lionagi 0.0.306__py3-none-any.whl → 0.0.307__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (78) hide show
  1. lionagi/__init__.py +2 -5
  2. lionagi/core/__init__.py +7 -5
  3. lionagi/core/agent/__init__.py +3 -0
  4. lionagi/core/agent/base_agent.py +10 -12
  5. lionagi/core/branch/__init__.py +4 -0
  6. lionagi/core/branch/base_branch.py +81 -81
  7. lionagi/core/branch/branch.py +16 -28
  8. lionagi/core/branch/branch_flow_mixin.py +3 -7
  9. lionagi/core/branch/executable_branch.py +86 -56
  10. lionagi/core/branch/util.py +77 -162
  11. lionagi/core/{flow/direct → direct}/__init__.py +1 -1
  12. lionagi/core/{flow/direct/predict.py → direct/parallel_predict.py} +39 -17
  13. lionagi/core/direct/parallel_react.py +0 -0
  14. lionagi/core/direct/parallel_score.py +0 -0
  15. lionagi/core/direct/parallel_select.py +0 -0
  16. lionagi/core/direct/parallel_sentiment.py +0 -0
  17. lionagi/core/direct/predict.py +174 -0
  18. lionagi/core/{flow/direct → direct}/react.py +2 -2
  19. lionagi/core/{flow/direct → direct}/score.py +28 -23
  20. lionagi/core/{flow/direct → direct}/select.py +48 -45
  21. lionagi/core/direct/utils.py +83 -0
  22. lionagi/core/flow/monoflow/ReAct.py +6 -5
  23. lionagi/core/flow/monoflow/__init__.py +9 -0
  24. lionagi/core/flow/monoflow/chat.py +10 -10
  25. lionagi/core/flow/monoflow/chat_mixin.py +11 -10
  26. lionagi/core/flow/monoflow/followup.py +6 -5
  27. lionagi/core/flow/polyflow/__init__.py +1 -0
  28. lionagi/core/flow/polyflow/chat.py +15 -3
  29. lionagi/core/mail/mail_manager.py +18 -19
  30. lionagi/core/mail/schema.py +5 -4
  31. lionagi/core/messages/schema.py +18 -20
  32. lionagi/core/prompt/__init__.py +0 -0
  33. lionagi/core/prompt/prompt_template.py +0 -0
  34. lionagi/core/schema/__init__.py +2 -2
  35. lionagi/core/schema/action_node.py +11 -3
  36. lionagi/core/schema/base_mixin.py +56 -59
  37. lionagi/core/schema/base_node.py +35 -38
  38. lionagi/core/schema/condition.py +24 -0
  39. lionagi/core/schema/data_logger.py +96 -99
  40. lionagi/core/schema/data_node.py +19 -19
  41. lionagi/core/schema/prompt_template.py +0 -0
  42. lionagi/core/schema/structure.py +171 -169
  43. lionagi/core/session/__init__.py +1 -3
  44. lionagi/core/session/session.py +196 -214
  45. lionagi/core/tool/tool_manager.py +95 -103
  46. lionagi/integrations/__init__.py +1 -3
  47. lionagi/integrations/bridge/langchain_/documents.py +17 -18
  48. lionagi/integrations/bridge/langchain_/langchain_bridge.py +14 -14
  49. lionagi/integrations/bridge/llamaindex_/llama_index_bridge.py +22 -22
  50. lionagi/integrations/bridge/llamaindex_/node_parser.py +12 -12
  51. lionagi/integrations/bridge/llamaindex_/reader.py +11 -11
  52. lionagi/integrations/bridge/llamaindex_/textnode.py +7 -7
  53. lionagi/integrations/config/openrouter_configs.py +0 -1
  54. lionagi/integrations/provider/oai.py +26 -26
  55. lionagi/integrations/provider/services.py +38 -38
  56. lionagi/libs/__init__.py +34 -1
  57. lionagi/libs/ln_api.py +211 -221
  58. lionagi/libs/ln_async.py +53 -60
  59. lionagi/libs/ln_convert.py +118 -120
  60. lionagi/libs/ln_dataframe.py +32 -33
  61. lionagi/libs/ln_func_call.py +334 -342
  62. lionagi/libs/ln_nested.py +99 -107
  63. lionagi/libs/ln_parse.py +161 -165
  64. lionagi/libs/sys_util.py +52 -52
  65. lionagi/tests/test_core/test_session.py +254 -266
  66. lionagi/tests/test_core/test_session_base_util.py +299 -300
  67. lionagi/tests/test_core/test_tool_manager.py +70 -74
  68. lionagi/tests/test_libs/test_nested.py +2 -7
  69. lionagi/tests/test_libs/test_parse.py +2 -2
  70. lionagi/version.py +1 -1
  71. {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/METADATA +4 -2
  72. lionagi-0.0.307.dist-info/RECORD +115 -0
  73. lionagi/core/flow/direct/utils.py +0 -43
  74. lionagi-0.0.306.dist-info/RECORD +0 -106
  75. /lionagi/core/{flow/direct → direct}/sentiment.py +0 -0
  76. {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/LICENSE +0 -0
  77. {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/WHEEL +0 -0
  78. {lionagi-0.0.306.dist-info → lionagi-0.0.307.dist-info}/top_level.txt +0 -0
@@ -1,19 +1,22 @@
1
- from lionagi.libs import ln_func_call as func_call
2
- from lionagi.core.branch.branch import Branch
3
- from .utils import _handle_single_out
1
+ from lionagi.libs import func_call
2
+ from ..branch import Branch
3
+ from ..session import Session
4
+ from .utils import _handle_single_out, _handle_multi_out
4
5
 
5
6
 
6
- async def predict(
7
+ async def parallel_predict(
7
8
  sentence,
8
9
  *,
9
10
  num_sentences=1,
10
11
  default_key="answer",
11
12
  confidence_score=False,
12
13
  reason=False,
13
- retry_kwargs={},
14
+ retry_kwargs=None,
14
15
  **kwargs,
15
16
  ):
16
- return await _force_predict(
17
+ if retry_kwargs is None:
18
+ retry_kwargs = {}
19
+ return await _force_parallel_predict(
17
20
  sentence,
18
21
  num_sentences,
19
22
  default_key,
@@ -24,19 +27,26 @@ async def predict(
24
27
  )
25
28
 
26
29
 
27
- async def _force_predict(
30
+ async def _force_parallel_predict(
28
31
  sentence,
29
32
  num_sentences,
30
33
  default_key="answer",
31
34
  confidence_score=False,
32
35
  reason=False,
33
36
  retry_kwargs={},
37
+ include_mapping=False,
34
38
  **kwargs,
35
39
  ):
36
40
 
37
41
  async def _inner():
38
- out_ = await _predict(
39
- sentence, num_sentences, default_key, confidence_score, reason, **kwargs
42
+ out_ = await _parallel_predict(
43
+ sentence=sentence,
44
+ num_sentences=num_sentences,
45
+ default_key=default_key,
46
+ confidence_score=confidence_score,
47
+ reason=reason,
48
+ include_mapping=include_mapping,
49
+ **kwargs,
40
50
  )
41
51
  if out_ is None:
42
52
  raise ValueError("No output from the model")
@@ -81,25 +91,37 @@ def _create_predict_config(
81
91
  return instruct, output_fields, kwargs
82
92
 
83
93
 
84
- async def _predict(
94
+ async def _parallel_predict(
85
95
  sentence,
86
96
  num_sentences,
87
97
  default_key="answer",
88
98
  confidence_score=False,
89
99
  reason=False,
100
+ include_mapping=False,
90
101
  **kwargs,
91
102
  ):
92
103
  _instruct, _output_fields, _kwargs = _create_predict_config(
93
- num_sentences=num_sentences, default_key=default_key,
94
- confidence_score=confidence_score, reason=reason, **kwargs,
104
+ num_sentences=num_sentences,
105
+ default_key=default_key,
106
+ confidence_score=confidence_score,
107
+ reason=reason,
108
+ **kwargs,
95
109
  )
96
110
 
97
- branch = Branch()
111
+ session = Session()
98
112
 
99
- out_ = await branch.chat(
100
- _instruct, context=sentence, output_fields=_output_fields, **_kwargs
113
+ out_ = await session.parallel_chat(
114
+ _instruct,
115
+ context=sentence,
116
+ output_fields=_output_fields,
117
+ include_mapping=include_mapping,
118
+ **_kwargs,
101
119
  )
102
120
 
103
- return _handle_single_out(
104
- out_, default_key=default_key, to_type="str", to_default=True
121
+ return _handle_multi_out(
122
+ out_,
123
+ default_key=default_key,
124
+ to_type="str",
125
+ to_default=True,
126
+ include_mapping=include_mapping,
105
127
  )
File without changes
File without changes
File without changes
File without changes
@@ -0,0 +1,174 @@
1
+ from lionagi.libs import func_call
2
+ from ..branch import Branch
3
+ from ..session import Session
4
+ from .utils import _handle_single_out, _handle_multi_out
5
+
6
+
7
+ async def predict(
8
+ sentence,
9
+ *,
10
+ num_sentences=1,
11
+ default_key="answer",
12
+ confidence_score=False,
13
+ reason=False,
14
+ retry_kwargs=None,
15
+ include_mapping=False,
16
+ **kwargs,
17
+ ):
18
+ if retry_kwargs is None:
19
+ retry_kwargs = {}
20
+ return await _force_predict(
21
+ sentence=sentence,
22
+ num_sentences=num_sentences,
23
+ default_key=default_key,
24
+ confidence_score=confidence_score,
25
+ reason=reason,
26
+ retry_kwargs=retry_kwargs,
27
+ include_mapping=include_mapping,
28
+ **kwargs,
29
+ )
30
+
31
+
32
+ async def _force_predict(
33
+ sentence,
34
+ num_sentences,
35
+ default_key="answer",
36
+ confidence_score=False,
37
+ reason=False,
38
+ retry_kwargs={},
39
+ include_mapping=False,
40
+ **kwargs,
41
+ ):
42
+
43
+ async def _inner1():
44
+ out_ = await _predict(
45
+ sentence=sentence,
46
+ num_sentences=num_sentences,
47
+ default_key=default_key,
48
+ confidence_score=confidence_score,
49
+ reason=reason,
50
+ **kwargs,
51
+ )
52
+ if out_ is None:
53
+ raise ValueError("No output from the model")
54
+
55
+ return out_
56
+
57
+ async def _inner2():
58
+ out_ = await _parallel_predict(
59
+ sentence=sentence,
60
+ num_sentences=num_sentences,
61
+ default_key=default_key,
62
+ confidence_score=confidence_score,
63
+ reason=reason,
64
+ include_mapping=include_mapping,
65
+ **kwargs,
66
+ )
67
+
68
+ if out_ is None:
69
+ raise ValueError("No output from the model")
70
+
71
+ return out_
72
+
73
+ if "retries" not in retry_kwargs:
74
+ retry_kwargs["retries"] = 2
75
+
76
+ if "delay" not in retry_kwargs:
77
+ retry_kwargs["delay"] = 0.5
78
+
79
+ if (isinstance(sentence, (list, tuple)) and len(sentence) > 1) or include_mapping:
80
+ return await func_call.rcall(_inner2, **retry_kwargs)
81
+
82
+ return await func_call.rcall(_inner1, **retry_kwargs)
83
+
84
+
85
+ def _create_predict_config(
86
+ num_sentences,
87
+ default_key="answer",
88
+ confidence_score=False,
89
+ reason=False,
90
+ **kwargs,
91
+ ):
92
+ instruct = {
93
+ "task": f"predict the next {num_sentences} sentence(s)",
94
+ }
95
+ extra_fields = kwargs.pop("output_fields", {})
96
+
97
+ output_fields = {default_key: "the predicted sentence(s)"}
98
+ output_fields = {**output_fields, **extra_fields}
99
+
100
+ if reason:
101
+ output_fields["reason"] = "brief reason for the prediction"
102
+
103
+ if confidence_score:
104
+ output_fields["confidence_score"] = (
105
+ "a numeric score between 0 to 1 formatted in num:0.2f"
106
+ )
107
+
108
+ if "temperature" not in kwargs:
109
+ kwargs["temperature"] = 0.1
110
+
111
+ return instruct, output_fields, kwargs
112
+
113
+
114
+ async def _predict(
115
+ sentence,
116
+ num_sentences,
117
+ default_key="answer",
118
+ confidence_score=False,
119
+ reason=False,
120
+ **kwargs,
121
+ ):
122
+ _instruct, _output_fields, _kwargs = _create_predict_config(
123
+ num_sentences=num_sentences,
124
+ default_key=default_key,
125
+ confidence_score=confidence_score,
126
+ reason=reason,
127
+ **kwargs,
128
+ )
129
+
130
+ branch = Branch()
131
+
132
+ out_ = await branch.chat(
133
+ _instruct, context=sentence, output_fields=_output_fields, **_kwargs
134
+ )
135
+
136
+ return _handle_single_out(
137
+ out_, default_key=default_key, to_type="str", to_default=True
138
+ )
139
+
140
+
141
+ async def _parallel_predict(
142
+ sentence,
143
+ num_sentences,
144
+ default_key="answer",
145
+ confidence_score=False,
146
+ reason=False,
147
+ include_mapping=False,
148
+ **kwargs,
149
+ ):
150
+ _instruct, _output_fields, _kwargs = _create_predict_config(
151
+ num_sentences=num_sentences,
152
+ default_key=default_key,
153
+ confidence_score=confidence_score,
154
+ reason=reason,
155
+ **kwargs,
156
+ )
157
+
158
+ session = Session()
159
+
160
+ out_ = await session.parallel_chat(
161
+ _instruct,
162
+ context=sentence,
163
+ output_fields=_output_fields,
164
+ include_mapping=include_mapping,
165
+ **_kwargs,
166
+ )
167
+
168
+ return _handle_multi_out(
169
+ out_,
170
+ default_key=default_key,
171
+ to_type="str",
172
+ to_default=True,
173
+ include_mapping=include_mapping,
174
+ )
@@ -1,5 +1,5 @@
1
- from lionagi.core.branch.branch import Branch
2
- from lionagi.core.flow.monoflow.ReAct import MonoReAct
1
+ from ..branch import Branch
2
+ from ..flow.monoflow import MonoReAct
3
3
 
4
4
 
5
5
  async def react(
@@ -1,7 +1,5 @@
1
- from lionagi.core.branch.branch import Branch
2
- from lionagi.libs import ln_func_call as func_call
3
- import lionagi.libs.ln_convert as convert
4
-
1
+ from lionagi.libs import func_call, convert
2
+ from ..branch import Branch
5
3
  from .utils import _handle_single_out
6
4
 
7
5
 
@@ -16,20 +14,22 @@ async def score(
16
14
  method="llm",
17
15
  reason=False,
18
16
  confidence_score=False,
19
- retry_kwargs={},
17
+ retry_kwargs=None,
20
18
  **kwargs,
21
19
  ):
20
+ if retry_kwargs is None:
21
+ retry_kwargs = {}
22
22
  return await _force_score(
23
- context = context,
24
- instruction = instruction,
25
- score_range = score_range,
26
- inclusive = inclusive,
27
- num_digit = num_digit,
28
- default_key = default_key,
29
- method = method,
30
- reason = reason,
31
- confidence_score = confidence_score,
32
- retry_kwargs = retry_kwargs,
23
+ context=context,
24
+ instruction=instruction,
25
+ score_range=score_range,
26
+ inclusive=inclusive,
27
+ num_digit=num_digit,
28
+ default_key=default_key,
29
+ method=method,
30
+ reason=reason,
31
+ confidence_score=confidence_score,
32
+ retry_kwargs=retry_kwargs,
33
33
  **kwargs,
34
34
  )
35
35
 
@@ -65,7 +65,7 @@ async def _force_score(
65
65
  raise ValueError("No output from the model")
66
66
 
67
67
  return out_
68
-
68
+
69
69
  if "retries" not in retry_kwargs:
70
70
  retry_kwargs["retries"] = 2
71
71
 
@@ -86,28 +86,28 @@ def _create_score_config(
86
86
  **kwargs,
87
87
  ):
88
88
  instruct = {
89
- "task": f"score context according to the following constraints",
89
+ "task": "score context according to the following constraints",
90
90
  "instruction": convert.to_str(instruction),
91
91
  "score_range": convert.to_str(score_range),
92
92
  "include_endpoints": "yes" if inclusive else "no",
93
93
  }
94
94
 
95
- return_precision = ''
95
+ return_precision = ""
96
96
  if num_digit == 0:
97
97
  return_precision = "integer"
98
98
  else:
99
99
  return_precision = f"num:{convert.to_str(num_digit)}f"
100
-
100
+
101
101
  extra_fields = kwargs.pop("output_fields", {})
102
102
  output_fields = {default_key: f"""a numeric score as {return_precision}"""}
103
103
  output_fields = {**output_fields, **extra_fields}
104
104
 
105
105
  if reason:
106
- output_fields.update({"reason": "brief reason for the score"})
106
+ output_fields["reason"] = "brief reason for the score"
107
107
 
108
108
  if confidence_score:
109
- output_fields.update(
110
- {"confidence_score": "a numeric score between 0 to 1 formatted in num:0.2f"}
109
+ output_fields["confidence_score"] = (
110
+ "a numeric score between 0 to 1 formatted in num:0.2f"
111
111
  )
112
112
 
113
113
  if "temperature" not in kwargs:
@@ -143,7 +143,12 @@ async def _score(
143
143
  out_ = ""
144
144
 
145
145
  if method == "llm":
146
- out_ = await branch.chat(_instruct, tools=None, context=context, output_fields=_output_fields, **_kwargs,
146
+ out_ = await branch.chat(
147
+ _instruct,
148
+ tools=None,
149
+ context=context,
150
+ output_fields=_output_fields,
151
+ **_kwargs,
147
152
  )
148
153
 
149
154
  to_num_kwargs = {
@@ -1,22 +1,23 @@
1
- from lionagi.libs import ln_func_call as func_call
2
- from lionagi.core.branch.branch import Branch
3
- from lionagi.libs.ln_parse import StringMatch
4
-
1
+ from lionagi.libs import StringMatch, func_call
2
+ from ..branch.branch import Branch
5
3
  from .utils import _handle_single_out
6
4
 
5
+
7
6
  async def select(
8
- context,
9
- choices,
7
+ context,
8
+ choices,
10
9
  *,
11
10
  num_choices=1,
12
- method='llm',
11
+ method="llm",
13
12
  objective=None,
14
- default_key='answer',
15
- reason=False,
16
- confidence_score=False,
17
- retry_kwargs={},
13
+ default_key="answer",
14
+ reason=False,
15
+ confidence_score=False,
16
+ retry_kwargs=None,
18
17
  **kwargs,
19
18
  ):
19
+ if retry_kwargs is None:
20
+ retry_kwargs = {}
20
21
  return await _force_select(
21
22
  context=context,
22
23
  choices=choices,
@@ -32,19 +33,18 @@ async def select(
32
33
 
33
34
 
34
35
  async def _force_select(
35
- context,
36
- choices,
36
+ context,
37
+ choices,
37
38
  num_choices=1,
38
- method='llm',
39
+ method="llm",
39
40
  objective=None,
40
- default_key='answer',
41
- reason=False,
42
- confidence_score=False,
41
+ default_key="answer",
42
+ reason=False,
43
+ confidence_score=False,
43
44
  retry_kwargs={},
44
45
  **kwargs,
45
46
  ):
46
-
47
-
47
+
48
48
  async def _inner():
49
49
  out_ = await _select(
50
50
  context=context,
@@ -61,10 +61,9 @@ async def _force_select(
61
61
  if out_ is None:
62
62
  raise ValueError("No output from the model")
63
63
 
64
- if isinstance(out_, dict):
65
- if out_[default_key] not in choices:
66
- v = StringMatch.choose_most_similar(out_.pop(default_key, ""), choices)
67
- out_[default_key] = v
64
+ if isinstance(out_, dict) and out_[default_key] not in choices:
65
+ v = StringMatch.choose_most_similar(out_.pop(default_key, ""), choices)
66
+ out_[default_key] = v
68
67
 
69
68
  return out_
70
69
 
@@ -78,15 +77,15 @@ async def _force_select(
78
77
 
79
78
 
80
79
  def _create_select_config(
81
- choices,
82
- num_choices=1,
83
- objective=None,
84
- default_key='answer',
85
- reason=False,
86
- confidence_score=False,
87
- **kwargs,
80
+ choices,
81
+ num_choices=1,
82
+ objective=None,
83
+ default_key="answer",
84
+ reason=False,
85
+ confidence_score=False,
86
+ **kwargs,
88
87
  ):
89
-
88
+
90
89
  instruct = {"task": f"select {num_choices} from provided", "choices": choices}
91
90
  if objective is not None:
92
91
  instruct["objective"] = objective
@@ -96,31 +95,31 @@ def _create_select_config(
96
95
  output_fields = {**output_fields, **extra_fields}
97
96
 
98
97
  if reason:
99
- output_fields.update({"reason": "brief reason for the selection"})
98
+ output_fields["reason"] = "brief reason for the selection"
100
99
 
101
100
  if confidence_score:
102
- output_fields.update(
103
- {"confidence_score": "a numeric score between 0 to 1 formatted in num:0.2f"}
101
+ output_fields["confidence_score"] = (
102
+ "a numeric score between 0 to 1 formatted in num:0.2f"
104
103
  )
105
104
 
106
105
  if "temperature" not in kwargs:
107
106
  kwargs["temperature"] = 0.1
108
-
107
+
109
108
  return instruct, output_fields, kwargs
110
109
 
111
110
 
112
111
  async def _select(
113
- context,
114
- choices,
112
+ context,
113
+ choices,
115
114
  num_choices=1,
116
- method='llm',
115
+ method="llm",
117
116
  objective=None,
118
- default_key='answer',
119
- reason=False,
120
- confidence_score=False,
117
+ default_key="answer",
118
+ reason=False,
119
+ confidence_score=False,
121
120
  **kwargs,
122
121
  ):
123
-
122
+
124
123
  _instruct, _output_fields, _kwargs = _create_select_config(
125
124
  choices=choices,
126
125
  num_choices=num_choices,
@@ -130,12 +129,16 @@ async def _select(
130
129
  confidence_score=confidence_score,
131
130
  **kwargs,
132
131
  )
133
-
132
+
134
133
  branch = Branch()
135
134
  out_ = ""
136
135
  if method == "llm":
137
136
  out_ = await branch.chat(
138
- _instruct, tools=None, context=context, output_fields=_output_fields, **_kwargs
137
+ _instruct,
138
+ tools=None,
139
+ context=context,
140
+ output_fields=_output_fields,
141
+ **_kwargs,
139
142
  )
140
-
143
+
141
144
  return _handle_single_out(out_, default_key)
@@ -0,0 +1,83 @@
1
+ import contextlib
2
+ from lionagi.libs import ParseUtil, StringMatch, convert, func_call
3
+
4
+
5
+ def _parse_out(out_):
6
+ if isinstance(out_, str):
7
+ try:
8
+ out_ = ParseUtil.md_to_json(out_)
9
+ except Exception:
10
+ with contextlib.suppress(Exception):
11
+ out_ = ParseUtil.fuzzy_parse_json(out_.strip("```json").strip("```"))
12
+ return out_
13
+
14
+
15
+ def _handle_single_out(
16
+ out_,
17
+ default_key,
18
+ choices=None,
19
+ to_type="dict",
20
+ to_type_kwargs=None,
21
+ to_default=True,
22
+ ):
23
+
24
+ if to_type_kwargs is None:
25
+ to_type_kwargs = {}
26
+ out_ = _parse_out(out_)
27
+
28
+ if default_key not in out_:
29
+ raise ValueError(f"Key {default_key} not found in output")
30
+
31
+ answer = out_[default_key]
32
+
33
+ if (
34
+ choices is not None
35
+ and answer not in choices
36
+ and convert.strip_lower(out_) in ["", "none", "null", "na", "n/a"]
37
+ ):
38
+ raise ValueError(f"Answer {answer} not in choices {choices}")
39
+
40
+ if to_type == "str":
41
+ out_[default_key] = convert.to_str(answer, **to_type_kwargs)
42
+
43
+ elif to_type == "num":
44
+ out_[default_key] = convert.to_num(answer, **to_type_kwargs)
45
+
46
+ return out_[default_key] if to_default and len(out_.keys()) == 1 else out_
47
+
48
+
49
+ def _handle_multi_out(
50
+ out_,
51
+ default_key,
52
+ choices=None,
53
+ to_type="dict",
54
+ to_type_kwargs=None,
55
+ to_default=True,
56
+ include_mapping=False,
57
+ ):
58
+ if to_type_kwargs is None:
59
+ to_type_kwargs = {}
60
+ if include_mapping:
61
+ for i in out_:
62
+ i[default_key] = _handle_single_out(
63
+ i[default_key],
64
+ choices=choices,
65
+ default_key=default_key,
66
+ to_type=to_type,
67
+ to_type_kwargs=to_type_kwargs,
68
+ to_default=to_default,
69
+ )
70
+ else:
71
+ _out = []
72
+ for i in out_:
73
+ i = _handle_single_out(
74
+ i,
75
+ choices=choices,
76
+ default_key=default_key,
77
+ to_type=to_type,
78
+ to_type_kwargs=to_type_kwargs,
79
+ to_default=to_default,
80
+ )
81
+ _out.append(i)
82
+
83
+ return out_ if len(out_) > 1 else out_[0]
@@ -42,16 +42,17 @@ class MonoReAct(MonoChat):
42
42
  try:
43
43
  try:
44
44
  return default.format(num_steps=num_steps)
45
- except:
45
+ except Exception:
46
46
  return default.format(instruction=instruction)
47
- except:
47
+ except Exception:
48
48
  return default
49
49
 
50
50
  def _create_followup_config(self, tools, auto=True, **kwargs):
51
51
 
52
- if tools is not None:
53
- if isinstance(tools, list) and isinstance(tools[0], Tool):
54
- self.branch.tool_manager.register_tools(tools)
52
+ if tools is not None and (
53
+ isinstance(tools, list) and isinstance(tools[0], Tool)
54
+ ):
55
+ self.branch.tool_manager.register_tools(tools)
55
56
 
56
57
  if not self.branch.tool_manager.has_tools:
57
58
  raise ValueError("No tools found, You need to register tools")
@@ -0,0 +1,9 @@
1
+ from .chat import MonoChat
2
+ from .followup import MonoFollowup
3
+ from .ReAct import MonoReAct
4
+
5
+ __all__ = [
6
+ "MonoChat",
7
+ "MonoFollowup",
8
+ "MonoReAct",
9
+ ]