lionagi 0.0.306__py3-none-any.whl → 0.0.307__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- lionagi/__init__.py +2 -5
- lionagi/core/__init__.py +7 -5
- lionagi/core/agent/__init__.py +3 -0
- lionagi/core/agent/base_agent.py +10 -12
- lionagi/core/branch/__init__.py +4 -0
- lionagi/core/branch/base_branch.py +81 -81
- lionagi/core/branch/branch.py +16 -28
- lionagi/core/branch/branch_flow_mixin.py +3 -7
- lionagi/core/branch/executable_branch.py +86 -56
- lionagi/core/branch/util.py +77 -162
- lionagi/core/{flow/direct → direct}/__init__.py +1 -1
- lionagi/core/{flow/direct/predict.py → direct/parallel_predict.py} +39 -17
- lionagi/core/direct/parallel_react.py +0 -0
- lionagi/core/direct/parallel_score.py +0 -0
- lionagi/core/direct/parallel_select.py +0 -0
- lionagi/core/direct/parallel_sentiment.py +0 -0
- lionagi/core/direct/predict.py +174 -0
- lionagi/core/{flow/direct → direct}/react.py +2 -2
- lionagi/core/{flow/direct → direct}/score.py +28 -23
- lionagi/core/{flow/direct → direct}/select.py +48 -45
- lionagi/core/direct/utils.py +83 -0
- lionagi/core/flow/monoflow/ReAct.py +6 -5
- lionagi/core/flow/monoflow/__init__.py +9 -0
- lionagi/core/flow/monoflow/chat.py +10 -10
- lionagi/core/flow/monoflow/chat_mixin.py +11 -10
- lionagi/core/flow/monoflow/followup.py +6 -5
- lionagi/core/flow/polyflow/__init__.py +1 -0
- lionagi/core/flow/polyflow/chat.py +15 -3
- lionagi/core/mail/mail_manager.py +18 -19
- lionagi/core/mail/schema.py +5 -4
- lionagi/core/messages/schema.py +18 -20
- lionagi/core/prompt/__init__.py +0 -0
- lionagi/core/prompt/prompt_template.py +0 -0
- lionagi/core/schema/__init__.py +2 -2
- lionagi/core/schema/action_node.py +11 -3
- lionagi/core/schema/base_mixin.py +56 -59
- lionagi/core/schema/base_node.py +35 -38
- lionagi/core/schema/condition.py +24 -0
- lionagi/core/schema/data_logger.py +96 -99
- lionagi/core/schema/data_node.py +19 -19
- lionagi/core/schema/prompt_template.py +0 -0
- lionagi/core/schema/structure.py +171 -169
- lionagi/core/session/__init__.py +1 -3
- lionagi/core/session/session.py +196 -214
- lionagi/core/tool/tool_manager.py +95 -103
- lionagi/integrations/__init__.py +1 -3
- lionagi/integrations/bridge/langchain_/documents.py +17 -18
- lionagi/integrations/bridge/langchain_/langchain_bridge.py +14 -14
- lionagi/integrations/bridge/llamaindex_/llama_index_bridge.py +22 -22
- lionagi/integrations/bridge/llamaindex_/node_parser.py +12 -12
- lionagi/integrations/bridge/llamaindex_/reader.py +11 -11
- lionagi/integrations/bridge/llamaindex_/textnode.py +7 -7
- lionagi/integrations/config/openrouter_configs.py +0 -1
- lionagi/integrations/provider/oai.py +26 -26
- lionagi/integrations/provider/services.py +38 -38
- lionagi/libs/__init__.py +34 -1
- lionagi/libs/ln_api.py +211 -221
- lionagi/libs/ln_async.py +53 -60
- lionagi/libs/ln_convert.py +118 -120
- lionagi/libs/ln_dataframe.py +32 -33
- lionagi/libs/ln_func_call.py +334 -342
- lionagi/libs/ln_nested.py +99 -107
- lionagi/libs/ln_parse.py +161 -165
- lionagi/libs/sys_util.py +52 -52
- lionagi/tests/test_core/test_session.py +254 -266
- lionagi/tests/test_core/test_session_base_util.py +299 -300
- lionagi/tests/test_core/test_tool_manager.py +70 -74
- lionagi/tests/test_libs/test_nested.py +2 -7
- lionagi/tests/test_libs/test_parse.py +2 -2
- lionagi/version.py +1 -1
- {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/METADATA +4 -2
- lionagi-0.0.307.dist-info/RECORD +115 -0
- lionagi/core/flow/direct/utils.py +0 -43
- lionagi-0.0.306.dist-info/RECORD +0 -106
- /lionagi/core/{flow/direct → direct}/sentiment.py +0 -0
- {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/LICENSE +0 -0
- {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/WHEEL +0 -0
- {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/top_level.txt +0 -0
@@ -1,19 +1,22 @@
|
|
1
|
-
from lionagi.libs import
|
2
|
-
from
|
3
|
-
from
|
1
|
+
from lionagi.libs import func_call
|
2
|
+
from ..branch import Branch
|
3
|
+
from ..session import Session
|
4
|
+
from .utils import _handle_single_out, _handle_multi_out
|
4
5
|
|
5
6
|
|
6
|
-
async def
|
7
|
+
async def parallel_predict(
|
7
8
|
sentence,
|
8
9
|
*,
|
9
10
|
num_sentences=1,
|
10
11
|
default_key="answer",
|
11
12
|
confidence_score=False,
|
12
13
|
reason=False,
|
13
|
-
retry_kwargs=
|
14
|
+
retry_kwargs=None,
|
14
15
|
**kwargs,
|
15
16
|
):
|
16
|
-
|
17
|
+
if retry_kwargs is None:
|
18
|
+
retry_kwargs = {}
|
19
|
+
return await _force_parallel_predict(
|
17
20
|
sentence,
|
18
21
|
num_sentences,
|
19
22
|
default_key,
|
@@ -24,19 +27,26 @@ async def predict(
|
|
24
27
|
)
|
25
28
|
|
26
29
|
|
27
|
-
async def
|
30
|
+
async def _force_parallel_predict(
|
28
31
|
sentence,
|
29
32
|
num_sentences,
|
30
33
|
default_key="answer",
|
31
34
|
confidence_score=False,
|
32
35
|
reason=False,
|
33
36
|
retry_kwargs={},
|
37
|
+
include_mapping=False,
|
34
38
|
**kwargs,
|
35
39
|
):
|
36
40
|
|
37
41
|
async def _inner():
|
38
|
-
out_ = await
|
39
|
-
sentence,
|
42
|
+
out_ = await _parallel_predict(
|
43
|
+
sentence=sentence,
|
44
|
+
num_sentences=num_sentences,
|
45
|
+
default_key=default_key,
|
46
|
+
confidence_score=confidence_score,
|
47
|
+
reason=reason,
|
48
|
+
include_mapping=include_mapping,
|
49
|
+
**kwargs,
|
40
50
|
)
|
41
51
|
if out_ is None:
|
42
52
|
raise ValueError("No output from the model")
|
@@ -81,25 +91,37 @@ def _create_predict_config(
|
|
81
91
|
return instruct, output_fields, kwargs
|
82
92
|
|
83
93
|
|
84
|
-
async def
|
94
|
+
async def _parallel_predict(
|
85
95
|
sentence,
|
86
96
|
num_sentences,
|
87
97
|
default_key="answer",
|
88
98
|
confidence_score=False,
|
89
99
|
reason=False,
|
100
|
+
include_mapping=False,
|
90
101
|
**kwargs,
|
91
102
|
):
|
92
103
|
_instruct, _output_fields, _kwargs = _create_predict_config(
|
93
|
-
num_sentences=num_sentences,
|
94
|
-
|
104
|
+
num_sentences=num_sentences,
|
105
|
+
default_key=default_key,
|
106
|
+
confidence_score=confidence_score,
|
107
|
+
reason=reason,
|
108
|
+
**kwargs,
|
95
109
|
)
|
96
110
|
|
97
|
-
|
111
|
+
session = Session()
|
98
112
|
|
99
|
-
out_ = await
|
100
|
-
_instruct,
|
113
|
+
out_ = await session.parallel_chat(
|
114
|
+
_instruct,
|
115
|
+
context=sentence,
|
116
|
+
output_fields=_output_fields,
|
117
|
+
include_mapping=include_mapping,
|
118
|
+
**_kwargs,
|
101
119
|
)
|
102
120
|
|
103
|
-
return
|
104
|
-
out_,
|
121
|
+
return _handle_multi_out(
|
122
|
+
out_,
|
123
|
+
default_key=default_key,
|
124
|
+
to_type="str",
|
125
|
+
to_default=True,
|
126
|
+
include_mapping=include_mapping,
|
105
127
|
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
@@ -0,0 +1,174 @@
|
|
1
|
+
from lionagi.libs import func_call
|
2
|
+
from ..branch import Branch
|
3
|
+
from ..session import Session
|
4
|
+
from .utils import _handle_single_out, _handle_multi_out
|
5
|
+
|
6
|
+
|
7
|
+
async def predict(
|
8
|
+
sentence,
|
9
|
+
*,
|
10
|
+
num_sentences=1,
|
11
|
+
default_key="answer",
|
12
|
+
confidence_score=False,
|
13
|
+
reason=False,
|
14
|
+
retry_kwargs=None,
|
15
|
+
include_mapping=False,
|
16
|
+
**kwargs,
|
17
|
+
):
|
18
|
+
if retry_kwargs is None:
|
19
|
+
retry_kwargs = {}
|
20
|
+
return await _force_predict(
|
21
|
+
sentence=sentence,
|
22
|
+
num_sentences=num_sentences,
|
23
|
+
default_key=default_key,
|
24
|
+
confidence_score=confidence_score,
|
25
|
+
reason=reason,
|
26
|
+
retry_kwargs=retry_kwargs,
|
27
|
+
include_mapping=include_mapping,
|
28
|
+
**kwargs,
|
29
|
+
)
|
30
|
+
|
31
|
+
|
32
|
+
async def _force_predict(
|
33
|
+
sentence,
|
34
|
+
num_sentences,
|
35
|
+
default_key="answer",
|
36
|
+
confidence_score=False,
|
37
|
+
reason=False,
|
38
|
+
retry_kwargs={},
|
39
|
+
include_mapping=False,
|
40
|
+
**kwargs,
|
41
|
+
):
|
42
|
+
|
43
|
+
async def _inner1():
|
44
|
+
out_ = await _predict(
|
45
|
+
sentence=sentence,
|
46
|
+
num_sentences=num_sentences,
|
47
|
+
default_key=default_key,
|
48
|
+
confidence_score=confidence_score,
|
49
|
+
reason=reason,
|
50
|
+
**kwargs,
|
51
|
+
)
|
52
|
+
if out_ is None:
|
53
|
+
raise ValueError("No output from the model")
|
54
|
+
|
55
|
+
return out_
|
56
|
+
|
57
|
+
async def _inner2():
|
58
|
+
out_ = await _parallel_predict(
|
59
|
+
sentence=sentence,
|
60
|
+
num_sentences=num_sentences,
|
61
|
+
default_key=default_key,
|
62
|
+
confidence_score=confidence_score,
|
63
|
+
reason=reason,
|
64
|
+
include_mapping=include_mapping,
|
65
|
+
**kwargs,
|
66
|
+
)
|
67
|
+
|
68
|
+
if out_ is None:
|
69
|
+
raise ValueError("No output from the model")
|
70
|
+
|
71
|
+
return out_
|
72
|
+
|
73
|
+
if "retries" not in retry_kwargs:
|
74
|
+
retry_kwargs["retries"] = 2
|
75
|
+
|
76
|
+
if "delay" not in retry_kwargs:
|
77
|
+
retry_kwargs["delay"] = 0.5
|
78
|
+
|
79
|
+
if (isinstance(sentence, (list, tuple)) and len(sentence) > 1) or include_mapping:
|
80
|
+
return await func_call.rcall(_inner2, **retry_kwargs)
|
81
|
+
|
82
|
+
return await func_call.rcall(_inner1, **retry_kwargs)
|
83
|
+
|
84
|
+
|
85
|
+
def _create_predict_config(
|
86
|
+
num_sentences,
|
87
|
+
default_key="answer",
|
88
|
+
confidence_score=False,
|
89
|
+
reason=False,
|
90
|
+
**kwargs,
|
91
|
+
):
|
92
|
+
instruct = {
|
93
|
+
"task": f"predict the next {num_sentences} sentence(s)",
|
94
|
+
}
|
95
|
+
extra_fields = kwargs.pop("output_fields", {})
|
96
|
+
|
97
|
+
output_fields = {default_key: "the predicted sentence(s)"}
|
98
|
+
output_fields = {**output_fields, **extra_fields}
|
99
|
+
|
100
|
+
if reason:
|
101
|
+
output_fields["reason"] = "brief reason for the prediction"
|
102
|
+
|
103
|
+
if confidence_score:
|
104
|
+
output_fields["confidence_score"] = (
|
105
|
+
"a numeric score between 0 to 1 formatted in num:0.2f"
|
106
|
+
)
|
107
|
+
|
108
|
+
if "temperature" not in kwargs:
|
109
|
+
kwargs["temperature"] = 0.1
|
110
|
+
|
111
|
+
return instruct, output_fields, kwargs
|
112
|
+
|
113
|
+
|
114
|
+
async def _predict(
|
115
|
+
sentence,
|
116
|
+
num_sentences,
|
117
|
+
default_key="answer",
|
118
|
+
confidence_score=False,
|
119
|
+
reason=False,
|
120
|
+
**kwargs,
|
121
|
+
):
|
122
|
+
_instruct, _output_fields, _kwargs = _create_predict_config(
|
123
|
+
num_sentences=num_sentences,
|
124
|
+
default_key=default_key,
|
125
|
+
confidence_score=confidence_score,
|
126
|
+
reason=reason,
|
127
|
+
**kwargs,
|
128
|
+
)
|
129
|
+
|
130
|
+
branch = Branch()
|
131
|
+
|
132
|
+
out_ = await branch.chat(
|
133
|
+
_instruct, context=sentence, output_fields=_output_fields, **_kwargs
|
134
|
+
)
|
135
|
+
|
136
|
+
return _handle_single_out(
|
137
|
+
out_, default_key=default_key, to_type="str", to_default=True
|
138
|
+
)
|
139
|
+
|
140
|
+
|
141
|
+
async def _parallel_predict(
|
142
|
+
sentence,
|
143
|
+
num_sentences,
|
144
|
+
default_key="answer",
|
145
|
+
confidence_score=False,
|
146
|
+
reason=False,
|
147
|
+
include_mapping=False,
|
148
|
+
**kwargs,
|
149
|
+
):
|
150
|
+
_instruct, _output_fields, _kwargs = _create_predict_config(
|
151
|
+
num_sentences=num_sentences,
|
152
|
+
default_key=default_key,
|
153
|
+
confidence_score=confidence_score,
|
154
|
+
reason=reason,
|
155
|
+
**kwargs,
|
156
|
+
)
|
157
|
+
|
158
|
+
session = Session()
|
159
|
+
|
160
|
+
out_ = await session.parallel_chat(
|
161
|
+
_instruct,
|
162
|
+
context=sentence,
|
163
|
+
output_fields=_output_fields,
|
164
|
+
include_mapping=include_mapping,
|
165
|
+
**_kwargs,
|
166
|
+
)
|
167
|
+
|
168
|
+
return _handle_multi_out(
|
169
|
+
out_,
|
170
|
+
default_key=default_key,
|
171
|
+
to_type="str",
|
172
|
+
to_default=True,
|
173
|
+
include_mapping=include_mapping,
|
174
|
+
)
|
@@ -1,7 +1,5 @@
|
|
1
|
-
from lionagi.
|
2
|
-
from
|
3
|
-
import lionagi.libs.ln_convert as convert
|
4
|
-
|
1
|
+
from lionagi.libs import func_call, convert
|
2
|
+
from ..branch import Branch
|
5
3
|
from .utils import _handle_single_out
|
6
4
|
|
7
5
|
|
@@ -16,20 +14,22 @@ async def score(
|
|
16
14
|
method="llm",
|
17
15
|
reason=False,
|
18
16
|
confidence_score=False,
|
19
|
-
retry_kwargs=
|
17
|
+
retry_kwargs=None,
|
20
18
|
**kwargs,
|
21
19
|
):
|
20
|
+
if retry_kwargs is None:
|
21
|
+
retry_kwargs = {}
|
22
22
|
return await _force_score(
|
23
|
-
context
|
24
|
-
instruction
|
25
|
-
score_range
|
26
|
-
inclusive
|
27
|
-
num_digit
|
28
|
-
default_key
|
29
|
-
method
|
30
|
-
reason
|
31
|
-
confidence_score
|
32
|
-
retry_kwargs
|
23
|
+
context=context,
|
24
|
+
instruction=instruction,
|
25
|
+
score_range=score_range,
|
26
|
+
inclusive=inclusive,
|
27
|
+
num_digit=num_digit,
|
28
|
+
default_key=default_key,
|
29
|
+
method=method,
|
30
|
+
reason=reason,
|
31
|
+
confidence_score=confidence_score,
|
32
|
+
retry_kwargs=retry_kwargs,
|
33
33
|
**kwargs,
|
34
34
|
)
|
35
35
|
|
@@ -65,7 +65,7 @@ async def _force_score(
|
|
65
65
|
raise ValueError("No output from the model")
|
66
66
|
|
67
67
|
return out_
|
68
|
-
|
68
|
+
|
69
69
|
if "retries" not in retry_kwargs:
|
70
70
|
retry_kwargs["retries"] = 2
|
71
71
|
|
@@ -86,28 +86,28 @@ def _create_score_config(
|
|
86
86
|
**kwargs,
|
87
87
|
):
|
88
88
|
instruct = {
|
89
|
-
"task":
|
89
|
+
"task": "score context according to the following constraints",
|
90
90
|
"instruction": convert.to_str(instruction),
|
91
91
|
"score_range": convert.to_str(score_range),
|
92
92
|
"include_endpoints": "yes" if inclusive else "no",
|
93
93
|
}
|
94
94
|
|
95
|
-
return_precision =
|
95
|
+
return_precision = ""
|
96
96
|
if num_digit == 0:
|
97
97
|
return_precision = "integer"
|
98
98
|
else:
|
99
99
|
return_precision = f"num:{convert.to_str(num_digit)}f"
|
100
|
-
|
100
|
+
|
101
101
|
extra_fields = kwargs.pop("output_fields", {})
|
102
102
|
output_fields = {default_key: f"""a numeric score as {return_precision}"""}
|
103
103
|
output_fields = {**output_fields, **extra_fields}
|
104
104
|
|
105
105
|
if reason:
|
106
|
-
output_fields
|
106
|
+
output_fields["reason"] = "brief reason for the score"
|
107
107
|
|
108
108
|
if confidence_score:
|
109
|
-
output_fields
|
110
|
-
|
109
|
+
output_fields["confidence_score"] = (
|
110
|
+
"a numeric score between 0 to 1 formatted in num:0.2f"
|
111
111
|
)
|
112
112
|
|
113
113
|
if "temperature" not in kwargs:
|
@@ -143,7 +143,12 @@ async def _score(
|
|
143
143
|
out_ = ""
|
144
144
|
|
145
145
|
if method == "llm":
|
146
|
-
out_ = await branch.chat(
|
146
|
+
out_ = await branch.chat(
|
147
|
+
_instruct,
|
148
|
+
tools=None,
|
149
|
+
context=context,
|
150
|
+
output_fields=_output_fields,
|
151
|
+
**_kwargs,
|
147
152
|
)
|
148
153
|
|
149
154
|
to_num_kwargs = {
|
@@ -1,22 +1,23 @@
|
|
1
|
-
from lionagi.libs import
|
2
|
-
from
|
3
|
-
from lionagi.libs.ln_parse import StringMatch
|
4
|
-
|
1
|
+
from lionagi.libs import StringMatch, func_call
|
2
|
+
from ..branch.branch import Branch
|
5
3
|
from .utils import _handle_single_out
|
6
4
|
|
5
|
+
|
7
6
|
async def select(
|
8
|
-
context,
|
9
|
-
choices,
|
7
|
+
context,
|
8
|
+
choices,
|
10
9
|
*,
|
11
10
|
num_choices=1,
|
12
|
-
method=
|
11
|
+
method="llm",
|
13
12
|
objective=None,
|
14
|
-
default_key=
|
15
|
-
reason=False,
|
16
|
-
confidence_score=False,
|
17
|
-
retry_kwargs=
|
13
|
+
default_key="answer",
|
14
|
+
reason=False,
|
15
|
+
confidence_score=False,
|
16
|
+
retry_kwargs=None,
|
18
17
|
**kwargs,
|
19
18
|
):
|
19
|
+
if retry_kwargs is None:
|
20
|
+
retry_kwargs = {}
|
20
21
|
return await _force_select(
|
21
22
|
context=context,
|
22
23
|
choices=choices,
|
@@ -32,19 +33,18 @@ async def select(
|
|
32
33
|
|
33
34
|
|
34
35
|
async def _force_select(
|
35
|
-
context,
|
36
|
-
choices,
|
36
|
+
context,
|
37
|
+
choices,
|
37
38
|
num_choices=1,
|
38
|
-
method=
|
39
|
+
method="llm",
|
39
40
|
objective=None,
|
40
|
-
default_key=
|
41
|
-
reason=False,
|
42
|
-
confidence_score=False,
|
41
|
+
default_key="answer",
|
42
|
+
reason=False,
|
43
|
+
confidence_score=False,
|
43
44
|
retry_kwargs={},
|
44
45
|
**kwargs,
|
45
46
|
):
|
46
|
-
|
47
|
-
|
47
|
+
|
48
48
|
async def _inner():
|
49
49
|
out_ = await _select(
|
50
50
|
context=context,
|
@@ -61,10 +61,9 @@ async def _force_select(
|
|
61
61
|
if out_ is None:
|
62
62
|
raise ValueError("No output from the model")
|
63
63
|
|
64
|
-
if isinstance(out_, dict):
|
65
|
-
|
66
|
-
|
67
|
-
out_[default_key] = v
|
64
|
+
if isinstance(out_, dict) and out_[default_key] not in choices:
|
65
|
+
v = StringMatch.choose_most_similar(out_.pop(default_key, ""), choices)
|
66
|
+
out_[default_key] = v
|
68
67
|
|
69
68
|
return out_
|
70
69
|
|
@@ -78,15 +77,15 @@ async def _force_select(
|
|
78
77
|
|
79
78
|
|
80
79
|
def _create_select_config(
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
80
|
+
choices,
|
81
|
+
num_choices=1,
|
82
|
+
objective=None,
|
83
|
+
default_key="answer",
|
84
|
+
reason=False,
|
85
|
+
confidence_score=False,
|
86
|
+
**kwargs,
|
88
87
|
):
|
89
|
-
|
88
|
+
|
90
89
|
instruct = {"task": f"select {num_choices} from provided", "choices": choices}
|
91
90
|
if objective is not None:
|
92
91
|
instruct["objective"] = objective
|
@@ -96,31 +95,31 @@ def _create_select_config(
|
|
96
95
|
output_fields = {**output_fields, **extra_fields}
|
97
96
|
|
98
97
|
if reason:
|
99
|
-
output_fields
|
98
|
+
output_fields["reason"] = "brief reason for the selection"
|
100
99
|
|
101
100
|
if confidence_score:
|
102
|
-
output_fields
|
103
|
-
|
101
|
+
output_fields["confidence_score"] = (
|
102
|
+
"a numeric score between 0 to 1 formatted in num:0.2f"
|
104
103
|
)
|
105
104
|
|
106
105
|
if "temperature" not in kwargs:
|
107
106
|
kwargs["temperature"] = 0.1
|
108
|
-
|
107
|
+
|
109
108
|
return instruct, output_fields, kwargs
|
110
109
|
|
111
110
|
|
112
111
|
async def _select(
|
113
|
-
context,
|
114
|
-
choices,
|
112
|
+
context,
|
113
|
+
choices,
|
115
114
|
num_choices=1,
|
116
|
-
method=
|
115
|
+
method="llm",
|
117
116
|
objective=None,
|
118
|
-
default_key=
|
119
|
-
reason=False,
|
120
|
-
confidence_score=False,
|
117
|
+
default_key="answer",
|
118
|
+
reason=False,
|
119
|
+
confidence_score=False,
|
121
120
|
**kwargs,
|
122
121
|
):
|
123
|
-
|
122
|
+
|
124
123
|
_instruct, _output_fields, _kwargs = _create_select_config(
|
125
124
|
choices=choices,
|
126
125
|
num_choices=num_choices,
|
@@ -130,12 +129,16 @@ async def _select(
|
|
130
129
|
confidence_score=confidence_score,
|
131
130
|
**kwargs,
|
132
131
|
)
|
133
|
-
|
132
|
+
|
134
133
|
branch = Branch()
|
135
134
|
out_ = ""
|
136
135
|
if method == "llm":
|
137
136
|
out_ = await branch.chat(
|
138
|
-
_instruct,
|
137
|
+
_instruct,
|
138
|
+
tools=None,
|
139
|
+
context=context,
|
140
|
+
output_fields=_output_fields,
|
141
|
+
**_kwargs,
|
139
142
|
)
|
140
|
-
|
143
|
+
|
141
144
|
return _handle_single_out(out_, default_key)
|
@@ -0,0 +1,83 @@
|
|
1
|
+
import contextlib
|
2
|
+
from lionagi.libs import ParseUtil, StringMatch, convert, func_call
|
3
|
+
|
4
|
+
|
5
|
+
def _parse_out(out_):
|
6
|
+
if isinstance(out_, str):
|
7
|
+
try:
|
8
|
+
out_ = ParseUtil.md_to_json(out_)
|
9
|
+
except Exception:
|
10
|
+
with contextlib.suppress(Exception):
|
11
|
+
out_ = ParseUtil.fuzzy_parse_json(out_.strip("```json").strip("```"))
|
12
|
+
return out_
|
13
|
+
|
14
|
+
|
15
|
+
def _handle_single_out(
|
16
|
+
out_,
|
17
|
+
default_key,
|
18
|
+
choices=None,
|
19
|
+
to_type="dict",
|
20
|
+
to_type_kwargs=None,
|
21
|
+
to_default=True,
|
22
|
+
):
|
23
|
+
|
24
|
+
if to_type_kwargs is None:
|
25
|
+
to_type_kwargs = {}
|
26
|
+
out_ = _parse_out(out_)
|
27
|
+
|
28
|
+
if default_key not in out_:
|
29
|
+
raise ValueError(f"Key {default_key} not found in output")
|
30
|
+
|
31
|
+
answer = out_[default_key]
|
32
|
+
|
33
|
+
if (
|
34
|
+
choices is not None
|
35
|
+
and answer not in choices
|
36
|
+
and convert.strip_lower(out_) in ["", "none", "null", "na", "n/a"]
|
37
|
+
):
|
38
|
+
raise ValueError(f"Answer {answer} not in choices {choices}")
|
39
|
+
|
40
|
+
if to_type == "str":
|
41
|
+
out_[default_key] = convert.to_str(answer, **to_type_kwargs)
|
42
|
+
|
43
|
+
elif to_type == "num":
|
44
|
+
out_[default_key] = convert.to_num(answer, **to_type_kwargs)
|
45
|
+
|
46
|
+
return out_[default_key] if to_default and len(out_.keys()) == 1 else out_
|
47
|
+
|
48
|
+
|
49
|
+
def _handle_multi_out(
|
50
|
+
out_,
|
51
|
+
default_key,
|
52
|
+
choices=None,
|
53
|
+
to_type="dict",
|
54
|
+
to_type_kwargs=None,
|
55
|
+
to_default=True,
|
56
|
+
include_mapping=False,
|
57
|
+
):
|
58
|
+
if to_type_kwargs is None:
|
59
|
+
to_type_kwargs = {}
|
60
|
+
if include_mapping:
|
61
|
+
for i in out_:
|
62
|
+
i[default_key] = _handle_single_out(
|
63
|
+
i[default_key],
|
64
|
+
choices=choices,
|
65
|
+
default_key=default_key,
|
66
|
+
to_type=to_type,
|
67
|
+
to_type_kwargs=to_type_kwargs,
|
68
|
+
to_default=to_default,
|
69
|
+
)
|
70
|
+
else:
|
71
|
+
_out = []
|
72
|
+
for i in out_:
|
73
|
+
i = _handle_single_out(
|
74
|
+
i,
|
75
|
+
choices=choices,
|
76
|
+
default_key=default_key,
|
77
|
+
to_type=to_type,
|
78
|
+
to_type_kwargs=to_type_kwargs,
|
79
|
+
to_default=to_default,
|
80
|
+
)
|
81
|
+
_out.append(i)
|
82
|
+
|
83
|
+
return out_ if len(out_) > 1 else out_[0]
|
@@ -42,16 +42,17 @@ class MonoReAct(MonoChat):
|
|
42
42
|
try:
|
43
43
|
try:
|
44
44
|
return default.format(num_steps=num_steps)
|
45
|
-
except:
|
45
|
+
except Exception:
|
46
46
|
return default.format(instruction=instruction)
|
47
|
-
except:
|
47
|
+
except Exception:
|
48
48
|
return default
|
49
49
|
|
50
50
|
def _create_followup_config(self, tools, auto=True, **kwargs):
|
51
51
|
|
52
|
-
if tools is not None
|
53
|
-
|
54
|
-
|
52
|
+
if tools is not None and (
|
53
|
+
isinstance(tools, list) and isinstance(tools[0], Tool)
|
54
|
+
):
|
55
|
+
self.branch.tool_manager.register_tools(tools)
|
55
56
|
|
56
57
|
if not self.branch.tool_manager.has_tools:
|
57
58
|
raise ValueError("No tools found, You need to register tools")
|