lisaanalysistools 1.0.3__cp312-cp312-macosx_10_9_x86_64.whl → 1.0.5__cp312-cp312-macosx_10_9_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lisaanalysistools might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: lisaanalysistools
3
- Version: 1.0.3
3
+ Version: 1.0.5
4
4
  Home-page: https://github.com/mikekatz04/lisa-on-gpu
5
5
  Author: Michael Katz
6
6
  Author-email: mikekatz04@gmail.com
@@ -18,8 +18,9 @@ License-File: LICENSE
18
18
  # LISA Analysis Tools
19
19
 
20
20
  [![Doc badge](https://img.shields.io/badge/Docs-master-brightgreen)](https://mikekatz04.github.io/LISAanalysistools)
21
+ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10930980.svg)](https://doi.org/10.5281/zenodo.10930980)
21
22
 
22
- LISA Analysis Tools is a package for performing LISA Data Analysis tasks, including building the LISA Global Fit.
23
+ LISA Analysis Tools is a package for performing LISA Data Analysis tasks, including building the LISA Global Fit.
23
24
 
24
25
  ## 1 - Getting Started
25
26
 
@@ -59,16 +60,15 @@ Please read [CONTRIBUTING.md](CONTRIBUTING.md) for details on our code of conduc
59
60
 
60
61
  We use [SemVer](http://semver.org/) for versioning. For the versions available, see the [tags on this repository](https://github.com/BlackHolePerturbationToolkit/FastEMRIWaveforms/tags).
61
62
 
62
- Current Version: 1.0.3
63
+ Current Version: 1.0.5
63
64
 
64
65
  ## Authors/Developers
65
66
 
66
67
  * **Michael Katz**
67
-
68
- ### Contibutors
69
-
70
68
  * Lorenzo Speri
71
69
  * Christian Chapman-Bird
70
+ * Natalia Korsakova
71
+ * Nikos Karnesis
72
72
 
73
73
  ## License
74
74
 
@@ -76,5 +76,20 @@ This project is licensed under the Apache License - see the [LICENSE.md](LICENSE
76
76
 
77
77
  ## Citation
78
78
 
79
- TODO.
79
+ ```
80
+ @software{michael_katz_2024_10930980,
81
+ author = {Michael Katz and
82
+ CChapmanbird and
83
+ Lorenzo Speri and
84
+ Nikolaos Karnesis and
85
+ Korsakova, Natalia},
86
+ title = {mikekatz04/LISAanalysistools: First main release.},
87
+ month = apr,
88
+ year = 2024,
89
+ publisher = {Zenodo},
90
+ version = {v1.0.3},
91
+ doi = {10.5281/zenodo.10930980},
92
+ url = {https://doi.org/10.5281/zenodo.10930980}
93
+ }
94
+ ```
80
95
 
@@ -0,0 +1,28 @@
1
+ lisatools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ lisatools/_version.py,sha256=QnhTB8xNwmBZijHj3vbB3rZZAVZJsQdBQ0N3zLG2pMY,123
3
+ lisatools/analysiscontainer.py,sha256=ePwTBUTEBJn2TK93_afARate9SAqUKK8c8T6DcGUx1Y,15321
4
+ lisatools/datacontainer.py,sha256=W89ErPJynfeioZwYqcpehHVorhKsb8FLKrj69zIsKKU,9187
5
+ lisatools/detector.py,sha256=_S7fmtOaFLIzTfVnVTXjD58rvl7-DVy2WR4aG1V-CsE,13851
6
+ lisatools/diagnostic.py,sha256=CfPpfvDys1XyZRWmmTqTSWb0SY2eH0G_8TRnt1OxBFo,34174
7
+ lisatools/sensitivity.py,sha256=rckXeJ_5U3cRRgbYDmt0kaTyJRjkrYfgBwos12QJJfw,27297
8
+ lisatools/stochastic.py,sha256=wdiToEj4nUpCDIb0j7vQ7netTPDDtPGPbUg8-RiFA9U,9421
9
+ lisatools/cutils/detector.cpython-312-darwin.so,sha256=FguczB3QPZfL3CCSMEuIx3VP0jj240_Dh30anER84m8,121664
10
+ lisatools/sampling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ lisatools/sampling/likelihood.py,sha256=G2kAQ43qlhAzIFWvYsrSmHXd7WKJAzcCN2o07vRE8vc,29585
12
+ lisatools/sampling/prior.py,sha256=1K1PMStpwO9WT0qG0aotKSyoNjuehXNbzTDtlk8Q15M,21407
13
+ lisatools/sampling/stopping.py,sha256=Q8q7nM0wnJervhRduf2tBXZZHUVza5kJiAUAMUQXP5o,9682
14
+ lisatools/sampling/utility.py,sha256=rOGotS0Aj8-DAWqsTVy2xWNsxsoz74BVrHEnG2mOkwU,14340
15
+ lisatools/sampling/moves/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
+ lisatools/sampling/moves/skymodehop.py,sha256=0nf72eFhFMGwi0dLJci6XZz-bIMGqco2B2_J72hQvf8,3348
17
+ lisatools/sources/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
+ lisatools/sources/emri/__init__.py,sha256=HjsWS4mjog_gRE4N90My6ahLKQGjNwrHIeA40R7qzw0,41
19
+ lisatools/sources/emri/tdiwaveform.py,sha256=jaKL2PO8RlJrHP45zCa4BpRniLfdnMIP1QsIB-6jVq4,2297
20
+ lisatools/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
+ lisatools/utils/constants.py,sha256=r1kVwkpbZS13JTOxj2iRxT5sMgTYX30y-S0JdVmD5Oo,1354
22
+ lisatools/utils/pointeradjust.py,sha256=2sT-7qeYWr1pd_sHk9leVHUTSJ7jJgYIRoWQOtYqguE,2995
23
+ lisatools/utils/utility.py,sha256=3mJoJKNGrm3KuNXIa2RUKi9WKd593V4q9XjjQZCQD0M,6831
24
+ lisaanalysistools-1.0.5.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
25
+ lisaanalysistools-1.0.5.dist-info/METADATA,sha256=zfuyj8R4brFWnqruMjtzkbTxmVQ5L9Lelh9zNrslfPs,3380
26
+ lisaanalysistools-1.0.5.dist-info/WHEEL,sha256=KYtn_mzb_QwZSHwPlosUO3fDl70znfUFngLlrLVHeBY,111
27
+ lisaanalysistools-1.0.5.dist-info/top_level.txt,sha256=oCQGY7qy66i_b9MCsK2fTRdbV1pcC9GsGgIDjN47Tyc,14
28
+ lisaanalysistools-1.0.5.dist-info/RECORD,,
lisatools/_version.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = '1.0.3'
1
+ __version__ = '1.0.5'
2
2
  __copyright__ = "Michael L. Katz 2024"
3
3
  __name__ = "lisaanalysistools"
4
4
  __author__ = "Michael L. Katz"
@@ -1,13 +1,17 @@
1
+ from __future__ import annotations
2
+
3
+
1
4
  import warnings
2
5
  from abc import ABC
3
6
  from typing import Any, Tuple, Optional, List
4
7
 
5
8
  import math
6
9
  import numpy as np
7
- from numpy.typing import ArrayLike
10
+
8
11
  from scipy import interpolate
9
12
  import matplotlib.pyplot as plt
10
13
 
14
+
11
15
  try:
12
16
  import cupy as cp
13
17
 
@@ -209,7 +213,7 @@ class AnalysisContainer:
209
213
  template: DataResidualArray,
210
214
  include_psd_info: bool = False,
211
215
  phase_maximize: bool = False,
212
- **kwargs: dict
216
+ **kwargs: dict,
213
217
  ) -> float:
214
218
  """Calculate the Likelihood of a template against the data.
215
219
 
@@ -278,11 +282,11 @@ class AnalysisContainer:
278
282
  def _calculate_signal_operation(
279
283
  self,
280
284
  calc: str,
281
- *args: ArrayLike,
285
+ *args: Any,
282
286
  source_only: bool = False,
283
287
  waveform_kwargs: Optional[dict] = {},
284
288
  data_res_arr_kwargs: Optional[dict] = {},
285
- **kwargs: dict
289
+ **kwargs: dict,
286
290
  ) -> float | complex:
287
291
  """Return the likelihood of a generated signal with the data.
288
292
 
@@ -328,11 +332,11 @@ class AnalysisContainer:
328
332
 
329
333
  def calculate_signal_likelihood(
330
334
  self,
331
- *args: ArrayLike,
335
+ *args: Any,
332
336
  source_only: bool = False,
333
337
  waveform_kwargs: Optional[dict] = {},
334
338
  data_res_arr_kwargs: Optional[dict] = {},
335
- **kwargs: dict
339
+ **kwargs: dict,
336
340
  ) -> float | complex:
337
341
  """Return the likelihood of a generated signal with the data.
338
342
 
@@ -355,16 +359,16 @@ class AnalysisContainer:
355
359
  source_only=source_only,
356
360
  waveform_kwargs=waveform_kwargs,
357
361
  data_res_arr_kwargs=data_res_arr_kwargs,
358
- **kwargs
362
+ **kwargs,
359
363
  )
360
364
 
361
365
  def calculate_signal_inner_product(
362
366
  self,
363
- *args: ArrayLike,
367
+ *args: Any,
364
368
  source_only: bool = False,
365
369
  waveform_kwargs: Optional[dict] = {},
366
370
  data_res_arr_kwargs: Optional[dict] = {},
367
- **kwargs: dict
371
+ **kwargs: dict,
368
372
  ) -> float | complex:
369
373
  """Return the inner product of a generated signal with the data.
370
374
 
@@ -387,16 +391,16 @@ class AnalysisContainer:
387
391
  source_only=source_only,
388
392
  waveform_kwargs=waveform_kwargs,
389
393
  data_res_arr_kwargs=data_res_arr_kwargs,
390
- **kwargs
394
+ **kwargs,
391
395
  )
392
396
 
393
397
  def calculate_signal_snr(
394
398
  self,
395
- *args: ArrayLike,
399
+ *args: Any,
396
400
  source_only: bool = False,
397
401
  waveform_kwargs: Optional[dict] = {},
398
402
  data_res_arr_kwargs: Optional[dict] = {},
399
- **kwargs: dict
403
+ **kwargs: dict,
400
404
  ) -> Tuple[float, float]:
401
405
  """Return the SNR of a generated signal with the data.
402
406
 
@@ -419,7 +423,7 @@ class AnalysisContainer:
419
423
  source_only=source_only,
420
424
  waveform_kwargs=waveform_kwargs,
421
425
  data_res_arr_kwargs=data_res_arr_kwargs,
422
- **kwargs
426
+ **kwargs,
423
427
  )
424
428
 
425
429
  def eryn_likelihood_function(self, x, *args, **kwargs):
@@ -4,7 +4,6 @@ from typing import Any, Tuple, Optional, List
4
4
 
5
5
  import math
6
6
  import numpy as np
7
- from numpy.typing import ArrayLike
8
7
  from scipy import interpolate
9
8
  import matplotlib.pyplot as plt
10
9
 
@@ -36,7 +35,7 @@ class DataResidualArray:
36
35
  sens_mat: Input sensitivity list. The shape of the nested lists should represent the shape of the
37
36
  desired matrix. Each entry in the list must be an array, :class:`Sensitivity`-derived object,
38
37
  or a string corresponding to the :class:`Sensitivity` object.
39
- **sens_kwargs: Keyword arguments to pass to :method:`Sensitivity.get_Sn`.
38
+ **sens_kwargs: Keyword arguments to pass to :func:`Sensitivity.get_Sn`.
40
39
 
41
40
  """
42
41
 
lisatools/detector.py CHANGED
@@ -443,7 +443,7 @@ class LISAModel(LISAModelSettings, ABC):
443
443
  scirdv1 = LISAModel((15.0e-12) ** 2, (3.0e-15) ** 2, DefaultOrbits(), "scirdv1")
444
444
  proposal = LISAModel((10.0e-12) ** 2, (3.0e-15) ** 2, DefaultOrbits(), "proposal")
445
445
  mrdv1 = LISAModel((10.0e-12) ** 2, (2.4e-15) ** 2, DefaultOrbits(), "mrdv1")
446
- sangria = LISAModel((10.0e-12) ** 2, (2.4e-15) ** 2, DefaultOrbits(), "sangria")
446
+ sangria = LISAModel((7.9e-12) ** 2, (2.4e-15) ** 2, DefaultOrbits(), "sangria")
447
447
 
448
448
  __stock_list_models__ = [scirdv1, proposal, mrdv1, sangria]
449
449
  __stock_list_models_name__ = [tmp.name for tmp in __stock_list_models__]
lisatools/diagnostic.py CHANGED
@@ -2,7 +2,6 @@ import warnings
2
2
  from types import ModuleType, NoneType
3
3
  from typing import Optional, Any, Tuple, List
4
4
 
5
- from numpy.typing import ArrayLike
6
5
  import matplotlib.pyplot as plt
7
6
 
8
7
  from eryn.utils import TransformContainer
@@ -387,7 +386,7 @@ def snr(
387
386
  def h_var_p_eps(
388
387
  step: float,
389
388
  waveform_model: callable,
390
- params: ArrayLike,
389
+ params: np.ndarray | list,
391
390
  index: int,
392
391
  parameter_transforms: Optional[TransformContainer] = None,
393
392
  waveform_args: Optional[tuple] = (),
@@ -499,8 +498,8 @@ def dh_dlambda(
499
498
  def info_matrix(
500
499
  eps: float | np.ndarray,
501
500
  waveform_model: callable,
502
- params: ArrayLike,
503
- deriv_inds: Optional[ArrayLike] = None,
501
+ params: np.ndarray | list,
502
+ deriv_inds: Optional[np.ndarray | list] = None,
504
503
  inner_product_kwargs: Optional[dict] = {},
505
504
  return_derivs: Optional[bool] = False,
506
505
  **kwargs: dict,
@@ -793,7 +792,7 @@ def cutler_vallisneri_bias(
793
792
  eps: float | np.ndarray,
794
793
  input_diagnostics: Optional[dict] = None,
795
794
  info_mat: Optional[np.ndarray] = None,
796
- deriv_inds: Optional[ArrayLike] = None,
795
+ deriv_inds: Optional[np.ndarray | list] = None,
797
796
  return_derivs: Optional[bool] = False,
798
797
  return_cov: Optional[bool] = False,
799
798
  parameter_transforms: Optional[TransformContainer] = None,