
|
+
"CohereEmbeddingConfig",
|
|
223
258
|
"ConfigurableDataSinkNames",
|
|
224
259
|
"ConfigurableDataSourceNames",
|
|
225
260
|
"ConfigurableTransformationDefinition",
|
|
@@ -245,16 +280,11 @@ __all__ = [
|
|
|
245
280
|
"DataSourceCustomMetadataValue",
|
|
246
281
|
"DataSourceDefinition",
|
|
247
282
|
"ElementSegmentationConfig",
|
|
248
|
-
"EmbeddingConfig",
|
|
249
|
-
"EmbeddingConfigComponent",
|
|
250
|
-
"EmbeddingConfigComponentOne",
|
|
251
|
-
"EmbeddingConfigType",
|
|
252
283
|
"EvalDataset",
|
|
253
284
|
"EvalDatasetJobParams",
|
|
254
285
|
"EvalDatasetJobRecord",
|
|
255
286
|
"EvalExecutionParams",
|
|
256
287
|
"EvalExecutionParamsOverride",
|
|
257
|
-
"EvalLlmModelData",
|
|
258
288
|
"EvalQuestion",
|
|
259
289
|
"EvalQuestionCreate",
|
|
260
290
|
"EvalQuestionResult",
|
|
@@ -268,14 +298,18 @@ __all__ = [
|
|
|
268
298
|
"FilterCondition",
|
|
269
299
|
"FilterOperator",
|
|
270
300
|
"GeminiEmbedding",
|
|
301
|
+
"GeminiEmbeddingConfig",
|
|
271
302
|
"HttpValidationError",
|
|
272
303
|
"HuggingFaceInferenceApiEmbedding",
|
|
304
|
+
"HuggingFaceInferenceApiEmbeddingConfig",
|
|
273
305
|
"HuggingFaceInferenceApiEmbeddingToken",
|
|
274
306
|
"IngestionErrorResponse",
|
|
307
|
+
"InputMessage",
|
|
275
308
|
"JobNameMapping",
|
|
276
309
|
"LlamaParseParameters",
|
|
277
310
|
"LlamaParseSupportedFileExtensions",
|
|
278
311
|
"Llm",
|
|
312
|
+
"LlmModelData",
|
|
279
313
|
"LlmParameters",
|
|
280
314
|
"LocalEval",
|
|
281
315
|
"LocalEvalResults",
|
|
@@ -284,6 +318,7 @@ __all__ = [
|
|
|
284
318
|
"ManagedIngestionStatusResponse",
|
|
285
319
|
"MarkdownElementNodeParser",
|
|
286
320
|
"MarkdownNodeParser",
|
|
321
|
+
"MessageAnnotation",
|
|
287
322
|
"MessageRole",
|
|
288
323
|
"MetadataFilter",
|
|
289
324
|
"MetadataFilterValue",
|
|
@@ -295,6 +330,7 @@ __all__ = [
|
|
|
295
330
|
"NoneSegmentationConfig",
|
|
296
331
|
"ObjectType",
|
|
297
332
|
"OpenAiEmbedding",
|
|
333
|
+
"OpenAiEmbeddingConfig",
|
|
298
334
|
"Organization",
|
|
299
335
|
"OrganizationCreate",
|
|
300
336
|
"PageSegmentationConfig",
|
|
@@ -308,6 +344,13 @@ __all__ = [
|
|
|
308
344
|
"ParsingUsage",
|
|
309
345
|
"Pipeline",
|
|
310
346
|
"PipelineCreate",
|
|
347
|
+
"PipelineCreateEmbeddingConfig",
|
|
348
|
+
"PipelineCreateEmbeddingConfig_AzureEmbedding",
|
|
349
|
+
"PipelineCreateEmbeddingConfig_BedrockEmbedding",
|
|
350
|
+
"PipelineCreateEmbeddingConfig_CohereEmbedding",
|
|
351
|
+
"PipelineCreateEmbeddingConfig_GeminiEmbedding",
|
|
352
|
+
"PipelineCreateEmbeddingConfig_HuggingfaceApiEmbedding",
|
|
353
|
+
"PipelineCreateEmbeddingConfig_OpenaiEmbedding",
|
|
311
354
|
"PipelineCreateTransformConfig",
|
|
312
355
|
"PipelineCreateTransformConfig_Advanced",
|
|
313
356
|
"PipelineCreateTransformConfig_Auto",
|
|
@@ -317,12 +360,23 @@ __all__ = [
|
|
|
317
360
|
"PipelineDataSourceCreate",
|
|
318
361
|
"PipelineDataSourceCustomMetadataValue",
|
|
319
362
|
"PipelineDeployment",
|
|
363
|
+
"PipelineEmbeddingConfig",
|
|
364
|
+
"PipelineEmbeddingConfig_AzureEmbedding",
|
|
365
|
+
"PipelineEmbeddingConfig_BedrockEmbedding",
|
|
366
|
+
"PipelineEmbeddingConfig_CohereEmbedding",
|
|
367
|
+
"PipelineEmbeddingConfig_GeminiEmbedding",
|
|
368
|
+
"PipelineEmbeddingConfig_HuggingfaceApiEmbedding",
|
|
369
|
+
"PipelineEmbeddingConfig_OpenaiEmbedding",
|
|
320
370
|
"PipelineFile",
|
|
321
371
|
"PipelineFileCreate",
|
|
322
372
|
"PipelineFileCreateCustomMetadataValue",
|
|
323
373
|
"PipelineFileCustomMetadataValue",
|
|
324
374
|
"PipelineFileResourceInfoValue",
|
|
375
|
+
"PipelineTransformConfig",
|
|
376
|
+
"PipelineTransformConfig_Advanced",
|
|
377
|
+
"PipelineTransformConfig_Auto",
|
|
325
378
|
"PipelineType",
|
|
379
|
+
"PlaygroundSession",
|
|
326
380
|
"Pooling",
|
|
327
381
|
"PresetRetrievalParams",
|
|
328
382
|
"PresignedUrl",
|
|
@@ -338,8 +392,8 @@ __all__ = [
|
|
|
338
392
|
"SentenceChunkingConfig",
|
|
339
393
|
"SentenceSplitter",
|
|
340
394
|
"StatusEnum",
|
|
341
|
-
"
|
|
342
|
-
"
|
|
395
|
+
"SupportedLlmModel",
|
|
396
|
+
"SupportedLlmModelNames",
|
|
343
397
|
"TextNode",
|
|
344
398
|
"TextNodeRelationshipsValue",
|
|
345
399
|
"TextNodeWithScore",
|
|
@@ -4,8 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
8
|
-
from .embedding_config_type import EmbeddingConfigType
|
|
7
|
+
from .azure_open_ai_embedding import AzureOpenAiEmbedding
|
|
9
8
|
|
|
10
9
|
try:
|
|
11
10
|
import pydantic
|
|
@@ -16,10 +15,9 @@ except ImportError:
|
|
|
16
15
|
import pydantic # type: ignore
|
|
17
16
|
|
|
18
17
|
|
|
19
|
-
class
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
description="Configuration for the transformation."
|
|
18
|
+
class AzureOpenAiEmbeddingConfig(pydantic.BaseModel):
|
|
19
|
+
component: typing.Optional[AzureOpenAiEmbedding] = pydantic.Field(
|
|
20
|
+
description="Configuration for the Azure OpenAI embedding model."
|
|
23
21
|
)
|
|
24
22
|
|
|
25
23
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .bedrock_embedding import BedrockEmbedding
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class BedrockEmbeddingConfig(pydantic.BaseModel):
|
|
19
|
+
component: typing.Optional[BedrockEmbedding] = pydantic.Field(
|
|
20
|
+
description="Configuration for the Bedrock embedding model."
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
25
|
+
return super().json(**kwargs_with_defaults)
|
|
26
|
+
|
|
27
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().dict(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
class Config:
|
|
32
|
+
frozen = True
|
|
33
|
+
smart_union = True
|
|
34
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class BoxAuthMechanism(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
An enumeration.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
DEVELOPER_TOKEN = "developer_token"
|
|
15
|
+
CCG = "ccg"
|
|
16
|
+
|
|
17
|
+
def visit(self, developer_token: typing.Callable[[], T_Result], ccg: typing.Callable[[], T_Result]) -> T_Result:
|
|
18
|
+
if self is BoxAuthMechanism.DEVELOPER_TOKEN:
|
|
19
|
+
return developer_token()
|
|
20
|
+
if self is BoxAuthMechanism.CCG:
|
|
21
|
+
return ccg()
|
llama_cloud/types/chat_data.py
CHANGED
|
@@ -22,7 +22,7 @@ class ChatData(pydantic.BaseModel):
|
|
|
22
22
|
Comes with special serialization logic for types used commonly in platform codebase.
|
|
23
23
|
"""
|
|
24
24
|
|
|
25
|
-
retrieval_parameters: PresetRetrievalParams
|
|
25
|
+
retrieval_parameters: typing.Optional[PresetRetrievalParams]
|
|
26
26
|
llm_parameters: typing.Optional[LlmParameters]
|
|
27
27
|
class_name: typing.Optional[str]
|
|
28
28
|
|
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .message_annotation import MessageAnnotation
|
|
7
8
|
from .message_role import MessageRole
|
|
8
9
|
|
|
9
10
|
try:
|
|
@@ -17,12 +18,21 @@ except ImportError:
|
|
|
17
18
|
|
|
18
19
|
class ChatMessage(pydantic.BaseModel):
|
|
19
20
|
"""
|
|
20
|
-
|
|
21
|
+
Base schema model for BaseComponent classes used in the platform.
|
|
22
|
+
Comes with special serialization logic for types used commonly in platform codebase.
|
|
21
23
|
"""
|
|
22
24
|
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
25
|
+
id: str
|
|
26
|
+
index: int = pydantic.Field(description="The index of the message in the chat.")
|
|
27
|
+
annotations: typing.Optional[typing.List[MessageAnnotation]] = pydantic.Field(
|
|
28
|
+
description="Retrieval annotations for the message."
|
|
29
|
+
)
|
|
30
|
+
role: MessageRole
|
|
31
|
+
content: typing.Optional[str] = pydantic.Field(description="Text content of the generation")
|
|
32
|
+
additional_kwargs: typing.Optional[typing.Dict[str, str]] = pydantic.Field(
|
|
33
|
+
description="Additional arguments passed to the model"
|
|
34
|
+
)
|
|
35
|
+
class_name: typing.Optional[str]
|
|
26
36
|
|
|
27
37
|
def json(self, **kwargs: typing.Any) -> str:
|
|
28
38
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -26,6 +26,9 @@ class CloudAzureAiSearchVectorStore(pydantic.BaseModel):
|
|
|
26
26
|
index_name: typing.Optional[str]
|
|
27
27
|
filterable_metadata_field_keys: typing.Optional[typing.Dict[str, typing.Any]]
|
|
28
28
|
embedding_dimension: typing.Optional[int]
|
|
29
|
+
client_id: typing.Optional[str]
|
|
30
|
+
client_secret: typing.Optional[str]
|
|
31
|
+
tenant_id: typing.Optional[str]
|
|
29
32
|
class_name: typing.Optional[str]
|
|
30
33
|
|
|
31
34
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .box_auth_mechanism import BoxAuthMechanism
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class CloudBoxDataSource(pydantic.BaseModel):
|
|
19
|
+
"""
|
|
20
|
+
Base component object to capture class names.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
folder_id: typing.Optional[str] = pydantic.Field(description="The ID of the Box folder to read from.")
|
|
24
|
+
authentication_mechanism: BoxAuthMechanism = pydantic.Field(
|
|
25
|
+
description="The type of authentication to use (Developer Token or CCG)"
|
|
26
|
+
)
|
|
27
|
+
developer_token: typing.Optional[str] = pydantic.Field(
|
|
28
|
+
description="Developer token for authentication if authentication_mechanism is 'developer_token'."
|
|
29
|
+
)
|
|
30
|
+
client_id: typing.Optional[str] = pydantic.Field(
|
|
31
|
+
description="Box API key used for identifying the application the user is authenticating with"
|
|
32
|
+
)
|
|
33
|
+
client_secret: typing.Optional[str] = pydantic.Field(description="Box API secret used for making auth requests.")
|
|
34
|
+
user_id: typing.Optional[str] = pydantic.Field(description="Box User ID, if provided authenticates as user.")
|
|
35
|
+
enterprise_id: typing.Optional[str] = pydantic.Field(
|
|
36
|
+
description="Box Enterprise ID, if provided authenticates as service."
|
|
37
|
+
)
|
|
38
|
+
class_name: typing.Optional[str]
|
|
39
|
+
|
|
40
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
41
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
42
|
+
return super().json(**kwargs_with_defaults)
|
|
43
|
+
|
|
44
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
45
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
46
|
+
return super().dict(**kwargs_with_defaults)
|
|
47
|
+
|
|
48
|
+
class Config:
|
|
49
|
+
frozen = True
|
|
50
|
+
smart_union = True
|
|
51
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -23,6 +23,9 @@ class CloudDocument(pydantic.BaseModel):
|
|
|
23
23
|
metadata: typing.Dict[str, typing.Any]
|
|
24
24
|
excluded_embed_metadata_keys: typing.Optional[typing.List[str]]
|
|
25
25
|
excluded_llm_metadata_keys: typing.Optional[typing.List[str]]
|
|
26
|
+
page_positions: typing.Optional[typing.List[int]] = pydantic.Field(
|
|
27
|
+
description="indices in the CloudDocument.text where a new page begins. e.g. Second page starts at index specified by page_positions[1]."
|
|
28
|
+
)
|
|
26
29
|
id: str
|
|
27
30
|
|
|
28
31
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -23,6 +23,9 @@ class CloudDocumentCreate(pydantic.BaseModel):
|
|
|
23
23
|
metadata: typing.Dict[str, typing.Any]
|
|
24
24
|
excluded_embed_metadata_keys: typing.Optional[typing.List[str]]
|
|
25
25
|
excluded_llm_metadata_keys: typing.Optional[typing.List[str]]
|
|
26
|
+
page_positions: typing.Optional[typing.List[int]] = pydantic.Field(
|
|
27
|
+
description="indices in the CloudDocument.text where a new page begins. e.g. Second page starts at index specified by page_positions[1]."
|
|
28
|
+
)
|
|
26
29
|
id: typing.Optional[str]
|
|
27
30
|
|
|
28
31
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -19,7 +19,8 @@ class CloudSharepointDataSource(pydantic.BaseModel):
|
|
|
19
19
|
Base component object to capture class names.
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
|
-
site_name: str = pydantic.Field(description="The name of the SharePoint site to download from.")
|
|
22
|
+
site_name: typing.Optional[str] = pydantic.Field(description="The name of the SharePoint site to download from.")
|
|
23
|
+
site_id: typing.Optional[str] = pydantic.Field(description="The ID of the SharePoint site to download from.")
|
|
23
24
|
folder_path: typing.Optional[str] = pydantic.Field(description="The path of the Sharepoint folder to read from.")
|
|
24
25
|
folder_id: typing.Optional[str] = pydantic.Field(description="The ID of the Sharepoint folder to read from.")
|
|
25
26
|
drive_name: typing.Optional[str] = pydantic.Field(description="The name of the Sharepoint drive to read from.")
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .cohere_embedding import CohereEmbedding
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class CohereEmbeddingConfig(pydantic.BaseModel):
|
|
19
|
+
component: typing.Optional[CohereEmbedding] = pydantic.Field(
|
|
20
|
+
description="Configuration for the Cohere embedding model."
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
25
|
+
return super().json(**kwargs_with_defaults)
|
|
26
|
+
|
|
27
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().dict(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
class Config:
|
|
32
|
+
frozen = True
|
|
33
|
+
smart_union = True
|
|
34
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -19,6 +19,7 @@ class ConfigurableDataSourceNames(str, enum.Enum):
|
|
|
19
19
|
NOTION_PAGE = "NOTION_PAGE"
|
|
20
20
|
CONFLUENCE = "CONFLUENCE"
|
|
21
21
|
JIRA = "JIRA"
|
|
22
|
+
BOX = "BOX"
|
|
22
23
|
|
|
23
24
|
def visit(
|
|
24
25
|
self,
|
|
@@ -30,6 +31,7 @@ class ConfigurableDataSourceNames(str, enum.Enum):
|
|
|
30
31
|
notion_page: typing.Callable[[], T_Result],
|
|
31
32
|
confluence: typing.Callable[[], T_Result],
|
|
32
33
|
jira: typing.Callable[[], T_Result],
|
|
34
|
+
box: typing.Callable[[], T_Result],
|
|
33
35
|
) -> T_Result:
|
|
34
36
|
if self is ConfigurableDataSourceNames.S_3:
|
|
35
37
|
return s_3()
|
|
@@ -47,3 +49,5 @@ class ConfigurableDataSourceNames(str, enum.Enum):
|
|
|
47
49
|
return confluence()
|
|
48
50
|
if self is ConfigurableDataSourceNames.JIRA:
|
|
49
51
|
return jira()
|
|
52
|
+
if self is ConfigurableDataSourceNames.BOX:
|
|
53
|
+
return box()
|
|
@@ -33,9 +33,6 @@ class CustomClaims(pydantic.BaseModel):
|
|
|
33
33
|
usage_index_max_files_per_pipeline: typing.Optional[int] = pydantic.Field(
|
|
34
34
|
description="The maximum number of files per pipeline the user can index without LlamaParse premium."
|
|
35
35
|
)
|
|
36
|
-
max_jobs_in_execution: typing.Optional[int] = pydantic.Field(
|
|
37
|
-
description="The maximum number of jobs the user can have in execution."
|
|
38
|
-
)
|
|
39
36
|
max_jobs_in_execution_per_job_type: typing.Optional[int] = pydantic.Field(
|
|
40
37
|
description="The maximum number of jobs the user can have in execution per job type."
|
|
41
38
|
)
|
|
@@ -3,6 +3,7 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_box_data_source import CloudBoxDataSource
|
|
6
7
|
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
7
8
|
from .cloud_jira_data_source import CloudJiraDataSource
|
|
8
9
|
from .cloud_notion_page_data_source import CloudNotionPageDataSource
|
|
@@ -20,4 +21,5 @@ DataSourceComponentOne = typing.Union[
|
|
|
20
21
|
CloudNotionPageDataSource,
|
|
21
22
|
CloudConfluenceDataSource,
|
|
22
23
|
CloudJiraDataSource,
|
|
24
|
+
CloudBoxDataSource,
|
|
23
25
|
]
|
|
@@ -3,6 +3,7 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_box_data_source import CloudBoxDataSource
|
|
6
7
|
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
7
8
|
from .cloud_jira_data_source import CloudJiraDataSource
|
|
8
9
|
from .cloud_notion_page_data_source import CloudNotionPageDataSource
|
|
@@ -20,4 +21,5 @@ DataSourceCreateComponentOne = typing.Union[
|
|
|
20
21
|
CloudNotionPageDataSource,
|
|
21
22
|
CloudConfluenceDataSource,
|
|
22
23
|
CloudJiraDataSource,
|
|
24
|
+
CloudBoxDataSource,
|
|
23
25
|
]
|
|
@@ -4,7 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
7
|
+
from .supported_llm_model_names import SupportedLlmModelNames
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
import pydantic
|
|
@@ -20,7 +20,7 @@ class EvalExecutionParams(pydantic.BaseModel):
|
|
|
20
20
|
Schema for the params for an eval execution.
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
|
-
llm_model: typing.Optional[
|
|
23
|
+
llm_model: typing.Optional[SupportedLlmModelNames] = pydantic.Field(
|
|
24
24
|
description="The LLM model to use within eval execution."
|
|
25
25
|
)
|
|
26
26
|
qa_prompt_tmpl: typing.Optional[str] = pydantic.Field(
|
|
@@ -4,7 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
7
|
+
from .supported_llm_model_names import SupportedLlmModelNames
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
import pydantic
|
|
@@ -20,7 +20,7 @@ class EvalExecutionParamsOverride(pydantic.BaseModel):
|
|
|
20
20
|
Schema for the params override for an eval execution.
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
|
-
llm_model: typing.Optional[
|
|
23
|
+
llm_model: typing.Optional[SupportedLlmModelNames] = pydantic.Field(
|
|
24
24
|
description="The LLM model to use within eval execution."
|
|
25
25
|
)
|
|
26
26
|
qa_prompt_tmpl: typing.Optional[str] = pydantic.Field(
|
|
@@ -23,6 +23,7 @@ class FilterOperator(str, enum.Enum):
|
|
|
23
23
|
ALL = "all"
|
|
24
24
|
TEXT_MATCH = "text_match"
|
|
25
25
|
CONTAINS = "contains"
|
|
26
|
+
IS_EMPTY = "is_empty"
|
|
26
27
|
|
|
27
28
|
def visit(
|
|
28
29
|
self,
|
|
@@ -38,6 +39,7 @@ class FilterOperator(str, enum.Enum):
|
|
|
38
39
|
all: typing.Callable[[], T_Result],
|
|
39
40
|
text_match: typing.Callable[[], T_Result],
|
|
40
41
|
contains: typing.Callable[[], T_Result],
|
|
42
|
+
is_empty: typing.Callable[[], T_Result],
|
|
41
43
|
) -> T_Result:
|
|
42
44
|
if self is FilterOperator.EQUAL_TO:
|
|
43
45
|
return equal_to()
|
|
@@ -63,3 +65,5 @@ class FilterOperator(str, enum.Enum):
|
|
|
63
65
|
return text_match()
|
|
64
66
|
if self is FilterOperator.CONTAINS:
|
|
65
67
|
return contains()
|
|
68
|
+
if self is FilterOperator.IS_EMPTY:
|
|
69
|
+
return is_empty()
|