lionagi 0.0.316__py3-none-any.whl → 0.1.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- lionagi/core/__init__.py +19 -8
- lionagi/core/agent/__init__.py +0 -3
- lionagi/core/agent/base_agent.py +25 -30
- lionagi/core/branch/__init__.py +0 -4
- lionagi/core/branch/{base_branch.py → base.py} +12 -13
- lionagi/core/branch/branch.py +22 -19
- lionagi/core/branch/executable_branch.py +0 -347
- lionagi/core/branch/{branch_flow_mixin.py → flow_mixin.py} +5 -5
- lionagi/core/direct/__init__.py +10 -1
- lionagi/core/direct/cot.py +61 -26
- lionagi/core/direct/plan.py +10 -8
- lionagi/core/direct/predict.py +5 -5
- lionagi/core/direct/react.py +8 -8
- lionagi/core/direct/score.py +4 -4
- lionagi/core/direct/select.py +4 -4
- lionagi/core/direct/utils.py +7 -4
- lionagi/core/direct/vote.py +2 -2
- lionagi/core/execute/base_executor.py +47 -0
- lionagi/core/execute/branch_executor.py +296 -0
- lionagi/core/execute/instruction_map_executor.py +179 -0
- lionagi/core/execute/neo4j_executor.py +381 -0
- lionagi/core/execute/structure_executor.py +314 -0
- lionagi/core/flow/monoflow/ReAct.py +20 -20
- lionagi/core/flow/monoflow/chat.py +6 -6
- lionagi/core/flow/monoflow/chat_mixin.py +23 -33
- lionagi/core/flow/monoflow/followup.py +14 -15
- lionagi/core/flow/polyflow/chat.py +15 -12
- lionagi/core/{prompt/action_template.py → form/action_form.py} +2 -2
- lionagi/core/{prompt → form}/field_validator.py +40 -31
- lionagi/core/form/form.py +302 -0
- lionagi/core/form/mixin.py +214 -0
- lionagi/core/{prompt/scored_template.py → form/scored_form.py} +2 -2
- lionagi/core/generic/__init__.py +37 -0
- lionagi/core/generic/action.py +26 -0
- lionagi/core/generic/component.py +455 -0
- lionagi/core/generic/condition.py +44 -0
- lionagi/core/generic/data_logger.py +305 -0
- lionagi/core/generic/edge.py +162 -0
- lionagi/core/generic/mail.py +90 -0
- lionagi/core/generic/mailbox.py +36 -0
- lionagi/core/generic/node.py +285 -0
- lionagi/core/generic/relation.py +70 -0
- lionagi/core/generic/signal.py +22 -0
- lionagi/core/generic/structure.py +362 -0
- lionagi/core/generic/transfer.py +20 -0
- lionagi/core/generic/work.py +40 -0
- lionagi/core/graph/graph.py +126 -0
- lionagi/core/graph/tree.py +190 -0
- lionagi/core/mail/__init__.py +0 -8
- lionagi/core/mail/mail_manager.py +15 -12
- lionagi/core/mail/schema.py +9 -2
- lionagi/core/messages/__init__.py +0 -3
- lionagi/core/messages/schema.py +17 -225
- lionagi/core/session/__init__.py +0 -3
- lionagi/core/session/session.py +24 -22
- lionagi/core/tool/__init__.py +3 -1
- lionagi/core/tool/tool.py +28 -0
- lionagi/core/tool/tool_manager.py +75 -75
- lionagi/experimental/directive/evaluator/__init__.py +0 -0
- lionagi/experimental/directive/evaluator/ast_evaluator.py +115 -0
- lionagi/experimental/directive/evaluator/base_evaluator.py +202 -0
- lionagi/experimental/directive/evaluator/sandbox_.py +14 -0
- lionagi/experimental/directive/evaluator/script_engine.py +83 -0
- lionagi/experimental/directive/parser/__init__.py +0 -0
- lionagi/experimental/directive/parser/base_parser.py +215 -0
- lionagi/experimental/directive/schema.py +36 -0
- lionagi/experimental/directive/template_/__init__.py +0 -0
- lionagi/experimental/directive/template_/base_template.py +63 -0
- lionagi/experimental/tool/__init__.py +0 -0
- lionagi/experimental/tool/function_calling.py +43 -0
- lionagi/experimental/tool/manual.py +66 -0
- lionagi/experimental/tool/schema.py +59 -0
- lionagi/experimental/tool/tool_manager.py +138 -0
- lionagi/experimental/tool/util.py +16 -0
- lionagi/experimental/work/__init__.py +0 -0
- lionagi/experimental/work/_logger.py +25 -0
- lionagi/experimental/work/exchange.py +0 -0
- lionagi/experimental/work/schema.py +30 -0
- lionagi/experimental/work/tests.py +72 -0
- lionagi/experimental/work/util.py +0 -0
- lionagi/experimental/work/work_function.py +89 -0
- lionagi/experimental/work/worker.py +12 -0
- lionagi/integrations/bridge/autogen_/__init__.py +0 -0
- lionagi/integrations/bridge/autogen_/autogen_.py +124 -0
- lionagi/integrations/bridge/llamaindex_/get_index.py +294 -0
- lionagi/integrations/bridge/llamaindex_/llama_pack.py +227 -0
- lionagi/integrations/bridge/transformers_/__init__.py +0 -0
- lionagi/integrations/bridge/transformers_/install_.py +36 -0
- lionagi/integrations/chunker/chunk.py +7 -7
- lionagi/integrations/config/oai_configs.py +5 -5
- lionagi/integrations/config/ollama_configs.py +1 -1
- lionagi/integrations/config/openrouter_configs.py +1 -1
- lionagi/integrations/loader/load.py +6 -6
- lionagi/integrations/loader/load_util.py +8 -8
- lionagi/integrations/storage/__init__.py +3 -0
- lionagi/integrations/storage/neo4j.py +673 -0
- lionagi/integrations/storage/storage_util.py +289 -0
- lionagi/integrations/storage/to_csv.py +63 -0
- lionagi/integrations/storage/to_excel.py +67 -0
- lionagi/libs/ln_api.py +3 -3
- lionagi/libs/ln_knowledge_graph.py +405 -0
- lionagi/libs/ln_parse.py +43 -6
- lionagi/libs/ln_queue.py +101 -0
- lionagi/libs/ln_tokenizer.py +57 -0
- lionagi/libs/ln_validate.py +288 -0
- lionagi/libs/sys_util.py +29 -7
- lionagi/lions/__init__.py +0 -0
- lionagi/lions/coder/__init__.py +0 -0
- lionagi/lions/coder/add_feature.py +20 -0
- lionagi/lions/coder/base_prompts.py +22 -0
- lionagi/lions/coder/coder.py +121 -0
- lionagi/lions/coder/util.py +91 -0
- lionagi/lions/researcher/__init__.py +0 -0
- lionagi/lions/researcher/data_source/__init__.py +0 -0
- lionagi/lions/researcher/data_source/finhub_.py +191 -0
- lionagi/lions/researcher/data_source/google_.py +199 -0
- lionagi/lions/researcher/data_source/wiki_.py +96 -0
- lionagi/lions/researcher/data_source/yfinance_.py +21 -0
- lionagi/tests/integrations/__init__.py +0 -0
- lionagi/tests/libs/__init__.py +0 -0
- lionagi/tests/libs/test_async.py +0 -0
- lionagi/tests/libs/test_field_validators.py +353 -0
- lionagi/tests/libs/test_queue.py +67 -0
- lionagi/tests/test_core/test_base_branch.py +0 -1
- lionagi/tests/test_core/test_branch.py +2 -0
- lionagi/tests/test_core/test_session_base_util.py +1 -0
- lionagi/version.py +1 -1
- {lionagi-0.0.316.dist-info → lionagi-0.1.1.dist-info}/METADATA +1 -1
- lionagi-0.1.1.dist-info/RECORD +190 -0
- lionagi/core/prompt/prompt_template.py +0 -312
- lionagi/core/schema/__init__.py +0 -22
- lionagi/core/schema/action_node.py +0 -29
- lionagi/core/schema/base_mixin.py +0 -296
- lionagi/core/schema/base_node.py +0 -199
- lionagi/core/schema/condition.py +0 -24
- lionagi/core/schema/data_logger.py +0 -354
- lionagi/core/schema/data_node.py +0 -93
- lionagi/core/schema/prompt_template.py +0 -67
- lionagi/core/schema/structure.py +0 -912
- lionagi/core/tool/manual.py +0 -1
- lionagi-0.0.316.dist-info/RECORD +0 -121
- /lionagi/core/{branch/base → execute}/__init__.py +0 -0
- /lionagi/core/flow/{base/baseflow.py → baseflow.py} +0 -0
- /lionagi/core/flow/{base/__init__.py → mono_chat_mixin.py} +0 -0
- /lionagi/core/{prompt → form}/__init__.py +0 -0
- /lionagi/{tests/test_integrations → core/graph}/__init__.py +0 -0
- /lionagi/{tests/test_libs → experimental}/__init__.py +0 -0
- /lionagi/{tests/test_libs/test_async.py → experimental/directive/__init__.py} +0 -0
- /lionagi/tests/{test_libs → libs}/test_api.py +0 -0
- /lionagi/tests/{test_libs → libs}/test_convert.py +0 -0
- /lionagi/tests/{test_libs → libs}/test_func_call.py +0 -0
- /lionagi/tests/{test_libs → libs}/test_nested.py +0 -0
- /lionagi/tests/{test_libs → libs}/test_parse.py +0 -0
- /lionagi/tests/{test_libs → libs}/test_sys_util.py +0 -0
- {lionagi-0.0.316.dist-info → lionagi-0.1.1.dist-info}/LICENSE +0 -0
- {lionagi-0.0.316.dist-info → lionagi-0.1.1.dist-info}/WHEEL +0 -0
- {lionagi-0.0.316.dist-info → lionagi-0.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,405 @@
|
|
1
|
+
import math
|
2
|
+
from lionagi.libs import CallDecorator as cd
|
3
|
+
|
4
|
+
|
5
|
+
class KnowledgeBase:
|
6
|
+
"""
|
7
|
+
A class to represent a Knowledge Base (KB) containing entities, relations, and sources.
|
8
|
+
|
9
|
+
Attributes:
|
10
|
+
entities (dict): A dictionary of entities in the KB, where the keys are entity titles, and the values are
|
11
|
+
entity information (excluding the title).
|
12
|
+
relations (list): A list of relations in the KB, where each relation is a dictionary containing information
|
13
|
+
about the relation (head, type, tail) and metadata (article_url and spans).
|
14
|
+
sources (dict): A dictionary of information about the sources of relations, where the keys are article URLs,
|
15
|
+
and the values are source data (article_title and article_publish_date).
|
16
|
+
|
17
|
+
Methods:
|
18
|
+
merge_with_kb(kb2): Merge another Knowledge Base (kb2) into this KB.
|
19
|
+
are_relations_equal(r1, r2): Check if two relations (r1 and r2) are equal.
|
20
|
+
exists_relation(r1): Check if a relation (r1) already exists in the KB.
|
21
|
+
merge_relations(r2): Merge the information from relation r2 into an existing relation in the KB.
|
22
|
+
get_wikipedia_data(candidate_entity): Get data for a candidate entity from Wikipedia.
|
23
|
+
add_entity(e): Add an entity to the KB.
|
24
|
+
add_relation(r, article_title, article_publish_date): Add a relation to the KB.
|
25
|
+
print(): Print the entities, relations, and sources in the KB.
|
26
|
+
extract_relations_from_model_output(text): Extract relations from the model output text.
|
27
|
+
|
28
|
+
"""
|
29
|
+
|
30
|
+
def __init__(self):
|
31
|
+
"""
|
32
|
+
Initialize an empty Knowledge Base (KB) with empty dictionaries for entities, relations, and sources.
|
33
|
+
"""
|
34
|
+
self.entities = {} # { entity_title: {...} }
|
35
|
+
self.relations = [] # [ head: entity_title, type: ..., tail: entity_title,
|
36
|
+
# meta: { article_url: { spans: [...] } } ]
|
37
|
+
self.sources = {} # { article_url: {...} }
|
38
|
+
|
39
|
+
def merge_with_kb(self, kb2):
|
40
|
+
"""
|
41
|
+
Merge another Knowledge Base (KB) into this KB.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
kb2 (KnowledgeBase): The Knowledge Base (KB) to merge into this KB.
|
45
|
+
"""
|
46
|
+
for r in kb2.relations:
|
47
|
+
article_url = list(r["meta"].keys())[0]
|
48
|
+
source_data = kb2.sources[article_url]
|
49
|
+
self.add_relation(
|
50
|
+
r, source_data["article_title"], source_data["article_publish_date"]
|
51
|
+
)
|
52
|
+
|
53
|
+
def are_relations_equal(self, r1, r2):
|
54
|
+
"""
|
55
|
+
Check if two relations (r1 and r2) are equal.
|
56
|
+
|
57
|
+
Args:
|
58
|
+
r1 (dict): The first relation to compare.
|
59
|
+
r2 (dict): The second relation to compare.
|
60
|
+
|
61
|
+
Returns:
|
62
|
+
bool: True if the relations are equal, False otherwise.
|
63
|
+
"""
|
64
|
+
return all(r1[attr] == r2[attr] for attr in ["head", "type", "tail"])
|
65
|
+
|
66
|
+
def exists_relation(self, r1):
|
67
|
+
"""
|
68
|
+
Check if a relation (r1) already exists in the KB.
|
69
|
+
|
70
|
+
Args:
|
71
|
+
r1 (dict): The relation to check for existence in the KB.
|
72
|
+
|
73
|
+
Returns:
|
74
|
+
bool: True if the relation exists in the KB, False otherwise.
|
75
|
+
"""
|
76
|
+
return any(self.are_relations_equal(r1, r2) for r2 in self.relations)
|
77
|
+
|
78
|
+
def merge_relations(self, r2):
|
79
|
+
"""
|
80
|
+
Merge the information from relation r2 into an existing relation in the KB.
|
81
|
+
|
82
|
+
Args:
|
83
|
+
r2 (dict): The relation to merge into an existing relation in the KB.
|
84
|
+
"""
|
85
|
+
r1 = [r for r in self.relations if self.are_relations_equal(r2, r)][0]
|
86
|
+
|
87
|
+
# if different article
|
88
|
+
article_url = list(r2["meta"].keys())[0]
|
89
|
+
if article_url not in r1["meta"]:
|
90
|
+
r1["meta"][article_url] = r2["meta"][article_url]
|
91
|
+
|
92
|
+
# if existing article
|
93
|
+
else:
|
94
|
+
spans_to_add = [
|
95
|
+
span
|
96
|
+
for span in r2["meta"][article_url]["spans"]
|
97
|
+
if span not in r1["meta"][article_url]["spans"]
|
98
|
+
]
|
99
|
+
r1["meta"][article_url]["spans"] += spans_to_add
|
100
|
+
|
101
|
+
@cd.cache(maxsize=10000)
|
102
|
+
def get_wikipedia_data(self, candidate_entity):
|
103
|
+
"""
|
104
|
+
Get data for a candidate entity from Wikipedia.
|
105
|
+
|
106
|
+
Args:
|
107
|
+
candidate_entity (str): The candidate entity title.
|
108
|
+
|
109
|
+
Returns:
|
110
|
+
dict: A dictionary containing information about the candidate entity (title, url, summary).
|
111
|
+
None if the entity does not exist in Wikipedia.
|
112
|
+
"""
|
113
|
+
try:
|
114
|
+
from lionagi.libs import SysUtil
|
115
|
+
|
116
|
+
SysUtil.check_import("wikipedia")
|
117
|
+
import wikipedia # type: ignore
|
118
|
+
except Exception as e:
|
119
|
+
raise Exception("wikipedia package is not installed {e}")
|
120
|
+
|
121
|
+
try:
|
122
|
+
page = wikipedia.page(candidate_entity, auto_suggest=False)
|
123
|
+
entity_data = {
|
124
|
+
"title": page.title,
|
125
|
+
"url": page.url,
|
126
|
+
"summary": page.summary,
|
127
|
+
}
|
128
|
+
return entity_data
|
129
|
+
except:
|
130
|
+
return None
|
131
|
+
|
132
|
+
def add_entity(self, e):
|
133
|
+
"""
|
134
|
+
Add an entity to the KB.
|
135
|
+
|
136
|
+
Args:
|
137
|
+
e (dict): A dictionary containing information about the entity (title and additional attributes).
|
138
|
+
"""
|
139
|
+
self.entities[e["title"]] = {k: v for k, v in e.items() if k != "title"}
|
140
|
+
|
141
|
+
def add_relation(self, r, article_title, article_publish_date):
|
142
|
+
"""
|
143
|
+
Add a relation to the KB.
|
144
|
+
|
145
|
+
Args:
|
146
|
+
r (dict): A dictionary containing information about the relation (head, type, tail, and metadata).
|
147
|
+
article_title (str): The title of the article containing the relation.
|
148
|
+
article_publish_date (str): The publish date of the article.
|
149
|
+
"""
|
150
|
+
# check on wikipedia
|
151
|
+
candidate_entities = [r["head"], r["tail"]]
|
152
|
+
entities = [self.get_wikipedia_data(ent) for ent in candidate_entities]
|
153
|
+
|
154
|
+
# if one entity does not exist, stop
|
155
|
+
if any(ent is None for ent in entities):
|
156
|
+
return
|
157
|
+
|
158
|
+
# manage new entities
|
159
|
+
for e in entities:
|
160
|
+
self.add_entity(e)
|
161
|
+
|
162
|
+
# rename relation entities with their wikipedia titles
|
163
|
+
r["head"] = entities[0]["title"]
|
164
|
+
r["tail"] = entities[1]["title"]
|
165
|
+
|
166
|
+
# add source if not in kb
|
167
|
+
article_url = list(r["meta"].keys())[0]
|
168
|
+
if article_url not in self.sources:
|
169
|
+
self.sources[article_url] = {
|
170
|
+
"article_title": article_title,
|
171
|
+
"article_publish_date": article_publish_date,
|
172
|
+
}
|
173
|
+
|
174
|
+
# manage new relation
|
175
|
+
if not self.exists_relation(r):
|
176
|
+
self.relations.append(r)
|
177
|
+
else:
|
178
|
+
self.merge_relations(r)
|
179
|
+
|
180
|
+
def print(self):
|
181
|
+
"""
|
182
|
+
Print the entities, relations, and sources in the KB.
|
183
|
+
|
184
|
+
Returns:
|
185
|
+
None
|
186
|
+
"""
|
187
|
+
print("Entities:")
|
188
|
+
for e in self.entities.items():
|
189
|
+
print(f" {e}")
|
190
|
+
print("Relations:")
|
191
|
+
for r in self.relations:
|
192
|
+
print(f" {r}")
|
193
|
+
print("Sources:")
|
194
|
+
for s in self.sources.items():
|
195
|
+
print(f" {s}")
|
196
|
+
|
197
|
+
@staticmethod
|
198
|
+
def extract_relations_from_model_output(text):
|
199
|
+
"""
|
200
|
+
Extract relations from the model output text.
|
201
|
+
|
202
|
+
Args:
|
203
|
+
text (str): The model output text containing relations.
|
204
|
+
|
205
|
+
Returns:
|
206
|
+
list: A list of dictionaries, where each dictionary represents a relation (head, type, tail).
|
207
|
+
"""
|
208
|
+
relations = []
|
209
|
+
relation, subject, relation, object_ = "", "", "", ""
|
210
|
+
text = text.strip()
|
211
|
+
current = "x"
|
212
|
+
text_replaced = text.replace("<s>", "").replace("<pad>", "").replace("</s>", "")
|
213
|
+
for token in text_replaced.split():
|
214
|
+
if token == "<triplet>":
|
215
|
+
current = "t"
|
216
|
+
if relation != "":
|
217
|
+
relations.append(
|
218
|
+
{
|
219
|
+
"head": subject.strip(),
|
220
|
+
"type": relation.strip(),
|
221
|
+
"tail": object_.strip(),
|
222
|
+
}
|
223
|
+
)
|
224
|
+
relation = ""
|
225
|
+
subject = ""
|
226
|
+
elif token == "<subj>":
|
227
|
+
current = "s"
|
228
|
+
if relation != "":
|
229
|
+
relations.append(
|
230
|
+
{
|
231
|
+
"head": subject.strip(),
|
232
|
+
"type": relation.strip(),
|
233
|
+
"tail": object_.strip(),
|
234
|
+
}
|
235
|
+
)
|
236
|
+
object_ = ""
|
237
|
+
elif token == "<obj>":
|
238
|
+
current = "o"
|
239
|
+
relation = ""
|
240
|
+
else:
|
241
|
+
if current == "t":
|
242
|
+
subject += " " + token
|
243
|
+
elif current == "s":
|
244
|
+
object_ += " " + token
|
245
|
+
elif current == "o":
|
246
|
+
relation += " " + token
|
247
|
+
if subject != "" and relation != "" and object_ != "":
|
248
|
+
relations.append(
|
249
|
+
{
|
250
|
+
"head": subject.strip(),
|
251
|
+
"type": relation.strip(),
|
252
|
+
"tail": object_.strip(),
|
253
|
+
}
|
254
|
+
)
|
255
|
+
return relations
|
256
|
+
|
257
|
+
|
258
|
+
class KGTripletExtractor:
|
259
|
+
"""
|
260
|
+
A class to perform knowledge graph triplet extraction from text using a pre-trained model.
|
261
|
+
|
262
|
+
Methods:
|
263
|
+
text_to_wiki_kb(text, model=None, tokenizer=None, device='cpu', span_length=512,
|
264
|
+
article_title=None, article_publish_date=None, verbose=False):
|
265
|
+
Extract knowledge graph triplets from text and create a KnowledgeBase (KB) containing entities and relations.
|
266
|
+
|
267
|
+
"""
|
268
|
+
|
269
|
+
@staticmethod
|
270
|
+
def text_to_wiki_kb(
|
271
|
+
text,
|
272
|
+
model=None,
|
273
|
+
tokenizer=None,
|
274
|
+
device="cpu",
|
275
|
+
span_length=512,
|
276
|
+
article_title=None,
|
277
|
+
article_publish_date=None,
|
278
|
+
verbose=False,
|
279
|
+
):
|
280
|
+
from lionagi.integrations.bridge.transformers_.install_ import (
|
281
|
+
install_transformers,
|
282
|
+
)
|
283
|
+
|
284
|
+
try:
|
285
|
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # type: ignore
|
286
|
+
except ImportError:
|
287
|
+
install_transformers()
|
288
|
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # type: ignore
|
289
|
+
import torch # type: ignore
|
290
|
+
|
291
|
+
"""
|
292
|
+
Extract knowledge graph triplets from text and create a KnowledgeBase (KB) containing entities and relations.
|
293
|
+
|
294
|
+
Args:
|
295
|
+
text (str): The input text from which triplets will be extracted.
|
296
|
+
model (AutoModelForSeq2SeqLM, optional): The pre-trained model for triplet extraction. Defaults to None.
|
297
|
+
tokenizer (AutoTokenizer, optional): The tokenizer for the model. Defaults to None.
|
298
|
+
device (str, optional): The device to run the model on (e.g., 'cpu', 'cuda'). Defaults to 'cpu'.
|
299
|
+
span_length (int, optional): The maximum span length for input text segmentation. Defaults to 512.
|
300
|
+
article_title (str, optional): The title of the article containing the input text. Defaults to None.
|
301
|
+
article_publish_date (str, optional): The publish date of the article. Defaults to None.
|
302
|
+
verbose (bool, optional): Whether to enable verbose mode for debugging. Defaults to False.
|
303
|
+
|
304
|
+
Returns:
|
305
|
+
KnowledgeBase: A KnowledgeBase (KB) containing extracted entities, relations, and sources.
|
306
|
+
|
307
|
+
"""
|
308
|
+
|
309
|
+
if not any([model, tokenizer]):
|
310
|
+
tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
|
311
|
+
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
|
312
|
+
model.to(device)
|
313
|
+
|
314
|
+
inputs = tokenizer([text], return_tensors="pt")
|
315
|
+
|
316
|
+
num_tokens = len(inputs["input_ids"][0])
|
317
|
+
if verbose:
|
318
|
+
print(f"Input has {num_tokens} tokens")
|
319
|
+
num_spans = math.ceil(num_tokens / span_length)
|
320
|
+
if verbose:
|
321
|
+
print(f"Input has {num_spans} spans")
|
322
|
+
overlap = math.ceil(
|
323
|
+
(num_spans * span_length - num_tokens) / max(num_spans - 1, 1)
|
324
|
+
)
|
325
|
+
spans_boundaries = []
|
326
|
+
start = 0
|
327
|
+
for i in range(num_spans):
|
328
|
+
spans_boundaries.append(
|
329
|
+
[start + span_length * i, start + span_length * (i + 1)]
|
330
|
+
)
|
331
|
+
start -= overlap
|
332
|
+
if verbose:
|
333
|
+
print(f"Span boundaries are {spans_boundaries}")
|
334
|
+
|
335
|
+
# transform input with spans
|
336
|
+
tensor_ids = [
|
337
|
+
inputs["input_ids"][0][boundary[0] : boundary[1]]
|
338
|
+
for boundary in spans_boundaries
|
339
|
+
]
|
340
|
+
tensor_masks = [
|
341
|
+
inputs["attention_mask"][0][boundary[0] : boundary[1]]
|
342
|
+
for boundary in spans_boundaries
|
343
|
+
]
|
344
|
+
|
345
|
+
inputs = {
|
346
|
+
"input_ids": torch.stack(tensor_ids).to(device),
|
347
|
+
"attention_mask": torch.stack(tensor_masks).to(device),
|
348
|
+
}
|
349
|
+
|
350
|
+
# generate relations
|
351
|
+
num_return_sequences = 3
|
352
|
+
gen_kwargs = {
|
353
|
+
"max_length": 512,
|
354
|
+
"length_penalty": 0,
|
355
|
+
"num_beams": 3,
|
356
|
+
"num_return_sequences": num_return_sequences,
|
357
|
+
}
|
358
|
+
generated_tokens = model.generate(
|
359
|
+
**inputs,
|
360
|
+
**gen_kwargs,
|
361
|
+
)
|
362
|
+
|
363
|
+
# decode relations
|
364
|
+
decoded_preds = tokenizer.batch_decode(
|
365
|
+
generated_tokens, skip_special_tokens=False
|
366
|
+
)
|
367
|
+
|
368
|
+
# create kb
|
369
|
+
kb = KnowledgeBase()
|
370
|
+
i = 0
|
371
|
+
for sentence_pred in decoded_preds:
|
372
|
+
current_span_index = i // num_return_sequences
|
373
|
+
relations = KnowledgeBase.extract_relations_from_model_output(sentence_pred)
|
374
|
+
for relation in relations:
|
375
|
+
relation["meta"] = {
|
376
|
+
"article_url": {"spans": [spans_boundaries[current_span_index]]}
|
377
|
+
}
|
378
|
+
kb.add_relation(relation, article_title, article_publish_date)
|
379
|
+
i += 1
|
380
|
+
return kb
|
381
|
+
|
382
|
+
|
383
|
+
class KGraph:
|
384
|
+
"""
|
385
|
+
A class representing a Knowledge Graph (KGraph) for extracting relations from text.
|
386
|
+
|
387
|
+
Methods:
|
388
|
+
text_to_wiki_kb(text, model=None, tokenizer=None, device='cpu', span_length=512, article_title=None,
|
389
|
+
article_publish_date=None, verbose=False):
|
390
|
+
Extract relations from input text and create a Knowledge Base (KB) containing entities and relations.
|
391
|
+
"""
|
392
|
+
|
393
|
+
@staticmethod
|
394
|
+
def text_to_wiki_kb(text, **kwargs):
|
395
|
+
"""
|
396
|
+
Extract relations from input text and create a Knowledge Base (KB) containing entities and relations.
|
397
|
+
|
398
|
+
Args:
|
399
|
+
text (str): The input text from which relations are extracted.
|
400
|
+
**kwargs: Additional keyword arguments passed to the underlying extraction method.
|
401
|
+
|
402
|
+
Returns:
|
403
|
+
KnowledgeBase: A Knowledge Base (KB) containing entities and relations extracted from the input text.
|
404
|
+
"""
|
405
|
+
return KGTripletExtractor.text_to_wiki_kb(text, **kwargs)
|
lionagi/libs/ln_parse.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1
|
+
from collections.abc import Callable
|
1
2
|
import re
|
2
3
|
import inspect
|
3
4
|
import itertools
|
4
|
-
|
5
|
+
import contextlib
|
6
|
+
from functools import singledispatchmethod
|
5
7
|
from typing import Any
|
6
8
|
import numpy as np
|
7
9
|
import lionagi.libs.ln_convert as convert
|
8
10
|
|
11
|
+
|
9
12
|
md_json_char_map = {"\n": "\\n", "\r": "\\r", "\t": "\\t", '"': '\\"'}
|
10
13
|
|
11
14
|
|
@@ -590,14 +593,15 @@ class StringMatch:
|
|
590
593
|
return d[m][n]
|
591
594
|
|
592
595
|
@staticmethod
|
593
|
-
def
|
596
|
+
def correct_dict_keys(keys: dict | list[str], dict_, score_func=None):
|
594
597
|
if score_func is None:
|
595
598
|
score_func = StringMatch.jaro_winkler_similarity
|
596
|
-
|
599
|
+
|
600
|
+
fields_set = set(keys if isinstance(keys, list) else keys.keys())
|
597
601
|
corrected_out = {}
|
598
602
|
used_keys = set()
|
599
603
|
|
600
|
-
for k, v in
|
604
|
+
for k, v in dict_.items():
|
601
605
|
if k in fields_set:
|
602
606
|
corrected_out[k] = v
|
603
607
|
fields_set.remove(k) # Remove the matched key
|
@@ -614,8 +618,8 @@ class StringMatch:
|
|
614
618
|
fields_set.remove(best_match) # Remove the matched key
|
615
619
|
used_keys.add(best_match)
|
616
620
|
|
617
|
-
if len(used_keys) < len(
|
618
|
-
for k, v in
|
621
|
+
if len(used_keys) < len(dict_):
|
622
|
+
for k, v in dict_.items():
|
619
623
|
if k not in used_keys:
|
620
624
|
corrected_out[k] = v
|
621
625
|
|
@@ -637,3 +641,36 @@ class StringMatch:
|
|
637
641
|
# Find the index of the highest score
|
638
642
|
max_score_index = np.argmax(scores)
|
639
643
|
return correct_words_list[max_score_index]
|
644
|
+
|
645
|
+
@staticmethod
|
646
|
+
def force_validate_dict(x, keys: dict | list[str]) -> dict:
|
647
|
+
out_ = x
|
648
|
+
|
649
|
+
if isinstance(out_, str):
|
650
|
+
# first try to parse it straight as a fuzzy json
|
651
|
+
try:
|
652
|
+
out_ = ParseUtil.fuzzy_parse_json(out_)
|
653
|
+
except Exception:
|
654
|
+
try:
|
655
|
+
# if failed we try to extract the json block and parse it
|
656
|
+
out_ = ParseUtil.md_to_json(out_)
|
657
|
+
except Exception:
|
658
|
+
# if still failed we try to extract the json block using re and parse it again
|
659
|
+
match = re.search(r"```json\n({.*?})\n```", out_, re.DOTALL)
|
660
|
+
if match:
|
661
|
+
out_ = match.group(1)
|
662
|
+
try:
|
663
|
+
out_ = ParseUtil.fuzzy_parse_json(out_)
|
664
|
+
except:
|
665
|
+
try:
|
666
|
+
out_ = ParseUtil.fuzzy_parse_json(
|
667
|
+
out_.replace("'", '"')
|
668
|
+
)
|
669
|
+
except:
|
670
|
+
pass
|
671
|
+
|
672
|
+
if isinstance(out_, dict):
|
673
|
+
try:
|
674
|
+
return StringMatch.correct_dict_keys(keys, out_)
|
675
|
+
except Exception as e:
|
676
|
+
raise ValueError(f"Failed to force_validate_dict for input: {x}") from e
|
lionagi/libs/ln_queue.py
ADDED
@@ -0,0 +1,101 @@
|
|
1
|
+
"""
|
2
|
+
A class that manages asynchronous task processing with controlled concurrency.
|
3
|
+
"""
|
4
|
+
|
5
|
+
from typing import Any, Callable
|
6
|
+
import asyncio
|
7
|
+
from lionagi.libs import func_call
|
8
|
+
|
9
|
+
|
10
|
+
class AsyncQueue:
|
11
|
+
"""
|
12
|
+
This class handles the enqueueing and processing of tasks with a limit on
|
13
|
+
how many can run simultaneously, using an asyncio.Queue for task storage and
|
14
|
+
an asyncio.Semaphore to limit concurrency.
|
15
|
+
|
16
|
+
Attributes:
|
17
|
+
queue (asyncio.Queue): The queue to store tasks.
|
18
|
+
_stop_event (asyncio.Event): Event to signal processing should stop.
|
19
|
+
max_concurrent_tasks (int): Maximum number of tasks processed concurrently.
|
20
|
+
semaphore (asyncio.Semaphore): Controls concurrent access to task execution.
|
21
|
+
"""
|
22
|
+
|
23
|
+
def __init__(self, max_concurrent_tasks=5):
|
24
|
+
"""
|
25
|
+
Initializes the AsyncQueue with a concurrency limit.
|
26
|
+
|
27
|
+
Args:
|
28
|
+
max_concurrent_tasks (int): The maximum number of concurrent tasks
|
29
|
+
allowed. Default is 5.
|
30
|
+
"""
|
31
|
+
self.queue = asyncio.Queue()
|
32
|
+
self._stop_event = asyncio.Event()
|
33
|
+
self.max_concurrent_tasks = max_concurrent_tasks
|
34
|
+
self.semaphore = asyncio.Semaphore(max_concurrent_tasks)
|
35
|
+
|
36
|
+
async def enqueue(self, input_: Any) -> None:
|
37
|
+
"""
|
38
|
+
Enqueues an item to be processed asynchronously.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
input_ (Any): The item to be enqueued.
|
42
|
+
"""
|
43
|
+
await self.queue.put(input_)
|
44
|
+
|
45
|
+
async def dequeue(self) -> Any:
|
46
|
+
"""
|
47
|
+
Dequeues an item for processing.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
Any: The dequeued item.
|
51
|
+
"""
|
52
|
+
return await self.queue.get()
|
53
|
+
|
54
|
+
async def join(self) -> None:
|
55
|
+
"""Waits for all items in the queue to be processed."""
|
56
|
+
await self.queue.join()
|
57
|
+
|
58
|
+
async def stop(self) -> None:
|
59
|
+
"""Signals the queue to stop processing new items."""
|
60
|
+
self._stop_event.set()
|
61
|
+
|
62
|
+
def stopped(self) -> bool:
|
63
|
+
"""
|
64
|
+
Checks if the stop signal has been issued.
|
65
|
+
|
66
|
+
Returns:
|
67
|
+
bool: True if the queue has been stopped, otherwise False.
|
68
|
+
"""
|
69
|
+
return self._stop_event.is_set()
|
70
|
+
|
71
|
+
async def process_requests(self, func: Callable, retry_kwargs: dict = {}) -> None:
|
72
|
+
"""
|
73
|
+
Processes tasks from the queue using the provided function with retries.
|
74
|
+
|
75
|
+
This method continuously processes tasks from the queue using the specified
|
76
|
+
function until a stop event is triggered. Handles concurrency using a
|
77
|
+
semaphore and manages task completion.
|
78
|
+
|
79
|
+
Args:
|
80
|
+
func (Callable): The function to process each task.
|
81
|
+
retry_kwargs (dict): Keyword arguments for retry behavior. Default is
|
82
|
+
an empty dictionary.
|
83
|
+
"""
|
84
|
+
tasks = set()
|
85
|
+
while not self.stopped():
|
86
|
+
if len(tasks) >= self.max_concurrent_tasks:
|
87
|
+
_, done = await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)
|
88
|
+
tasks.difference_update(done)
|
89
|
+
|
90
|
+
async with self.semaphore:
|
91
|
+
input_ = await self.dequeue()
|
92
|
+
if input_ is None:
|
93
|
+
await self.stop()
|
94
|
+
break
|
95
|
+
task = asyncio.create_task(
|
96
|
+
func_call.rcall(func, input_, **retry_kwargs)
|
97
|
+
)
|
98
|
+
tasks.add(task)
|
99
|
+
|
100
|
+
if tasks:
|
101
|
+
await asyncio.wait(tasks)
|
@@ -0,0 +1,57 @@
|
|
1
|
+
import re
|
2
|
+
|
3
|
+
|
4
|
+
class BaseToken:
|
5
|
+
def __init__(self, type_, value):
|
6
|
+
self.type = type_
|
7
|
+
self.value = value
|
8
|
+
|
9
|
+
def __repr__(self):
|
10
|
+
return f"BaseDirectiveToken({self.type}, {self.value})"
|
11
|
+
|
12
|
+
|
13
|
+
class BaseTokenizer:
|
14
|
+
TOKEN_TYPES = {
|
15
|
+
"KEYWORD": r"\b(BEGIN|END|IF|ELSE|FOR|IN|TRY|EXCEPT|ENDIF|ENDFOR|ENDTRY|DO)\b",
|
16
|
+
"OPERATOR": r"(==|!=|>=|<=|>|<|&&|\|\||!)",
|
17
|
+
"FUNCTION_CALL": r"\b[a-zA-Z_][a-zA-Z0-9_]*\b\((.*?)\)",
|
18
|
+
"LITERAL": r'(\d+|\'.*?\'|".*?")',
|
19
|
+
"IDENTIFIER": r"\b[a-zA-Z_][a-zA-Z0-9_]*\b",
|
20
|
+
"PUNCTUATION": r"(;|,|\(|\))",
|
21
|
+
"WHITESPACE": r"\s+",
|
22
|
+
}
|
23
|
+
|
24
|
+
def __init__(self, script):
|
25
|
+
self.script = script
|
26
|
+
self.tokens = []
|
27
|
+
self.tokenize()
|
28
|
+
|
29
|
+
@property
|
30
|
+
def is_empty(self):
|
31
|
+
return self.tokens == []
|
32
|
+
|
33
|
+
def tokenize(self):
|
34
|
+
position = 0
|
35
|
+
while position < len(self.script):
|
36
|
+
match = None
|
37
|
+
for type_, pattern in self.TOKEN_TYPES.items():
|
38
|
+
regex = re.compile(pattern)
|
39
|
+
match = regex.match(self.script, position)
|
40
|
+
if match:
|
41
|
+
if type_ != "WHITESPACE": # Ignore whitespace
|
42
|
+
token = BaseToken(type_, match.group())
|
43
|
+
self.tokens.append(token)
|
44
|
+
position = match.end() # Move past the matched token
|
45
|
+
break
|
46
|
+
if not match: # No match found, unrecognized token
|
47
|
+
raise SyntaxError(f"Unexpected character: {self.script[position]}")
|
48
|
+
# break
|
49
|
+
|
50
|
+
def get_tokens(self):
|
51
|
+
if self.is_empty:
|
52
|
+
try:
|
53
|
+
self.tokenize()
|
54
|
+
except SyntaxError as e:
|
55
|
+
print(e)
|
56
|
+
return []
|
57
|
+
return self.tokens
|