literun 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of literun might be problematic. Click here for more details.
- literun/__init__.py +33 -0
- literun/agent.py +411 -0
- literun/args_schema.py +87 -0
- literun/constants.py +21 -0
- literun/events.py +110 -0
- literun/items.py +106 -0
- literun/llm.py +156 -0
- literun/prompt_message.py +136 -0
- literun/prompt_template.py +181 -0
- literun/results.py +51 -0
- literun/tool.py +145 -0
- literun/utils.py +73 -0
- literun-0.1.0.dist-info/METADATA +242 -0
- literun-0.1.0.dist-info/RECORD +17 -0
- literun-0.1.0.dist-info/WHEEL +5 -0
- literun-0.1.0.dist-info/licenses/LICENSE +21 -0
- literun-0.1.0.dist-info/top_level.txt +1 -0
literun/tool.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
"""Tool definition and runtime context."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import inspect
|
|
6
|
+
from typing import Any, Dict, List, Optional, Callable, get_type_hints
|
|
7
|
+
|
|
8
|
+
from .args_schema import ArgsSchema
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class ToolRuntime:
|
|
12
|
+
"""Runtime context container for tools.
|
|
13
|
+
|
|
14
|
+
This class stores arbitrary runtime values as attributes, using keyword
|
|
15
|
+
arguments provided at initialization. It is typically injected into tool
|
|
16
|
+
functions that declare a parameter annotated with ``ToolRuntime``.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
**kwargs: Arbitrary keyword arguments that will be set as attributes
|
|
20
|
+
on the instance.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
def __init__(self, **kwargs):
|
|
24
|
+
for k, v in kwargs.items():
|
|
25
|
+
setattr(self, k, v)
|
|
26
|
+
|
|
27
|
+
def __repr__(self):
|
|
28
|
+
return f"ToolRuntime({self.__dict__})"
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class Tool:
|
|
32
|
+
"""Represents a callable tool that can be invoked by an agent or LLM.
|
|
33
|
+
|
|
34
|
+
A ``Tool`` wraps a Python callable along with metadata and an argument
|
|
35
|
+
schema, and provides utilities for argument validation, execution,
|
|
36
|
+
and conversion to the OpenAI tool definition format.
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
def __init__(
|
|
40
|
+
self,
|
|
41
|
+
*,
|
|
42
|
+
func: Callable,
|
|
43
|
+
name: str,
|
|
44
|
+
description: str,
|
|
45
|
+
args_schema: List[ArgsSchema],
|
|
46
|
+
strict: Optional[bool] = None,
|
|
47
|
+
):
|
|
48
|
+
"""Initialize a Tool.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
func: The function to execute when the tool is called.
|
|
52
|
+
name: The name of the tool.
|
|
53
|
+
description: A description of what the tool does.
|
|
54
|
+
args_schema: A list of arguments the tool accepts.
|
|
55
|
+
strict: If True, model output is guaranteed to exactly match the JSON Schema
|
|
56
|
+
provided in the function definition. If None, `strict` argument will not
|
|
57
|
+
be included in tool definition.
|
|
58
|
+
"""
|
|
59
|
+
self.func = func
|
|
60
|
+
self.name = name
|
|
61
|
+
self.description = description
|
|
62
|
+
self.args_schema = args_schema
|
|
63
|
+
self.strict = strict
|
|
64
|
+
|
|
65
|
+
# OpenAI schema
|
|
66
|
+
def to_openai_tool(self) -> Dict[str, Any]:
|
|
67
|
+
"""Convert the tool to the OpenAI tool schema format.
|
|
68
|
+
|
|
69
|
+
Returns:
|
|
70
|
+
Dict[str, Any]: The OpenAI-compatible tool definition.
|
|
71
|
+
"""
|
|
72
|
+
properties = {}
|
|
73
|
+
required = []
|
|
74
|
+
|
|
75
|
+
for arg in self.args_schema:
|
|
76
|
+
properties[arg.name] = arg.to_json_schema()
|
|
77
|
+
required.append(arg.name)
|
|
78
|
+
|
|
79
|
+
return {
|
|
80
|
+
"type": "function",
|
|
81
|
+
"name": self.name,
|
|
82
|
+
"description": self.description,
|
|
83
|
+
"parameters": {
|
|
84
|
+
"type": "object",
|
|
85
|
+
"properties": properties,
|
|
86
|
+
"required": required,
|
|
87
|
+
"additionalProperties": False,
|
|
88
|
+
},
|
|
89
|
+
**({"strict": self.strict} if self.strict is not None else {}),
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
# LLM Runtime argument handling
|
|
93
|
+
def resolve_arguments(self, raw_args: Dict[str, Any]) -> Dict[str, Any]:
|
|
94
|
+
"""Validate and cast raw arguments provided by the model.
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
raw_args: The raw argument dictionary produced by the model.
|
|
98
|
+
|
|
99
|
+
Returns:
|
|
100
|
+
Dict[str, Any]: A dictionary of validated and type-cast arguments.
|
|
101
|
+
"""
|
|
102
|
+
parsed = {}
|
|
103
|
+
for arg in self.args_schema:
|
|
104
|
+
parsed[arg.name] = arg.validate_and_cast(raw_args.get(arg.name))
|
|
105
|
+
return parsed
|
|
106
|
+
|
|
107
|
+
def execute(
|
|
108
|
+
self, args: Dict[str, Any], runtime_context: Optional[Dict[str, Any]] = None
|
|
109
|
+
) -> Any:
|
|
110
|
+
"""Execute the tool with validated arguments and runtime context.
|
|
111
|
+
|
|
112
|
+
This method resolves and validates model-provided arguments, injects
|
|
113
|
+
a ``ToolRuntime`` instance into the function call if requested by the
|
|
114
|
+
function's type annotations, and then invokes the underlying function.
|
|
115
|
+
|
|
116
|
+
Args:
|
|
117
|
+
args: Raw arguments provided by the model.
|
|
118
|
+
runtime_context: Optional runtime context data used to construct
|
|
119
|
+
a ``ToolRuntime`` instance when required.
|
|
120
|
+
|
|
121
|
+
Returns:
|
|
122
|
+
Any: The return value of the underlying tool function.
|
|
123
|
+
"""
|
|
124
|
+
# 1. Resolve LLM arguments using the tool's schema logic
|
|
125
|
+
final_args = self.resolve_arguments(args)
|
|
126
|
+
|
|
127
|
+
# 2. Inject ToolRuntime if requested by the function signature
|
|
128
|
+
# Use get_type_hints to properly resolve annotations, including forward references
|
|
129
|
+
try:
|
|
130
|
+
type_hints = get_type_hints(self.func)
|
|
131
|
+
except (NameError, AttributeError, TypeError):
|
|
132
|
+
# Fallback to inspect.signature if get_type_hints fails
|
|
133
|
+
# This handles cases where annotations can't be resolved
|
|
134
|
+
sig = inspect.signature(self.func)
|
|
135
|
+
type_hints = {
|
|
136
|
+
name: param.annotation
|
|
137
|
+
for name, param in sig.parameters.items()
|
|
138
|
+
if param.annotation != inspect.Parameter.empty
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
for param_name, param_type in type_hints.items():
|
|
142
|
+
if param_type is ToolRuntime:
|
|
143
|
+
final_args[param_name] = ToolRuntime(**(runtime_context or {}))
|
|
144
|
+
|
|
145
|
+
return self.func(**final_args)
|
literun/utils.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
"""Utilities for extracting structured data from OpenAI response objects."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from typing import List, Dict, Any
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def extract_output_text(response: Any) -> str:
|
|
9
|
+
"""Extracts and concatenates output text from the response object.
|
|
10
|
+
|
|
11
|
+
Args:
|
|
12
|
+
response: The response object containing output messages.
|
|
13
|
+
|
|
14
|
+
Returns:
|
|
15
|
+
str: The concatenated output text.
|
|
16
|
+
"""
|
|
17
|
+
texts: List[str] = []
|
|
18
|
+
for output in response.output:
|
|
19
|
+
if output.type == "message":
|
|
20
|
+
for content in output.content:
|
|
21
|
+
if content.type == "output_text":
|
|
22
|
+
texts.append(content.text)
|
|
23
|
+
|
|
24
|
+
return "".join(texts)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def extract_tool_calls(response: Any) -> List[Dict[str, Any]]:
|
|
28
|
+
"""Extracts tool call information from the response object into a list of dictionaries.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
response: The response object containing tool call information.
|
|
32
|
+
|
|
33
|
+
Returns:
|
|
34
|
+
List[Dict[str, Any]]: A list of dictionaries with tool call details.
|
|
35
|
+
"""
|
|
36
|
+
import json
|
|
37
|
+
|
|
38
|
+
tool_calls: List[Dict[str, Any]] = []
|
|
39
|
+
for output in response.output:
|
|
40
|
+
if output.type == "function_call":
|
|
41
|
+
tool_calls.append(
|
|
42
|
+
{
|
|
43
|
+
"arguments": json.loads(output.arguments),
|
|
44
|
+
"call_id": output.call_id,
|
|
45
|
+
"name": output.name,
|
|
46
|
+
"type": output.type,
|
|
47
|
+
"id": output.id,
|
|
48
|
+
"status": output.status,
|
|
49
|
+
}
|
|
50
|
+
)
|
|
51
|
+
return tool_calls
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def extract_usage_dict(response: Any) -> Dict[str, Any]:
|
|
55
|
+
"""Extracts usage statistics from the response object into a dictionary.
|
|
56
|
+
|
|
57
|
+
Args:
|
|
58
|
+
response: The response object containing usage statistics.
|
|
59
|
+
|
|
60
|
+
Returns:
|
|
61
|
+
Dict[str, Any]: A dictionary with usage statistics.
|
|
62
|
+
"""
|
|
63
|
+
return {
|
|
64
|
+
"input_tokens": response.usage.input_tokens,
|
|
65
|
+
"input_tokens_details": {
|
|
66
|
+
"cached_tokens": response.usage.input_tokens_details.cached_tokens
|
|
67
|
+
},
|
|
68
|
+
"output_tokens": response.usage.output_tokens,
|
|
69
|
+
"output_tokens_details": {
|
|
70
|
+
"reasoning_tokens": response.usage.output_tokens_details.reasoning_tokens
|
|
71
|
+
},
|
|
72
|
+
"total_tokens": response.usage.total_tokens,
|
|
73
|
+
}
|
|
@@ -0,0 +1,242 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: literun
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A Minimal agent runtime built on OpenAI Responses API
|
|
5
|
+
Author-email: Kaustubh <trivedikaustubh01@gmail.com>
|
|
6
|
+
License: MIT
|
|
7
|
+
Requires-Python: >=3.10
|
|
8
|
+
Description-Content-Type: text/markdown
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Requires-Dist: openai>=2.11.0
|
|
11
|
+
Provides-Extra: dev
|
|
12
|
+
Requires-Dist: pytest>=7.0; extra == "dev"
|
|
13
|
+
Requires-Dist: black; extra == "dev"
|
|
14
|
+
Requires-Dist: flake8; extra == "dev"
|
|
15
|
+
Dynamic: license-file
|
|
16
|
+
|
|
17
|
+
# LiteRun 🚀
|
|
18
|
+
|
|
19
|
+
A lightweight, flexible Python framework for building custom OpenAI agents (Responses API) with tool support and structured prompt management.
|
|
20
|
+
|
|
21
|
+
## Features
|
|
22
|
+
|
|
23
|
+
- **Custom Agent Execution**: Complete control over the agent execution loop, supporting both synchronous and streaming responses.
|
|
24
|
+
- **Tool Support**: Easy registration and execution of Python functions as tools.
|
|
25
|
+
- **Type Safety**: Strong typing for tool arguments with automatic coercion and validation.
|
|
26
|
+
- **Prompt Templates**: Structured way to build system, user, and assistant messages.
|
|
27
|
+
- **Constants**: Pre-defined constants for OpenAI roles and message types.
|
|
28
|
+
- **Streaming Support**: Built-in support for real-time streaming of agent thoughts, tool calls, and responses.
|
|
29
|
+
- **Tool Management**: Easy-to-define tools with automatic JSON schema generation (`ArgsSchema`).
|
|
30
|
+
- **Event-Driven**: Structured event system for granular control over the agent's execution lifecycle.
|
|
31
|
+
- **OpenAI Compatible**: Seamlessly integrates with `openai-python` client.
|
|
32
|
+
|
|
33
|
+
## Requirements
|
|
34
|
+
|
|
35
|
+
- Python 3.10+
|
|
36
|
+
- [OpenAI Python API library](https://pypi.org/project/openai/)
|
|
37
|
+
|
|
38
|
+
## Installation
|
|
39
|
+
|
|
40
|
+
### Production
|
|
41
|
+
|
|
42
|
+
```bash
|
|
43
|
+
pip install literun
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
### Development
|
|
47
|
+
|
|
48
|
+
```bash
|
|
49
|
+
git clone https://github.com/kaustubh-tr/literun.git
|
|
50
|
+
cd openai-agent
|
|
51
|
+
pip install -e .[dev]
|
|
52
|
+
```
|
|
53
|
+
|
|
54
|
+
## Quick Start
|
|
55
|
+
|
|
56
|
+
### Basic Agent
|
|
57
|
+
|
|
58
|
+
Here is a simple example of how to create an agent with a custom tool:
|
|
59
|
+
|
|
60
|
+
```python
|
|
61
|
+
import os
|
|
62
|
+
from literun import Agent, ChatOpenAI, Tool, ArgsSchema
|
|
63
|
+
|
|
64
|
+
# 1. Define a tool function
|
|
65
|
+
def get_weather(location: str, unit: str = "celsius") -> str:
|
|
66
|
+
return f"The weather in {location} is 25 degrees {unit}."
|
|
67
|
+
|
|
68
|
+
# 2. Wrap it with Tool schema
|
|
69
|
+
weather_tool = Tool(
|
|
70
|
+
func=get_weather,
|
|
71
|
+
name="get_weather",
|
|
72
|
+
description="Get the weather for a location",
|
|
73
|
+
args_schema=[
|
|
74
|
+
ArgsSchema(
|
|
75
|
+
name="location",
|
|
76
|
+
type=str,
|
|
77
|
+
description="The city and state, e.g. San Francisco, CA",
|
|
78
|
+
),
|
|
79
|
+
ArgsSchema(
|
|
80
|
+
name="unit",
|
|
81
|
+
type=str,
|
|
82
|
+
description="The unit of temperature",
|
|
83
|
+
enum=["celsius", "fahrenheit"],
|
|
84
|
+
),
|
|
85
|
+
],
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
# 3. Initialize LLM and Agent
|
|
89
|
+
llm = ChatOpenAI(model="gpt-4o", temperature=0.7)
|
|
90
|
+
|
|
91
|
+
# 4. Initialize Agent
|
|
92
|
+
agent = Agent(
|
|
93
|
+
llm=llm,
|
|
94
|
+
system_prompt="You are a helpful assistant.",
|
|
95
|
+
tools=[weather_tool],
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
# 5. Run the Agent
|
|
99
|
+
result = agent.invoke(user_input="What is the weather in Tokyo?")
|
|
100
|
+
print(f"Final Answer: {result.final_output}")
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
### Streaming Agent
|
|
104
|
+
|
|
105
|
+
You can also stream the agent's execution to handle events in real-time:
|
|
106
|
+
|
|
107
|
+
```python
|
|
108
|
+
# ... (setup tool and agent as above)
|
|
109
|
+
|
|
110
|
+
print("Agent: ", end="", flush=True)
|
|
111
|
+
for result in agent.stream(user_input="What is the weather in Tokyo?"):
|
|
112
|
+
event = result.event
|
|
113
|
+
if event.type == "response.output_text.delta":
|
|
114
|
+
print(event.delta, end="", flush=True)
|
|
115
|
+
elif event.type == "response.function_call_arguments.done":
|
|
116
|
+
print(f"\n[Tool Call: {event.name}]")
|
|
117
|
+
|
|
118
|
+
print()
|
|
119
|
+
```
|
|
120
|
+
|
|
121
|
+
### Runtime Configuration (Context Injection)
|
|
122
|
+
|
|
123
|
+
The framework allows passing a runtime context to tools using explicit context injection.
|
|
124
|
+
|
|
125
|
+
Rules:
|
|
126
|
+
1. Define a tool function with a parameter annotated with `ToolRuntime`.
|
|
127
|
+
2. The framework will automatically inject the `runtime_context` (wrapped in `ToolRuntime`) into that parameter.
|
|
128
|
+
3. Access configuration values using `ctx.{parameter}`.
|
|
129
|
+
|
|
130
|
+
```python
|
|
131
|
+
from typing import Dict, Any
|
|
132
|
+
from literun import Tool, ArgsSchema, ToolRuntime
|
|
133
|
+
|
|
134
|
+
# 1. Define tool with context
|
|
135
|
+
def get_weather(location: str, ctx: ToolRuntime) -> str:
|
|
136
|
+
"""
|
|
137
|
+
Returns weather info for a location.
|
|
138
|
+
The runtime context can include sensitive info like user_id or API keys.
|
|
139
|
+
"""
|
|
140
|
+
user_id = getattr(ctx, "user_id", "unknown_user")
|
|
141
|
+
api_key = getattr(ctx, "weather_api_key", None)
|
|
142
|
+
|
|
143
|
+
# Simulate fetching weather
|
|
144
|
+
return f"Weather for {location} fetched using API key '{api_key}' for user '{user_id}'."
|
|
145
|
+
|
|
146
|
+
# 2. Register tool
|
|
147
|
+
tool = Tool(
|
|
148
|
+
name="get_weather",
|
|
149
|
+
description="Get the weather for a given location",
|
|
150
|
+
func=get_weather,
|
|
151
|
+
args_schema=[
|
|
152
|
+
ArgsSchema(
|
|
153
|
+
name="location",
|
|
154
|
+
type=str,
|
|
155
|
+
description="Location for which to get the weather",
|
|
156
|
+
)
|
|
157
|
+
]
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
# 3. Setup agent
|
|
161
|
+
agent = Agent(
|
|
162
|
+
llm=ChatOpenAI(api_key="fake"),
|
|
163
|
+
tools=[tool]
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
# 4. Pass config at runtime
|
|
167
|
+
# The whole dict is passed into the 'ctx' argument
|
|
168
|
+
agent.invoke(
|
|
169
|
+
user_input="What's the weather in London?",
|
|
170
|
+
runtime_context={
|
|
171
|
+
"user_id": "user_123",
|
|
172
|
+
"weather_api_key": "SECRET_API_KEY_456"
|
|
173
|
+
}
|
|
174
|
+
)
|
|
175
|
+
```
|
|
176
|
+
|
|
177
|
+
### Using ChatOpenAI Directly
|
|
178
|
+
|
|
179
|
+
You can also use the `ChatOpenAI` class directly if you don't need the agent loop (e.g., for simple, one-off LLM calls).
|
|
180
|
+
|
|
181
|
+
```python
|
|
182
|
+
from literun import ChatOpenAI
|
|
183
|
+
|
|
184
|
+
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
|
185
|
+
|
|
186
|
+
messages = [
|
|
187
|
+
{"role": "system", "content": "You are a helpful assistant."},
|
|
188
|
+
{"role": "user", "content": "Tell me a joke."}
|
|
189
|
+
]
|
|
190
|
+
|
|
191
|
+
# Synchronous call
|
|
192
|
+
# Returns the raw OpenAI Responses API response object
|
|
193
|
+
response = llm.invoke(messages=messages)
|
|
194
|
+
print(response.output_text)
|
|
195
|
+
|
|
196
|
+
# Or streaming call
|
|
197
|
+
# Returns a generator of raw OpenAI response stream events
|
|
198
|
+
stream = llm.stream(messages=messages)
|
|
199
|
+
for event in stream:
|
|
200
|
+
print(event)
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
See [examples](examples/) for complete runnable examples.
|
|
204
|
+
|
|
205
|
+
## Project Structure
|
|
206
|
+
|
|
207
|
+
The project is organized as follows:
|
|
208
|
+
|
|
209
|
+
```
|
|
210
|
+
literun/
|
|
211
|
+
├── src/
|
|
212
|
+
│ └── literun/ # Main package source
|
|
213
|
+
│ ├── agent.py # Agent runtime logic
|
|
214
|
+
│ ├── llm.py # LLM client wrapper
|
|
215
|
+
│ ├── tool.py # Tool definition and execution
|
|
216
|
+
│ ├── events.py # Stream event types
|
|
217
|
+
│ └── ...
|
|
218
|
+
├── tests/ # Unit tests
|
|
219
|
+
├── examples/ # Usage examples
|
|
220
|
+
└── pyproject.toml # Project configuration
|
|
221
|
+
```
|
|
222
|
+
|
|
223
|
+
## Testing
|
|
224
|
+
|
|
225
|
+
Run the test suite using `unittest`:
|
|
226
|
+
|
|
227
|
+
```bash
|
|
228
|
+
python -m unittest discover tests
|
|
229
|
+
```
|
|
230
|
+
|
|
231
|
+
## Contributing
|
|
232
|
+
|
|
233
|
+
1. Fork the repository
|
|
234
|
+
2. Create a feature branch
|
|
235
|
+
3. Make your changes
|
|
236
|
+
4. Run tests: `python -m unittest discover tests`
|
|
237
|
+
5. Update the example usage if needed
|
|
238
|
+
6. Submit a pull request
|
|
239
|
+
|
|
240
|
+
## License
|
|
241
|
+
|
|
242
|
+
MIT
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
literun/__init__.py,sha256=lnkWaQ_BYMVjyuPiRxmELOEMKzzqGw8n0DPEKIuNrgk,706
|
|
2
|
+
literun/agent.py,sha256=CrMrvKHDlwQ4shqR1GkJv0pKq64mdIAy5VnVZoa-1To,15105
|
|
3
|
+
literun/args_schema.py,sha256=bmLTybD4zPhjTwHkZrjQVEkiARHbje1SXTkH0hWyp0s,2618
|
|
4
|
+
literun/constants.py,sha256=gSyuHnUdPuQBH3GKjp7FwZhk_C-F7ecF1IF-36H23_Q,453
|
|
5
|
+
literun/events.py,sha256=SARUr4XWG9qpuy34hpZHHyJRX5btmJmBhBfvU8KbYyc,3615
|
|
6
|
+
literun/items.py,sha256=SPINMwy8vOuK6iIqAMC5Av-BIgsCiuVKpYK_4vk70fk,2975
|
|
7
|
+
literun/llm.py,sha256=7RU990Lw5XMY5RrlkepBaKFmP9cyZUu85SmUccrVIbY,5030
|
|
8
|
+
literun/prompt_message.py,sha256=wizT6T8A4rsswcCyQVQeKyOdMPPFmSKtQoVUliMgV0M,4982
|
|
9
|
+
literun/prompt_template.py,sha256=IFNZH80e2AO4u1p5L59Q49vvumU6nvToVHVXwkM_7mI,5128
|
|
10
|
+
literun/results.py,sha256=7uRPdfzRzdI0HXhWhFiya4yhH-NmjGfdGZAgXMpfkpQ,1324
|
|
11
|
+
literun/tool.py,sha256=iKQg1Xgh_Bzn1V0lVllmH1-G0XiHuDLkXOe0rCHRfc4,5049
|
|
12
|
+
literun/utils.py,sha256=4r9P7u46KzuG3eNZq8kfuEWJxpc4b8T26nrzjW7_Hec,2261
|
|
13
|
+
literun-0.1.0.dist-info/licenses/LICENSE,sha256=sJlY4ztFUqGGojhTNtL2UbhQeSZF3B4V1dAtzGfMHOE,1073
|
|
14
|
+
literun-0.1.0.dist-info/METADATA,sha256=jTSF_nuY1_6T3ImwNAgAQcxkZ3TdVzHx8Ofmy8CmK1U,6649
|
|
15
|
+
literun-0.1.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
16
|
+
literun-0.1.0.dist-info/top_level.txt,sha256=YFnS29wBQf5eX9UEtBYA1ZegxjIs_7n691L8qIR_QW0,8
|
|
17
|
+
literun-0.1.0.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Kaustubh Trivedi
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
literun
|