lionagi 0.0.305__py3-none-any.whl → 0.0.307__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- lionagi/__init__.py +2 -5
- lionagi/core/__init__.py +7 -4
- lionagi/core/agent/__init__.py +3 -0
- lionagi/core/agent/base_agent.py +46 -0
- lionagi/core/branch/__init__.py +4 -0
- lionagi/core/branch/base/__init__.py +0 -0
- lionagi/core/branch/base_branch.py +100 -78
- lionagi/core/branch/branch.py +22 -34
- lionagi/core/branch/branch_flow_mixin.py +3 -7
- lionagi/core/branch/executable_branch.py +192 -0
- lionagi/core/branch/util.py +77 -162
- lionagi/core/direct/__init__.py +13 -0
- lionagi/core/direct/parallel_predict.py +127 -0
- lionagi/core/direct/parallel_react.py +0 -0
- lionagi/core/direct/parallel_score.py +0 -0
- lionagi/core/direct/parallel_select.py +0 -0
- lionagi/core/direct/parallel_sentiment.py +0 -0
- lionagi/core/direct/predict.py +174 -0
- lionagi/core/direct/react.py +33 -0
- lionagi/core/direct/score.py +163 -0
- lionagi/core/direct/select.py +144 -0
- lionagi/core/direct/sentiment.py +51 -0
- lionagi/core/direct/utils.py +83 -0
- lionagi/core/flow/__init__.py +0 -3
- lionagi/core/flow/monoflow/{mono_react.py → ReAct.py} +52 -9
- lionagi/core/flow/monoflow/__init__.py +9 -0
- lionagi/core/flow/monoflow/{mono_chat.py → chat.py} +11 -11
- lionagi/core/flow/monoflow/{mono_chat_mixin.py → chat_mixin.py} +33 -27
- lionagi/core/flow/monoflow/{mono_followup.py → followup.py} +7 -6
- lionagi/core/flow/polyflow/__init__.py +1 -0
- lionagi/core/flow/polyflow/{polychat.py → chat.py} +15 -3
- lionagi/core/mail/__init__.py +8 -0
- lionagi/core/mail/mail_manager.py +88 -40
- lionagi/core/mail/schema.py +32 -6
- lionagi/core/messages/__init__.py +3 -0
- lionagi/core/messages/schema.py +56 -25
- lionagi/core/prompt/__init__.py +0 -0
- lionagi/core/prompt/prompt_template.py +0 -0
- lionagi/core/schema/__init__.py +7 -5
- lionagi/core/schema/action_node.py +29 -0
- lionagi/core/schema/base_mixin.py +56 -59
- lionagi/core/schema/base_node.py +35 -38
- lionagi/core/schema/condition.py +24 -0
- lionagi/core/schema/data_logger.py +98 -98
- lionagi/core/schema/data_node.py +19 -19
- lionagi/core/schema/prompt_template.py +0 -0
- lionagi/core/schema/structure.py +293 -190
- lionagi/core/session/__init__.py +1 -3
- lionagi/core/session/session.py +196 -214
- lionagi/core/tool/tool_manager.py +95 -103
- lionagi/integrations/__init__.py +1 -3
- lionagi/integrations/bridge/langchain_/documents.py +17 -18
- lionagi/integrations/bridge/langchain_/langchain_bridge.py +14 -14
- lionagi/integrations/bridge/llamaindex_/llama_index_bridge.py +22 -22
- lionagi/integrations/bridge/llamaindex_/node_parser.py +12 -12
- lionagi/integrations/bridge/llamaindex_/reader.py +11 -11
- lionagi/integrations/bridge/llamaindex_/textnode.py +7 -7
- lionagi/integrations/config/openrouter_configs.py +0 -1
- lionagi/integrations/provider/oai.py +26 -26
- lionagi/integrations/provider/services.py +38 -38
- lionagi/libs/__init__.py +34 -1
- lionagi/libs/ln_api.py +211 -221
- lionagi/libs/ln_async.py +53 -60
- lionagi/libs/ln_convert.py +118 -120
- lionagi/libs/ln_dataframe.py +32 -33
- lionagi/libs/ln_func_call.py +334 -342
- lionagi/libs/ln_nested.py +99 -107
- lionagi/libs/ln_parse.py +175 -158
- lionagi/libs/sys_util.py +52 -52
- lionagi/tests/test_core/test_base_branch.py +427 -427
- lionagi/tests/test_core/test_branch.py +292 -292
- lionagi/tests/test_core/test_mail_manager.py +57 -57
- lionagi/tests/test_core/test_session.py +254 -266
- lionagi/tests/test_core/test_session_base_util.py +299 -300
- lionagi/tests/test_core/test_tool_manager.py +70 -74
- lionagi/tests/test_libs/test_nested.py +2 -7
- lionagi/tests/test_libs/test_parse.py +2 -2
- lionagi/version.py +1 -1
- {lionagi-0.0.305.dist-info → lionagi-0.0.307.dist-info}/METADATA +4 -2
- lionagi-0.0.307.dist-info/RECORD +115 -0
- lionagi-0.0.305.dist-info/RECORD +0 -94
- {lionagi-0.0.305.dist-info → lionagi-0.0.307.dist-info}/LICENSE +0 -0
- {lionagi-0.0.305.dist-info → lionagi-0.0.307.dist-info}/WHEEL +0 -0
- {lionagi-0.0.305.dist-info → lionagi-0.0.307.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,127 @@
|
|
1
|
+
from lionagi.libs import func_call
|
2
|
+
from ..branch import Branch
|
3
|
+
from ..session import Session
|
4
|
+
from .utils import _handle_single_out, _handle_multi_out
|
5
|
+
|
6
|
+
|
7
|
+
async def parallel_predict(
|
8
|
+
sentence,
|
9
|
+
*,
|
10
|
+
num_sentences=1,
|
11
|
+
default_key="answer",
|
12
|
+
confidence_score=False,
|
13
|
+
reason=False,
|
14
|
+
retry_kwargs=None,
|
15
|
+
**kwargs,
|
16
|
+
):
|
17
|
+
if retry_kwargs is None:
|
18
|
+
retry_kwargs = {}
|
19
|
+
return await _force_parallel_predict(
|
20
|
+
sentence,
|
21
|
+
num_sentences,
|
22
|
+
default_key,
|
23
|
+
confidence_score,
|
24
|
+
reason,
|
25
|
+
retry_kwargs,
|
26
|
+
**kwargs,
|
27
|
+
)
|
28
|
+
|
29
|
+
|
30
|
+
async def _force_parallel_predict(
|
31
|
+
sentence,
|
32
|
+
num_sentences,
|
33
|
+
default_key="answer",
|
34
|
+
confidence_score=False,
|
35
|
+
reason=False,
|
36
|
+
retry_kwargs={},
|
37
|
+
include_mapping=False,
|
38
|
+
**kwargs,
|
39
|
+
):
|
40
|
+
|
41
|
+
async def _inner():
|
42
|
+
out_ = await _parallel_predict(
|
43
|
+
sentence=sentence,
|
44
|
+
num_sentences=num_sentences,
|
45
|
+
default_key=default_key,
|
46
|
+
confidence_score=confidence_score,
|
47
|
+
reason=reason,
|
48
|
+
include_mapping=include_mapping,
|
49
|
+
**kwargs,
|
50
|
+
)
|
51
|
+
if out_ is None:
|
52
|
+
raise ValueError("No output from the model")
|
53
|
+
|
54
|
+
return out_
|
55
|
+
|
56
|
+
if "retries" not in retry_kwargs:
|
57
|
+
retry_kwargs["retries"] = 2
|
58
|
+
|
59
|
+
if "delay" not in retry_kwargs:
|
60
|
+
retry_kwargs["delay"] = 0.5
|
61
|
+
|
62
|
+
return await func_call.rcall(_inner, **retry_kwargs)
|
63
|
+
|
64
|
+
|
65
|
+
def _create_predict_config(
|
66
|
+
num_sentences,
|
67
|
+
default_key="answer",
|
68
|
+
confidence_score=False,
|
69
|
+
reason=False,
|
70
|
+
**kwargs,
|
71
|
+
):
|
72
|
+
instruct = {
|
73
|
+
"task": f"predict the next {num_sentences} sentence(s)",
|
74
|
+
}
|
75
|
+
extra_fields = kwargs.pop("output_fields", {})
|
76
|
+
|
77
|
+
output_fields = {default_key: "the predicted sentence(s)"}
|
78
|
+
output_fields = {**output_fields, **extra_fields}
|
79
|
+
|
80
|
+
if reason:
|
81
|
+
output_fields.update({"reason": "brief reason for the prediction"})
|
82
|
+
|
83
|
+
if confidence_score:
|
84
|
+
output_fields.update(
|
85
|
+
{"confidence_score": "a numeric score between 0 to 1 formatted in num:0.2f"}
|
86
|
+
)
|
87
|
+
|
88
|
+
if "temperature" not in kwargs:
|
89
|
+
kwargs["temperature"] = 0.1
|
90
|
+
|
91
|
+
return instruct, output_fields, kwargs
|
92
|
+
|
93
|
+
|
94
|
+
async def _parallel_predict(
|
95
|
+
sentence,
|
96
|
+
num_sentences,
|
97
|
+
default_key="answer",
|
98
|
+
confidence_score=False,
|
99
|
+
reason=False,
|
100
|
+
include_mapping=False,
|
101
|
+
**kwargs,
|
102
|
+
):
|
103
|
+
_instruct, _output_fields, _kwargs = _create_predict_config(
|
104
|
+
num_sentences=num_sentences,
|
105
|
+
default_key=default_key,
|
106
|
+
confidence_score=confidence_score,
|
107
|
+
reason=reason,
|
108
|
+
**kwargs,
|
109
|
+
)
|
110
|
+
|
111
|
+
session = Session()
|
112
|
+
|
113
|
+
out_ = await session.parallel_chat(
|
114
|
+
_instruct,
|
115
|
+
context=sentence,
|
116
|
+
output_fields=_output_fields,
|
117
|
+
include_mapping=include_mapping,
|
118
|
+
**_kwargs,
|
119
|
+
)
|
120
|
+
|
121
|
+
return _handle_multi_out(
|
122
|
+
out_,
|
123
|
+
default_key=default_key,
|
124
|
+
to_type="str",
|
125
|
+
to_default=True,
|
126
|
+
include_mapping=include_mapping,
|
127
|
+
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
@@ -0,0 +1,174 @@
|
|
1
|
+
from lionagi.libs import func_call
|
2
|
+
from ..branch import Branch
|
3
|
+
from ..session import Session
|
4
|
+
from .utils import _handle_single_out, _handle_multi_out
|
5
|
+
|
6
|
+
|
7
|
+
async def predict(
|
8
|
+
sentence,
|
9
|
+
*,
|
10
|
+
num_sentences=1,
|
11
|
+
default_key="answer",
|
12
|
+
confidence_score=False,
|
13
|
+
reason=False,
|
14
|
+
retry_kwargs=None,
|
15
|
+
include_mapping=False,
|
16
|
+
**kwargs,
|
17
|
+
):
|
18
|
+
if retry_kwargs is None:
|
19
|
+
retry_kwargs = {}
|
20
|
+
return await _force_predict(
|
21
|
+
sentence=sentence,
|
22
|
+
num_sentences=num_sentences,
|
23
|
+
default_key=default_key,
|
24
|
+
confidence_score=confidence_score,
|
25
|
+
reason=reason,
|
26
|
+
retry_kwargs=retry_kwargs,
|
27
|
+
include_mapping=include_mapping,
|
28
|
+
**kwargs,
|
29
|
+
)
|
30
|
+
|
31
|
+
|
32
|
+
async def _force_predict(
|
33
|
+
sentence,
|
34
|
+
num_sentences,
|
35
|
+
default_key="answer",
|
36
|
+
confidence_score=False,
|
37
|
+
reason=False,
|
38
|
+
retry_kwargs={},
|
39
|
+
include_mapping=False,
|
40
|
+
**kwargs,
|
41
|
+
):
|
42
|
+
|
43
|
+
async def _inner1():
|
44
|
+
out_ = await _predict(
|
45
|
+
sentence=sentence,
|
46
|
+
num_sentences=num_sentences,
|
47
|
+
default_key=default_key,
|
48
|
+
confidence_score=confidence_score,
|
49
|
+
reason=reason,
|
50
|
+
**kwargs,
|
51
|
+
)
|
52
|
+
if out_ is None:
|
53
|
+
raise ValueError("No output from the model")
|
54
|
+
|
55
|
+
return out_
|
56
|
+
|
57
|
+
async def _inner2():
|
58
|
+
out_ = await _parallel_predict(
|
59
|
+
sentence=sentence,
|
60
|
+
num_sentences=num_sentences,
|
61
|
+
default_key=default_key,
|
62
|
+
confidence_score=confidence_score,
|
63
|
+
reason=reason,
|
64
|
+
include_mapping=include_mapping,
|
65
|
+
**kwargs,
|
66
|
+
)
|
67
|
+
|
68
|
+
if out_ is None:
|
69
|
+
raise ValueError("No output from the model")
|
70
|
+
|
71
|
+
return out_
|
72
|
+
|
73
|
+
if "retries" not in retry_kwargs:
|
74
|
+
retry_kwargs["retries"] = 2
|
75
|
+
|
76
|
+
if "delay" not in retry_kwargs:
|
77
|
+
retry_kwargs["delay"] = 0.5
|
78
|
+
|
79
|
+
if (isinstance(sentence, (list, tuple)) and len(sentence) > 1) or include_mapping:
|
80
|
+
return await func_call.rcall(_inner2, **retry_kwargs)
|
81
|
+
|
82
|
+
return await func_call.rcall(_inner1, **retry_kwargs)
|
83
|
+
|
84
|
+
|
85
|
+
def _create_predict_config(
|
86
|
+
num_sentences,
|
87
|
+
default_key="answer",
|
88
|
+
confidence_score=False,
|
89
|
+
reason=False,
|
90
|
+
**kwargs,
|
91
|
+
):
|
92
|
+
instruct = {
|
93
|
+
"task": f"predict the next {num_sentences} sentence(s)",
|
94
|
+
}
|
95
|
+
extra_fields = kwargs.pop("output_fields", {})
|
96
|
+
|
97
|
+
output_fields = {default_key: "the predicted sentence(s)"}
|
98
|
+
output_fields = {**output_fields, **extra_fields}
|
99
|
+
|
100
|
+
if reason:
|
101
|
+
output_fields["reason"] = "brief reason for the prediction"
|
102
|
+
|
103
|
+
if confidence_score:
|
104
|
+
output_fields["confidence_score"] = (
|
105
|
+
"a numeric score between 0 to 1 formatted in num:0.2f"
|
106
|
+
)
|
107
|
+
|
108
|
+
if "temperature" not in kwargs:
|
109
|
+
kwargs["temperature"] = 0.1
|
110
|
+
|
111
|
+
return instruct, output_fields, kwargs
|
112
|
+
|
113
|
+
|
114
|
+
async def _predict(
|
115
|
+
sentence,
|
116
|
+
num_sentences,
|
117
|
+
default_key="answer",
|
118
|
+
confidence_score=False,
|
119
|
+
reason=False,
|
120
|
+
**kwargs,
|
121
|
+
):
|
122
|
+
_instruct, _output_fields, _kwargs = _create_predict_config(
|
123
|
+
num_sentences=num_sentences,
|
124
|
+
default_key=default_key,
|
125
|
+
confidence_score=confidence_score,
|
126
|
+
reason=reason,
|
127
|
+
**kwargs,
|
128
|
+
)
|
129
|
+
|
130
|
+
branch = Branch()
|
131
|
+
|
132
|
+
out_ = await branch.chat(
|
133
|
+
_instruct, context=sentence, output_fields=_output_fields, **_kwargs
|
134
|
+
)
|
135
|
+
|
136
|
+
return _handle_single_out(
|
137
|
+
out_, default_key=default_key, to_type="str", to_default=True
|
138
|
+
)
|
139
|
+
|
140
|
+
|
141
|
+
async def _parallel_predict(
|
142
|
+
sentence,
|
143
|
+
num_sentences,
|
144
|
+
default_key="answer",
|
145
|
+
confidence_score=False,
|
146
|
+
reason=False,
|
147
|
+
include_mapping=False,
|
148
|
+
**kwargs,
|
149
|
+
):
|
150
|
+
_instruct, _output_fields, _kwargs = _create_predict_config(
|
151
|
+
num_sentences=num_sentences,
|
152
|
+
default_key=default_key,
|
153
|
+
confidence_score=confidence_score,
|
154
|
+
reason=reason,
|
155
|
+
**kwargs,
|
156
|
+
)
|
157
|
+
|
158
|
+
session = Session()
|
159
|
+
|
160
|
+
out_ = await session.parallel_chat(
|
161
|
+
_instruct,
|
162
|
+
context=sentence,
|
163
|
+
output_fields=_output_fields,
|
164
|
+
include_mapping=include_mapping,
|
165
|
+
**_kwargs,
|
166
|
+
)
|
167
|
+
|
168
|
+
return _handle_multi_out(
|
169
|
+
out_,
|
170
|
+
default_key=default_key,
|
171
|
+
to_type="str",
|
172
|
+
to_default=True,
|
173
|
+
include_mapping=include_mapping,
|
174
|
+
)
|
@@ -0,0 +1,33 @@
|
|
1
|
+
from ..branch import Branch
|
2
|
+
from ..flow.monoflow import MonoReAct
|
3
|
+
|
4
|
+
|
5
|
+
async def react(
|
6
|
+
instruction=None,
|
7
|
+
system=None,
|
8
|
+
context=None,
|
9
|
+
output_fields=None,
|
10
|
+
tools=None,
|
11
|
+
reason_prompt=None,
|
12
|
+
action_prompt=None,
|
13
|
+
output_prompt=None,
|
14
|
+
**kwargs,
|
15
|
+
):
|
16
|
+
branch = Branch(system=system, tools=tools)
|
17
|
+
flow = MonoReAct(branch)
|
18
|
+
|
19
|
+
out = await flow._react(
|
20
|
+
instruction=instruction,
|
21
|
+
context=context,
|
22
|
+
output_fields=output_fields,
|
23
|
+
reason_prompt=reason_prompt,
|
24
|
+
action_prompt=action_prompt,
|
25
|
+
**kwargs,
|
26
|
+
)
|
27
|
+
|
28
|
+
output_prompt = output_prompt or "integrate everything, present final output"
|
29
|
+
output_fields_ = {"answer": "..."}
|
30
|
+
out1 = await flow.chat(output_prompt, output_fields=output_fields_)
|
31
|
+
|
32
|
+
out["answer"] = out1["answer"]
|
33
|
+
return out
|
@@ -0,0 +1,163 @@
|
|
1
|
+
from lionagi.libs import func_call, convert
|
2
|
+
from ..branch import Branch
|
3
|
+
from .utils import _handle_single_out
|
4
|
+
|
5
|
+
|
6
|
+
async def score(
|
7
|
+
context,
|
8
|
+
instruction=None,
|
9
|
+
*,
|
10
|
+
score_range=(1, 10),
|
11
|
+
inclusive=True,
|
12
|
+
num_digit=0,
|
13
|
+
default_key="score",
|
14
|
+
method="llm",
|
15
|
+
reason=False,
|
16
|
+
confidence_score=False,
|
17
|
+
retry_kwargs=None,
|
18
|
+
**kwargs,
|
19
|
+
):
|
20
|
+
if retry_kwargs is None:
|
21
|
+
retry_kwargs = {}
|
22
|
+
return await _force_score(
|
23
|
+
context=context,
|
24
|
+
instruction=instruction,
|
25
|
+
score_range=score_range,
|
26
|
+
inclusive=inclusive,
|
27
|
+
num_digit=num_digit,
|
28
|
+
default_key=default_key,
|
29
|
+
method=method,
|
30
|
+
reason=reason,
|
31
|
+
confidence_score=confidence_score,
|
32
|
+
retry_kwargs=retry_kwargs,
|
33
|
+
**kwargs,
|
34
|
+
)
|
35
|
+
|
36
|
+
|
37
|
+
async def _force_score(
|
38
|
+
context,
|
39
|
+
instruction=None,
|
40
|
+
score_range=(1, 10),
|
41
|
+
inclusive=True,
|
42
|
+
num_digit=1,
|
43
|
+
default_key="score",
|
44
|
+
method="llm",
|
45
|
+
reason=False,
|
46
|
+
confidence_score=False,
|
47
|
+
retry_kwargs={},
|
48
|
+
**kwargs,
|
49
|
+
):
|
50
|
+
|
51
|
+
async def _inner():
|
52
|
+
out_ = await _score(
|
53
|
+
instruction=instruction,
|
54
|
+
context=context,
|
55
|
+
score_range=score_range,
|
56
|
+
inclusive=inclusive,
|
57
|
+
num_digit=num_digit,
|
58
|
+
reason=reason,
|
59
|
+
default_key=default_key,
|
60
|
+
confidence_score=confidence_score,
|
61
|
+
method=method,
|
62
|
+
**kwargs,
|
63
|
+
)
|
64
|
+
if out_ is None:
|
65
|
+
raise ValueError("No output from the model")
|
66
|
+
|
67
|
+
return out_
|
68
|
+
|
69
|
+
if "retries" not in retry_kwargs:
|
70
|
+
retry_kwargs["retries"] = 2
|
71
|
+
|
72
|
+
if "delay" not in retry_kwargs:
|
73
|
+
retry_kwargs["delay"] = 0.5
|
74
|
+
|
75
|
+
return await func_call.rcall(_inner, **retry_kwargs)
|
76
|
+
|
77
|
+
|
78
|
+
def _create_score_config(
|
79
|
+
instruction,
|
80
|
+
score_range=(1, 10),
|
81
|
+
inclusive=True,
|
82
|
+
num_digit=0,
|
83
|
+
reason=False,
|
84
|
+
default_key="score",
|
85
|
+
confidence_score=False,
|
86
|
+
**kwargs,
|
87
|
+
):
|
88
|
+
instruct = {
|
89
|
+
"task": "score context according to the following constraints",
|
90
|
+
"instruction": convert.to_str(instruction),
|
91
|
+
"score_range": convert.to_str(score_range),
|
92
|
+
"include_endpoints": "yes" if inclusive else "no",
|
93
|
+
}
|
94
|
+
|
95
|
+
return_precision = ""
|
96
|
+
if num_digit == 0:
|
97
|
+
return_precision = "integer"
|
98
|
+
else:
|
99
|
+
return_precision = f"num:{convert.to_str(num_digit)}f"
|
100
|
+
|
101
|
+
extra_fields = kwargs.pop("output_fields", {})
|
102
|
+
output_fields = {default_key: f"""a numeric score as {return_precision}"""}
|
103
|
+
output_fields = {**output_fields, **extra_fields}
|
104
|
+
|
105
|
+
if reason:
|
106
|
+
output_fields["reason"] = "brief reason for the score"
|
107
|
+
|
108
|
+
if confidence_score:
|
109
|
+
output_fields["confidence_score"] = (
|
110
|
+
"a numeric score between 0 to 1 formatted in num:0.2f"
|
111
|
+
)
|
112
|
+
|
113
|
+
if "temperature" not in kwargs:
|
114
|
+
kwargs["temperature"] = 0.1
|
115
|
+
|
116
|
+
return instruct, output_fields, kwargs
|
117
|
+
|
118
|
+
|
119
|
+
async def _score(
|
120
|
+
context,
|
121
|
+
instruction=None,
|
122
|
+
score_range=(1, 10),
|
123
|
+
inclusive=True,
|
124
|
+
num_digit=0,
|
125
|
+
default_key="score",
|
126
|
+
method="llm",
|
127
|
+
reason=False,
|
128
|
+
confidence_score=False,
|
129
|
+
**kwargs,
|
130
|
+
):
|
131
|
+
_instruct, _output_fields, _kwargs = _create_score_config(
|
132
|
+
instruction=instruction,
|
133
|
+
score_range=score_range,
|
134
|
+
inclusive=inclusive,
|
135
|
+
num_digit=num_digit,
|
136
|
+
reason=reason,
|
137
|
+
default_key=default_key,
|
138
|
+
confidence_score=confidence_score,
|
139
|
+
**kwargs,
|
140
|
+
)
|
141
|
+
|
142
|
+
branch = Branch()
|
143
|
+
out_ = ""
|
144
|
+
|
145
|
+
if method == "llm":
|
146
|
+
out_ = await branch.chat(
|
147
|
+
_instruct,
|
148
|
+
tools=None,
|
149
|
+
context=context,
|
150
|
+
output_fields=_output_fields,
|
151
|
+
**_kwargs,
|
152
|
+
)
|
153
|
+
|
154
|
+
to_num_kwargs = {
|
155
|
+
"upper_bound": score_range[1],
|
156
|
+
"lower_bound": score_range[0],
|
157
|
+
"num_type": int if num_digit == 0 else float,
|
158
|
+
"precision": num_digit if num_digit != 0 else None,
|
159
|
+
}
|
160
|
+
|
161
|
+
return _handle_single_out(
|
162
|
+
out_, default_key, to_type="num", to_type_kwargs=to_num_kwargs
|
163
|
+
)
|
@@ -0,0 +1,144 @@
|
|
1
|
+
from lionagi.libs import StringMatch, func_call
|
2
|
+
from ..branch.branch import Branch
|
3
|
+
from .utils import _handle_single_out
|
4
|
+
|
5
|
+
|
6
|
+
async def select(
|
7
|
+
context,
|
8
|
+
choices,
|
9
|
+
*,
|
10
|
+
num_choices=1,
|
11
|
+
method="llm",
|
12
|
+
objective=None,
|
13
|
+
default_key="answer",
|
14
|
+
reason=False,
|
15
|
+
confidence_score=False,
|
16
|
+
retry_kwargs=None,
|
17
|
+
**kwargs,
|
18
|
+
):
|
19
|
+
if retry_kwargs is None:
|
20
|
+
retry_kwargs = {}
|
21
|
+
return await _force_select(
|
22
|
+
context=context,
|
23
|
+
choices=choices,
|
24
|
+
num_choices=num_choices,
|
25
|
+
method=method,
|
26
|
+
objective=objective,
|
27
|
+
default_key=default_key,
|
28
|
+
reason=reason,
|
29
|
+
confidence_score=confidence_score,
|
30
|
+
retry_kwargs=retry_kwargs,
|
31
|
+
**kwargs,
|
32
|
+
)
|
33
|
+
|
34
|
+
|
35
|
+
async def _force_select(
|
36
|
+
context,
|
37
|
+
choices,
|
38
|
+
num_choices=1,
|
39
|
+
method="llm",
|
40
|
+
objective=None,
|
41
|
+
default_key="answer",
|
42
|
+
reason=False,
|
43
|
+
confidence_score=False,
|
44
|
+
retry_kwargs={},
|
45
|
+
**kwargs,
|
46
|
+
):
|
47
|
+
|
48
|
+
async def _inner():
|
49
|
+
out_ = await _select(
|
50
|
+
context=context,
|
51
|
+
choices=choices,
|
52
|
+
num_choices=num_choices,
|
53
|
+
method=method,
|
54
|
+
objective=objective,
|
55
|
+
default_key=default_key,
|
56
|
+
reason=reason,
|
57
|
+
confidence_score=confidence_score,
|
58
|
+
retry_kwargs=retry_kwargs,
|
59
|
+
**kwargs,
|
60
|
+
)
|
61
|
+
if out_ is None:
|
62
|
+
raise ValueError("No output from the model")
|
63
|
+
|
64
|
+
if isinstance(out_, dict) and out_[default_key] not in choices:
|
65
|
+
v = StringMatch.choose_most_similar(out_.pop(default_key, ""), choices)
|
66
|
+
out_[default_key] = v
|
67
|
+
|
68
|
+
return out_
|
69
|
+
|
70
|
+
if "retries" not in retry_kwargs:
|
71
|
+
retry_kwargs["retries"] = 2
|
72
|
+
|
73
|
+
if "delay" not in retry_kwargs:
|
74
|
+
retry_kwargs["delay"] = 0.5
|
75
|
+
|
76
|
+
return await func_call.rcall(_inner, **retry_kwargs)
|
77
|
+
|
78
|
+
|
79
|
+
def _create_select_config(
|
80
|
+
choices,
|
81
|
+
num_choices=1,
|
82
|
+
objective=None,
|
83
|
+
default_key="answer",
|
84
|
+
reason=False,
|
85
|
+
confidence_score=False,
|
86
|
+
**kwargs,
|
87
|
+
):
|
88
|
+
|
89
|
+
instruct = {"task": f"select {num_choices} from provided", "choices": choices}
|
90
|
+
if objective is not None:
|
91
|
+
instruct["objective"] = objective
|
92
|
+
|
93
|
+
extra_fields = kwargs.pop("output_fields", {})
|
94
|
+
output_fields = {default_key: "..."}
|
95
|
+
output_fields = {**output_fields, **extra_fields}
|
96
|
+
|
97
|
+
if reason:
|
98
|
+
output_fields["reason"] = "brief reason for the selection"
|
99
|
+
|
100
|
+
if confidence_score:
|
101
|
+
output_fields["confidence_score"] = (
|
102
|
+
"a numeric score between 0 to 1 formatted in num:0.2f"
|
103
|
+
)
|
104
|
+
|
105
|
+
if "temperature" not in kwargs:
|
106
|
+
kwargs["temperature"] = 0.1
|
107
|
+
|
108
|
+
return instruct, output_fields, kwargs
|
109
|
+
|
110
|
+
|
111
|
+
async def _select(
|
112
|
+
context,
|
113
|
+
choices,
|
114
|
+
num_choices=1,
|
115
|
+
method="llm",
|
116
|
+
objective=None,
|
117
|
+
default_key="answer",
|
118
|
+
reason=False,
|
119
|
+
confidence_score=False,
|
120
|
+
**kwargs,
|
121
|
+
):
|
122
|
+
|
123
|
+
_instruct, _output_fields, _kwargs = _create_select_config(
|
124
|
+
choices=choices,
|
125
|
+
num_choices=num_choices,
|
126
|
+
objective=objective,
|
127
|
+
default_key=default_key,
|
128
|
+
reason=reason,
|
129
|
+
confidence_score=confidence_score,
|
130
|
+
**kwargs,
|
131
|
+
)
|
132
|
+
|
133
|
+
branch = Branch()
|
134
|
+
out_ = ""
|
135
|
+
if method == "llm":
|
136
|
+
out_ = await branch.chat(
|
137
|
+
_instruct,
|
138
|
+
tools=None,
|
139
|
+
context=context,
|
140
|
+
output_fields=_output_fields,
|
141
|
+
**_kwargs,
|
142
|
+
)
|
143
|
+
|
144
|
+
return _handle_single_out(out_, default_key)
|
@@ -0,0 +1,51 @@
|
|
1
|
+
from .select import select
|
2
|
+
from .score import score
|
3
|
+
|
4
|
+
|
5
|
+
async def sentiment(
|
6
|
+
context,
|
7
|
+
choices=None,
|
8
|
+
instruction=None,
|
9
|
+
score_range=(0, 1),
|
10
|
+
inclusive=True,
|
11
|
+
num_digit=2,
|
12
|
+
reason=False,
|
13
|
+
method="llm",
|
14
|
+
objective=None,
|
15
|
+
default_key="answer",
|
16
|
+
retries=2,
|
17
|
+
to_type="str",
|
18
|
+
**kwargs,
|
19
|
+
):
|
20
|
+
if to_type == "str":
|
21
|
+
if choices is None:
|
22
|
+
choices = ["positive", "negative", "neutral"]
|
23
|
+
|
24
|
+
if objective is None:
|
25
|
+
objective = "classify sentiment"
|
26
|
+
|
27
|
+
return await select(
|
28
|
+
context=context,
|
29
|
+
choices=choices,
|
30
|
+
method=method,
|
31
|
+
objective=objective,
|
32
|
+
default_key=default_key,
|
33
|
+
retries=retries,
|
34
|
+
reason=reason,
|
35
|
+
out_str=True,
|
36
|
+
**kwargs,
|
37
|
+
)
|
38
|
+
|
39
|
+
elif to_type == "num":
|
40
|
+
return await score(
|
41
|
+
context=context,
|
42
|
+
instruction=instruction,
|
43
|
+
score_range=score_range,
|
44
|
+
inclusive=inclusive,
|
45
|
+
num_digit=num_digit,
|
46
|
+
reason=reason,
|
47
|
+
method=method,
|
48
|
+
default_key=default_key,
|
49
|
+
retries=retries,
|
50
|
+
**kwargs,
|
51
|
+
)
|