linregmc 0.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of linregmc might be problematic. Click here for more details.
- linregmc/.bashlog +1 -0
- linregmc/__init__.py +1 -0
- linregmc/linregmc.py +345 -0
- linregmc-0.1.1.dist-info/LICENSE +22 -0
- linregmc-0.1.1.dist-info/METADATA +25 -0
- linregmc-0.1.1.dist-info/RECORD +7 -0
- linregmc-0.1.1.dist-info/WHEEL +4 -0
linregmc/.bashlog
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
521 cd linregmc_python2025/linregmc/src/linregmc/
|
linregmc/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .linregmc import *
|
linregmc/linregmc.py
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from numpy.matlib import repmat,randn
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
def addnoise(yinp,ysiginp,nmc=10000,distrib='normal'):
|
|
6
|
+
"""Adds noise to an array of data points (or a single value).
|
|
7
|
+
|
|
8
|
+
Creates a matrix of nmc vectors with the mean values of y but with
|
|
9
|
+
added random noise of standard deviation ysig.
|
|
10
|
+
You might want to initialize the random number generator in forehand.
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
Parameters
|
|
14
|
+
----------
|
|
15
|
+
y : array
|
|
16
|
+
data vector
|
|
17
|
+
ysig : array
|
|
18
|
+
standard deviation vector (same length as y, or a single value)
|
|
19
|
+
nmc : int, default 10000
|
|
20
|
+
number of Monte Carlo copies
|
|
21
|
+
distrib : str, default 'normal'
|
|
22
|
+
'norm'/'normal' gives normal distribution
|
|
23
|
+
'lognorm'/'lognormal' give lognormal distribution (useful for example if negative results are unphysical)
|
|
24
|
+
|
|
25
|
+
Returns
|
|
26
|
+
-------
|
|
27
|
+
array
|
|
28
|
+
the data vector with added noise
|
|
29
|
+
(always two-dimensional, but only one column if y was a single value)
|
|
30
|
+
|
|
31
|
+
Examples
|
|
32
|
+
--------
|
|
33
|
+
>>> y = np.array([1.2, 2.3, 3.7])
|
|
34
|
+
>>> ysig = np.array([0.1, 0.3, 0.2])
|
|
35
|
+
>>> y1 = addnoise(y, ysig) # different stdev for the three points, normal distribution
|
|
36
|
+
>>> y1.shape # (10000, 3)
|
|
37
|
+
>>> y2 = addnoise(y, 0.2, 1000, distrib='lognorm') # same stdev for the three points, lognormal distribution
|
|
38
|
+
>>> y2.shape # (1000, 3)
|
|
39
|
+
>>> y3 = addnoise(1.5, 0.2) # only one point
|
|
40
|
+
>>> y3.shape # (10000, 1)
|
|
41
|
+
"""
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
yinp = np.asarray(yinp)
|
|
45
|
+
ysiginp = np.asarray(ysiginp)
|
|
46
|
+
if np.ndim(yinp)>1 or np.ndim(ysiginp)>1:
|
|
47
|
+
raise Exception('y and ysig must not have higher dimension than 1.')
|
|
48
|
+
if np.size(ysiginp) == 1:
|
|
49
|
+
ysiginp = ysiginp*np.ones(np.size(yinp)) #If ysiginp is a scalar, turn it into a vector with identical elements
|
|
50
|
+
if np.size(yinp) != np.size(ysiginp):
|
|
51
|
+
raise Exception('y and ysig must have the same length.')
|
|
52
|
+
|
|
53
|
+
n=np.size(yinp)
|
|
54
|
+
y=yinp.reshape((1,n))
|
|
55
|
+
ysig=ysiginp.reshape((1,n))
|
|
56
|
+
if distrib.lower() in ('norm' ,'normal'):
|
|
57
|
+
|
|
58
|
+
return np.array(repmat(y,nmc,1)) + np.array(repmat(ysig,nmc,1))*np.array(randn(nmc,n))
|
|
59
|
+
elif distrib.lower() in ('lognorm','lognormal'):
|
|
60
|
+
mu = np.log(y**2/np.sqrt(ysig**2+y**2)) # mu of lognormal dist
|
|
61
|
+
sigma = np.sqrt(np.log(ysig**2/y**2+1)) # sigma of lognormal dist
|
|
62
|
+
return np.exp(np.array(randn(nmc,n))*np.array(repmat(sigma,nmc,1)) + np.array(repmat(mu,nmc,1)))
|
|
63
|
+
else:
|
|
64
|
+
raise Exception('Distribution named "' + distrib + '" is not recognized.')
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def linreg(xinp, yinp, ndeg=1, fitfunc = None, weighted=True, plot = False):
|
|
69
|
+
"""Performs linear fitting ax+b=y with error analysis using a Monte Carlo approach.
|
|
70
|
+
|
|
71
|
+
Parameters
|
|
72
|
+
----------
|
|
73
|
+
xinp : array
|
|
74
|
+
an NM x N matrix: the NX data sets of x values (N data points)
|
|
75
|
+
yinp : array
|
|
76
|
+
an NY x N matrix: the NY data sets of y values (N data points)
|
|
77
|
+
NX and NY need not be the same. In particular one may use a
|
|
78
|
+
single data set (without added noise) for one of them.
|
|
79
|
+
The number of fits equals NM = max(NX,NY) and if there are less data
|
|
80
|
+
sets for one of x or y, they are just cyclically reused.
|
|
81
|
+
ndeg : int, default 1
|
|
82
|
+
the degree of the polynomial used for fitting
|
|
83
|
+
(the ordering of the obtained coefficients is from 0 to ndeg, i.e.
|
|
84
|
+
corresponds to numpy.polynomial.polynomial.polyfit)
|
|
85
|
+
fitfunc : list, optional
|
|
86
|
+
a list of functions of x that are used as basis functions instead of a polonymial
|
|
87
|
+
(ndeg and fitfunc cannot both be specified)
|
|
88
|
+
weighted: boolean, default True
|
|
89
|
+
weight the importance of each data point by 1/stdev (recommended)
|
|
90
|
+
plot : boolean, default False
|
|
91
|
+
an optional argument that specifies whether to plot the chi2 distribution
|
|
92
|
+
to visualize the "goodness-of-fit".
|
|
93
|
+
|
|
94
|
+
Returns
|
|
95
|
+
-------
|
|
96
|
+
pp : array (ndeg+1 elements)
|
|
97
|
+
single-fit value of each parameter (can be used as the result)
|
|
98
|
+
psig : array (ndeg+1 elements)
|
|
99
|
+
standard deviation of each parameter
|
|
100
|
+
pchi2 : float
|
|
101
|
+
goodness-of-fit, i.e. probability of chi>chi0
|
|
102
|
+
Note: not well-defined
|
|
103
|
+
pmc : array
|
|
104
|
+
a (NM x (ndeg+1) matrix, the fitted parameters for all data sets
|
|
105
|
+
|
|
106
|
+
Examples
|
|
107
|
+
--------
|
|
108
|
+
>>> x = np.array([0.1, 0.2, 0.3])
|
|
109
|
+
>>> y = np.array([1.2, 2.3, 3.7])
|
|
110
|
+
>>> y_mc=addnoise(y, 0.1)
|
|
111
|
+
>>> pp,psig,pchi2,pmc = linreg(x, y_mc)
|
|
112
|
+
>>> print(pp) #[-0.102 12.517]
|
|
113
|
+
>>> print(pmc.shape) # (10000, 2)
|
|
114
|
+
>>> pp,psig,pchi2,pmc = linreg(x, y_mc, fitfunc=[lambda x: np.exp(x), lambda x: 1]) #Fit to y=ae^x+b instead
|
|
115
|
+
"""
|
|
116
|
+
|
|
117
|
+
if fitfunc != None and ndeg==1: #Assume that ndeg was not specified, there is no way to know...
|
|
118
|
+
ndeg = len(fitfunc)-1
|
|
119
|
+
elif fitfunc != None and ndeg!=1:
|
|
120
|
+
raise Exception('Only one of ndeg and fitfunc can be specified.')
|
|
121
|
+
if np.ndim(xinp) == 1:
|
|
122
|
+
x=xinp.reshape((1,np.size(xinp)))
|
|
123
|
+
else:
|
|
124
|
+
x= xinp
|
|
125
|
+
if np.ndim(yinp) == 1:
|
|
126
|
+
y=yinp.reshape((1,np.size(yinp)))
|
|
127
|
+
else:
|
|
128
|
+
y=yinp
|
|
129
|
+
if np.size(x,1) != np.size(y,1):
|
|
130
|
+
raise Exception('Number of columns in x and y must be equal')
|
|
131
|
+
N=np.size(x,1)
|
|
132
|
+
xn=np.size(x,0)
|
|
133
|
+
yn=np.size(y,0)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def buildmat(xx,ss=1.0):
|
|
137
|
+
if fitfunc==None:
|
|
138
|
+
return np.stack([np.ones(N)/ss]+[xx**k/ss for k in range(1,ndeg+1)], axis=1)
|
|
139
|
+
else:
|
|
140
|
+
return np.stack([(np.zeros(N)+func(xx))/ss for func in fitfunc], axis=1)
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
xs=np.median(x, axis=0)
|
|
144
|
+
ys=np.median(y, axis=0) #Reproduces original data points independent of distribution
|
|
145
|
+
if weighted:
|
|
146
|
+
deltax=np.std(xs)/(N*100) #gives deltax with correct order of magnitude
|
|
147
|
+
pnow=np.linalg.lstsq(buildmat(xs), ys, rcond=None)[0] #parameters if no weights are used
|
|
148
|
+
fprime=(np.matmul(buildmat(xs+deltax),pnow)-np.matmul(buildmat(xs-deltax),pnow))/(2*deltax) #numerical derivative
|
|
149
|
+
sig=np.sqrt(np.var(y, axis=0)+fprime**2*np.var(x, axis=0)) #Standard error propagation
|
|
150
|
+
#TODO: If weighting is important, the estimation of sig should be done iteratively because fprime depends on the fit and thus on sig
|
|
151
|
+
if xn==1 and yn==1:
|
|
152
|
+
sig=1.0
|
|
153
|
+
logging.warning('Single data sets, using unweighted fit instead')
|
|
154
|
+
elif np.any(sig==0):
|
|
155
|
+
sig=1.0
|
|
156
|
+
logging.warning('Points with no variation encountered, using unweighted fit instead')
|
|
157
|
+
else:
|
|
158
|
+
sig=1.0
|
|
159
|
+
|
|
160
|
+
#Perform single fit to get the base chi2 value
|
|
161
|
+
Xt=buildmat(xs)
|
|
162
|
+
X=buildmat(xs,sig)
|
|
163
|
+
YS=ys/sig
|
|
164
|
+
pp=np.linalg.lstsq(X,YS, rcond=None)[0]
|
|
165
|
+
yfit=np.matmul(Xt,pp) # y(xs) value according to model
|
|
166
|
+
chi2 = sum((YS - np.matmul(X,pp))**2)
|
|
167
|
+
|
|
168
|
+
nmc = max(xn,yn)
|
|
169
|
+
pmc = np.zeros((nmc,ndeg+1))
|
|
170
|
+
chi2mc = np.zeros(nmc)
|
|
171
|
+
for i in range(nmc):
|
|
172
|
+
X=buildmat(x[i%xn,:],sig)
|
|
173
|
+
Y=(yfit+y[i%yn,:]-ys)/sig
|
|
174
|
+
p=np.linalg.lstsq(X,Y, rcond=None)[0]
|
|
175
|
+
pmc[i,:]=p
|
|
176
|
+
chi2mc[i] = sum((Y - np.matmul(X,p))**2)
|
|
177
|
+
|
|
178
|
+
psig = np.std(pmc,0)
|
|
179
|
+
pmean = np.mean(pmc,0) #Not used
|
|
180
|
+
pchi2=sum(chi2mc>chi2)/nmc #Percentage of MC samples having greater chi2 than the observation
|
|
181
|
+
|
|
182
|
+
if plot:
|
|
183
|
+
import matplotlib.pyplot as plt
|
|
184
|
+
fig, ax = plt.subplots(1, 1, figsize=(4, 2))
|
|
185
|
+
counts,*_=ax.hist(chi2mc,bins=50)
|
|
186
|
+
ycent=0.5*max(counts)
|
|
187
|
+
ax.plot([chi2,chi2],[0,ycent],'r-')
|
|
188
|
+
ax.set_yticks([])
|
|
189
|
+
ax.set_xlabel(r"$\chi^2$")
|
|
190
|
+
plt.show()
|
|
191
|
+
|
|
192
|
+
return (pp,psig,pchi2,pmc)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def confidence(X, level=0.683, plot=False):
|
|
197
|
+
"""Statistical analysis of the data in matrix X.
|
|
198
|
+
|
|
199
|
+
It is assumed that the number of data points are large; all properties
|
|
200
|
+
are calculated from the data itself.
|
|
201
|
+
|
|
202
|
+
Parameters
|
|
203
|
+
----------
|
|
204
|
+
X : array
|
|
205
|
+
data matrix. Data in columns. For example, if X contains data
|
|
206
|
+
from two measurements, data for measurement 1 is in column 1
|
|
207
|
+
and measurement 2 in columns 2.
|
|
208
|
+
If only one column, a 1d-array is also acceptable
|
|
209
|
+
level : float, default 0.683
|
|
210
|
+
desired confidence level
|
|
211
|
+
plot : boolean, default False
|
|
212
|
+
an optional boolean specifying whether to plot histograms for each column
|
|
213
|
+
where a general statistic is shown as a red errorbar (median +/- stdev)
|
|
214
|
+
and the confidence intervals are shown with black lines.
|
|
215
|
+
The red markers at the bottom show the simpler (median +/- err)
|
|
216
|
+
interval which should normally coincide with the confidence interval
|
|
217
|
+
unless the distribution is skew (in which case the confidence interval is more reliable).
|
|
218
|
+
If X has exactly two columns, a scatter plot showing possible correlation between
|
|
219
|
+
the two columns is also produced.
|
|
220
|
+
|
|
221
|
+
Returns
|
|
222
|
+
-------
|
|
223
|
+
err : float
|
|
224
|
+
estimated error in the columns based on selected confidence level.
|
|
225
|
+
confint : list
|
|
226
|
+
a list of tuples (low, high), the confidence interval for each input column
|
|
227
|
+
(pconf*100% of values are found within this interval around median)
|
|
228
|
+
If the input x was a 1d-array, a single tuple is returned instead of a list
|
|
229
|
+
|
|
230
|
+
Examples
|
|
231
|
+
--------
|
|
232
|
+
>>> x = np.array([0.1, 0.2, 0.3])
|
|
233
|
+
>>> y = np.array([1.2, 2.3, 3.7])
|
|
234
|
+
>>> y_mc=addnoise(y, 0.1)
|
|
235
|
+
>>> pp,psig,pchi2,pmc = linreg(x, y_mc)
|
|
236
|
+
>>> err,confint = confidence(pmc, 0.95)
|
|
237
|
+
>>> print(err) # gives [1.364 0.296]
|
|
238
|
+
>>> print(confint) # gives [(11.16, 13.88), (-0.401, 0.190)]
|
|
239
|
+
|
|
240
|
+
"""
|
|
241
|
+
|
|
242
|
+
onedim = (np.ndim(X) == 1)
|
|
243
|
+
|
|
244
|
+
if onedim: #convert to matrix, then convert back to onedim at the end
|
|
245
|
+
X=X.reshape((np.size(X),1))
|
|
246
|
+
|
|
247
|
+
if level <= 0 or level >= 1:
|
|
248
|
+
raise Exception("levvel must be 0 < level < 1.")
|
|
249
|
+
|
|
250
|
+
if np.size(X,1) > np.size(X,0):
|
|
251
|
+
print("Warning. It appears that your data is not placed column-wise.")
|
|
252
|
+
|
|
253
|
+
N = np.size(X,0) #number of data points
|
|
254
|
+
n = np.size(X,1) #number of dimensions (columns)
|
|
255
|
+
|
|
256
|
+
# GUM recommendation. ncut is the complement to pconf, ie the 1-pconf
|
|
257
|
+
# fraction of points.
|
|
258
|
+
#ncut = floor((N - floor(level*N+0.5) + 1)/2);
|
|
259
|
+
|
|
260
|
+
median = np.median(X,0)
|
|
261
|
+
sig = np.std(X,0)
|
|
262
|
+
absdiff = abs(X-np.mean(X,0)) #Absolute difference to mean value
|
|
263
|
+
plow = np.zeros(n)
|
|
264
|
+
phigh = np.zeros(n)
|
|
265
|
+
err = np.zeros(n)
|
|
266
|
+
for j in range(n):
|
|
267
|
+
tmp=np.sort(X[:,j])
|
|
268
|
+
plow[j]=tmp[round(max(1,0.5*(1-level)*N))-1]
|
|
269
|
+
phigh[j]=tmp[round(min(N,1-0.5*(1-level)*N))-1]
|
|
270
|
+
tmp=np.sort(absdiff[:,j])
|
|
271
|
+
err[j]=tmp[round(min(N,level*N))-1]
|
|
272
|
+
|
|
273
|
+
if plot:
|
|
274
|
+
import matplotlib.pyplot as plt
|
|
275
|
+
import matplotlib.gridspec as gridspec
|
|
276
|
+
nvar=np.size(X,1)
|
|
277
|
+
if nvar==2: #Exactly two parameters so produce a scatter plot and histograms
|
|
278
|
+
fig = plt.figure(figsize=(8, 4.8))
|
|
279
|
+
gs = gridspec.GridSpec(2, 2, width_ratios=[1.5, 1], height_ratios=[1, 1])
|
|
280
|
+
# Left square spans both rows
|
|
281
|
+
ax_left = fig.add_subplot(gs[:, 0])
|
|
282
|
+
axes = [fig.add_subplot(gs[0, 1]), fig.add_subplot(gs[1, 1])]
|
|
283
|
+
ax_left.set_aspect('equal')
|
|
284
|
+
ax_left.scatter(X[:,0],X[:,1],s=0.1)
|
|
285
|
+
ax_left.set_xlabel(r'$c_0$')
|
|
286
|
+
ax_left.set_ylabel(r'$c_1$')
|
|
287
|
+
ax_left.plot([plow[0],plow[0]],[np.min(X[:,1]),np.max(X[:,1])],'k--')
|
|
288
|
+
ax_left.plot([phigh[0],phigh[0]],[np.min(X[:,1]),np.max(X[:,1])],'k--')
|
|
289
|
+
ax_left.plot([np.min(X[:,0]),np.max(X[:,0])],[plow[1],plow[1]], 'k--')
|
|
290
|
+
ax_left.plot([np.min(X[:,0]),np.max(X[:,0])],[phigh[1],phigh[1]], 'k--')
|
|
291
|
+
|
|
292
|
+
ax_left.set_aspect(1.0/ax_left.get_data_ratio(), adjustable='box')
|
|
293
|
+
else: #only produce histograms
|
|
294
|
+
fig, axes = plt.subplots(nrows=nvar, ncols=1, figsize=(4, 2*nvar))
|
|
295
|
+
if nvar==1: axes=[axes] # fix stupid inconsistency in plt.subplots so that axes is always a list
|
|
296
|
+
|
|
297
|
+
for i,ax in enumerate(axes):
|
|
298
|
+
counts,*_=ax.hist(X[:,i], bins=50)
|
|
299
|
+
ycent=0.5*max(counts)
|
|
300
|
+
ax.errorbar(median[i],ycent,xerr=sig[i],fmt='ro',capsize=5)
|
|
301
|
+
ax.plot([plow[i],plow[i]] ,[0,0.8*ycent],'k--')
|
|
302
|
+
ax.plot([phigh[i],phigh[i]],[0,0.8*ycent],'k--')
|
|
303
|
+
ax.plot([median[i]-err[i], median[i]-err[i]], [0,0.1*ycent],'r-')
|
|
304
|
+
ax.plot([median[i]+err[i], median[i]+err[i]], [0,0.1*ycent],'r-')
|
|
305
|
+
ax.set_xlabel(r'$c_{%d}$'%i) #Name the variables c0,c1...
|
|
306
|
+
ax.set_yticks([])
|
|
307
|
+
|
|
308
|
+
plt.tight_layout()
|
|
309
|
+
plt.show()
|
|
310
|
+
|
|
311
|
+
if onedim:
|
|
312
|
+
return (err[0], (plow[0], phigh[0])) #simply return scalars
|
|
313
|
+
else:
|
|
314
|
+
return (err, list(zip(plow, phigh)))
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
def linconf(xinp, yinp, ysig, nmc=10000, distrib='normal', level=0.683, ytransform=None, restransform=None):
|
|
318
|
+
"""Performs the full Monte Carlo linear regression with confidence calculation.
|
|
319
|
+
|
|
320
|
+
This is done by applying the following 5 steps in succession:
|
|
321
|
+
- addnoise to y values
|
|
322
|
+
- transform y values (skipped if ytransform==None)
|
|
323
|
+
- linreg (x,y)
|
|
324
|
+
- calculate a tuple of results from a,b (skipped if restransform==None)
|
|
325
|
+
- confidence for each result
|
|
326
|
+
|
|
327
|
+
For detailed description of parameters, see previous functions
|
|
328
|
+
Returns (reslist, pchi2) where reslist is a list of (result, error, confidenceinterval) for each calculated result
|
|
329
|
+
"""
|
|
330
|
+
|
|
331
|
+
ymc=addnoise(yinp, ysig, nmc, distrib)
|
|
332
|
+
if ytransform!=None:
|
|
333
|
+
ymc = ytransform(ymc)
|
|
334
|
+
pp,psig,pchi2,pmc=linreg(xinp,ymc)
|
|
335
|
+
if restransform!=None:
|
|
336
|
+
results=restransform(pp[0],pp[1])
|
|
337
|
+
results_mc=restransform(pmc[:,0],pmc[:,1])
|
|
338
|
+
else:
|
|
339
|
+
results=(pp[0],pp[1])
|
|
340
|
+
results_mc=(pmc[:,0],pmc[:,1])
|
|
341
|
+
rlist=[]
|
|
342
|
+
for r,rmc in zip(results,results_mc):
|
|
343
|
+
perr,confint=confidence(rmc, level)
|
|
344
|
+
rlist.append((r,perr,confint))
|
|
345
|
+
return (rlist,pchi2)
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025, Pär Söderhjelm
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
22
|
+
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
Metadata-Version: 2.3
|
|
2
|
+
Name: linregmc
|
|
3
|
+
Version: 0.1.1
|
|
4
|
+
Summary: Linear regression with Monte Carlo error analysis
|
|
5
|
+
License: MIT
|
|
6
|
+
Author: Pär Söderhjelm
|
|
7
|
+
Requires-Python: >=3.9,<4.0
|
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
15
|
+
Requires-Dist: numpy (>=1.23,<3.0)
|
|
16
|
+
Description-Content-Type: text/markdown
|
|
17
|
+
|
|
18
|
+
# linregmc package (Linear regression with Monte Carlo error analysis)
|
|
19
|
+
|
|
20
|
+
This package is a single module which contains four functions:<br>
|
|
21
|
+
addnoise - introduce noise in the data based on known experimental precision<br>
|
|
22
|
+
linreg - perform multiple linear regressions and calculate goodness-of-fit<br>
|
|
23
|
+
confidence - get confidence intervals, plot distributions etc.<br>
|
|
24
|
+
linconf - do all the steps in succession, including possible transformation of the data<br>
|
|
25
|
+
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
linregmc/.bashlog,sha256=Sj9bZeGI2l4Wo30gCiM-ygL7RsrqlWS9FUgcr0dRV6o,53
|
|
2
|
+
linregmc/__init__.py,sha256=QP5Y7zpbieaPw5lQbGZt4kCFwHCLNgr9O5NSt8n2mIg,24
|
|
3
|
+
linregmc/linregmc.py,sha256=Yst53oktPSNTVU-0bzdvwGQ5cSVjuwWVbt7CuvgHdFo,12425
|
|
4
|
+
linregmc-0.1.1.dist-info/LICENSE,sha256=lPKblSErTvcRCRHGHckVUnxeAQ4dPtcVM6zxK8XuU80,1075
|
|
5
|
+
linregmc-0.1.1.dist-info/METADATA,sha256=ZpI2tS_Z3quDZO6SufXQwKvRvKY0caEc23ln3k4kspM,1095
|
|
6
|
+
linregmc-0.1.1.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
|
7
|
+
linregmc-0.1.1.dist-info/RECORD,,
|