likelihood 2.2.0.dev1__cp312-cp312-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- likelihood/VERSION +1 -0
- likelihood/__init__.py +20 -0
- likelihood/graph/__init__.py +9 -0
- likelihood/graph/_nn.py +283 -0
- likelihood/graph/graph.py +86 -0
- likelihood/graph/nn.py +329 -0
- likelihood/main.py +273 -0
- likelihood/models/__init__.py +3 -0
- likelihood/models/deep/__init__.py +13 -0
- likelihood/models/deep/_autoencoders.py +896 -0
- likelihood/models/deep/_predictor.py +809 -0
- likelihood/models/deep/autoencoders.py +903 -0
- likelihood/models/deep/bandit.py +97 -0
- likelihood/models/deep/gan.py +313 -0
- likelihood/models/deep/predictor.py +805 -0
- likelihood/models/deep/rl.py +345 -0
- likelihood/models/environments.py +202 -0
- likelihood/models/hmm.py +163 -0
- likelihood/models/regression.py +451 -0
- likelihood/models/simulation.py +213 -0
- likelihood/models/utils.py +87 -0
- likelihood/pipes.py +382 -0
- likelihood/rust_py_integration.cpython-312-x86_64-linux-gnu.so +0 -0
- likelihood/tools/__init__.py +4 -0
- likelihood/tools/cat_embed.py +212 -0
- likelihood/tools/figures.py +348 -0
- likelihood/tools/impute.py +278 -0
- likelihood/tools/models_tools.py +866 -0
- likelihood/tools/numeric_tools.py +390 -0
- likelihood/tools/reports.py +375 -0
- likelihood/tools/tools.py +1336 -0
- likelihood-2.2.0.dev1.dist-info/METADATA +68 -0
- likelihood-2.2.0.dev1.dist-info/RECORD +37 -0
- likelihood-2.2.0.dev1.dist-info/WHEEL +5 -0
- likelihood-2.2.0.dev1.dist-info/licenses/LICENSE +21 -0
- likelihood-2.2.0.dev1.dist-info/top_level.txt +7 -0
- src/lib.rs +12 -0
|
@@ -0,0 +1,896 @@
|
|
|
1
|
+
from .autoencoders import (
|
|
2
|
+
EarlyStopping,
|
|
3
|
+
LoRALayer,
|
|
4
|
+
OneHotEncoder,
|
|
5
|
+
cal_loss_step,
|
|
6
|
+
keras_tuner,
|
|
7
|
+
l2,
|
|
8
|
+
np,
|
|
9
|
+
os,
|
|
10
|
+
partial,
|
|
11
|
+
pd,
|
|
12
|
+
rmtree,
|
|
13
|
+
sampling,
|
|
14
|
+
suppress_warnings,
|
|
15
|
+
tf,
|
|
16
|
+
train_step,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@tf.keras.utils.register_keras_serializable(package="Custom", name="stabilize_log_var")
|
|
21
|
+
def stabilize_log_var(x):
|
|
22
|
+
return x + 1e-7
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@tf.keras.utils.register_keras_serializable(package="Custom", name="sampling_wrapper")
|
|
26
|
+
def sampling_wrapper(args):
|
|
27
|
+
mean, log_var = args
|
|
28
|
+
return sampling(mean, log_var)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@tf.keras.utils.register_keras_serializable(package="Custom", name="sampling_output_shape")
|
|
32
|
+
def sampling_output_shape(input_shapes):
|
|
33
|
+
return input_shapes[0]
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class AutoClassifier:
|
|
37
|
+
"""
|
|
38
|
+
An auto-classifier model that automatically determines the best classification strategy based on the input data.
|
|
39
|
+
|
|
40
|
+
Parameters
|
|
41
|
+
----------
|
|
42
|
+
input_shape_parm : `int`
|
|
43
|
+
The shape of the input data.
|
|
44
|
+
num_classes : `int`
|
|
45
|
+
The number of classes in the dataset.
|
|
46
|
+
units : `int`
|
|
47
|
+
The number of neurons in each hidden layer.
|
|
48
|
+
activation : `str`
|
|
49
|
+
The type of activation function to use for the neural network layers.
|
|
50
|
+
|
|
51
|
+
Keyword Arguments
|
|
52
|
+
-----------------
|
|
53
|
+
Additional keyword arguments to pass to the model.
|
|
54
|
+
|
|
55
|
+
classifier_activation : `str`
|
|
56
|
+
The activation function to use for the classifier layer. Default is `softmax`. If the activation function is not a classification function, the model can be used in regression problems.
|
|
57
|
+
num_layers : `int`
|
|
58
|
+
The number of hidden layers in the classifier. Default is 1.
|
|
59
|
+
dropout : `float`
|
|
60
|
+
The dropout rate to use in the classifier. Default is None.
|
|
61
|
+
l2_reg : `float`
|
|
62
|
+
The L2 regularization parameter. Default is 0.0.
|
|
63
|
+
vae_mode : `bool`
|
|
64
|
+
Whether to use variational autoencoder mode. Default is False.
|
|
65
|
+
vae_units : `int`
|
|
66
|
+
The number of units in the variational autoencoder. Default is 2.
|
|
67
|
+
lora_mode : `bool`
|
|
68
|
+
Whether to use LoRA layers. Default is False.
|
|
69
|
+
lora_rank : `int`
|
|
70
|
+
The rank of the LoRA layer. Default is 4.
|
|
71
|
+
"""
|
|
72
|
+
|
|
73
|
+
def __init__(self, input_shape_parm, num_classes, units, activation, **kwargs):
|
|
74
|
+
self.input_shape_parm = input_shape_parm
|
|
75
|
+
self.num_classes = num_classes
|
|
76
|
+
self.units = units
|
|
77
|
+
self.activation = activation
|
|
78
|
+
|
|
79
|
+
# Store all configuration parameters
|
|
80
|
+
self.classifier_activation = kwargs.get("classifier_activation", "softmax")
|
|
81
|
+
self.num_layers = kwargs.get("num_layers", 1)
|
|
82
|
+
self.dropout = kwargs.get("dropout", None)
|
|
83
|
+
self.l2_reg = kwargs.get("l2_reg", 0.0)
|
|
84
|
+
self.vae_mode = kwargs.get("vae_mode", False)
|
|
85
|
+
self.vae_units = kwargs.get("vae_units", 2)
|
|
86
|
+
self.lora_mode = kwargs.get("lora_mode", False)
|
|
87
|
+
self.lora_rank = kwargs.get("lora_rank", 4)
|
|
88
|
+
|
|
89
|
+
# Initialize models as None - will be built when needed
|
|
90
|
+
self._encoder = None
|
|
91
|
+
self._decoder = None
|
|
92
|
+
self._classifier = None
|
|
93
|
+
self._main_model = None
|
|
94
|
+
|
|
95
|
+
# Build all models
|
|
96
|
+
self._build_models()
|
|
97
|
+
|
|
98
|
+
def _build_encoder(self):
|
|
99
|
+
"""Build the encoder model."""
|
|
100
|
+
if self.vae_mode:
|
|
101
|
+
inputs = tf.keras.Input(shape=(self.input_shape_parm,), name="encoder_input")
|
|
102
|
+
x = tf.keras.layers.Dense(
|
|
103
|
+
units=self.units,
|
|
104
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
105
|
+
kernel_initializer="he_normal",
|
|
106
|
+
name="vae_encoder_dense_1",
|
|
107
|
+
)(inputs)
|
|
108
|
+
x = tf.keras.layers.BatchNormalization(name="vae_encoder_bn_1")(x)
|
|
109
|
+
x = tf.keras.layers.Activation(self.activation, name="vae_encoder_act_1")(x)
|
|
110
|
+
x = tf.keras.layers.Dense(
|
|
111
|
+
units=int(self.units / 2),
|
|
112
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
113
|
+
kernel_initializer="he_normal",
|
|
114
|
+
name="encoder_hidden",
|
|
115
|
+
)(x)
|
|
116
|
+
x = tf.keras.layers.BatchNormalization(name="vae_encoder_bn_2")(x)
|
|
117
|
+
x = tf.keras.layers.Activation(self.activation, name="vae_encoder_act_2")(x)
|
|
118
|
+
|
|
119
|
+
mean = tf.keras.layers.Dense(self.vae_units, name="mean")(x)
|
|
120
|
+
log_var = tf.keras.layers.Dense(self.vae_units, name="log_var")(x)
|
|
121
|
+
log_var = tf.keras.layers.Lambda(stabilize_log_var, name="log_var_stabilized")(log_var)
|
|
122
|
+
|
|
123
|
+
self._encoder = tf.keras.Model(inputs, [mean, log_var], name="vae_encoder")
|
|
124
|
+
else:
|
|
125
|
+
inputs = tf.keras.Input(shape=(self.input_shape_parm,), name="encoder_input")
|
|
126
|
+
x = tf.keras.layers.Dense(
|
|
127
|
+
units=self.units,
|
|
128
|
+
activation=self.activation,
|
|
129
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
130
|
+
name="encoder_dense_1",
|
|
131
|
+
)(inputs)
|
|
132
|
+
outputs = tf.keras.layers.Dense(
|
|
133
|
+
units=int(self.units / 2),
|
|
134
|
+
activation=self.activation,
|
|
135
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
136
|
+
name="encoder_dense_2",
|
|
137
|
+
)(x)
|
|
138
|
+
|
|
139
|
+
self._encoder = tf.keras.Model(inputs, outputs, name="encoder")
|
|
140
|
+
|
|
141
|
+
def _build_decoder(self):
|
|
142
|
+
"""Build the decoder model."""
|
|
143
|
+
if self.vae_mode:
|
|
144
|
+
inputs = tf.keras.Input(shape=(self.vae_units,), name="decoder_input")
|
|
145
|
+
x = tf.keras.layers.Dense(
|
|
146
|
+
units=self.units, kernel_regularizer=l2(self.l2_reg), name="vae_decoder_dense_1"
|
|
147
|
+
)(inputs)
|
|
148
|
+
x = tf.keras.layers.BatchNormalization(name="vae_decoder_bn_1")(x)
|
|
149
|
+
x = tf.keras.layers.Activation(self.activation, name="vae_decoder_act_1")(x)
|
|
150
|
+
x = tf.keras.layers.Dense(
|
|
151
|
+
units=self.input_shape_parm,
|
|
152
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
153
|
+
name="vae_decoder_dense_2",
|
|
154
|
+
)(x)
|
|
155
|
+
x = tf.keras.layers.BatchNormalization(name="vae_decoder_bn_2")(x)
|
|
156
|
+
outputs = tf.keras.layers.Activation(self.activation, name="vae_decoder_act_2")(x)
|
|
157
|
+
else:
|
|
158
|
+
inputs = tf.keras.Input(shape=(int(self.units / 2),), name="decoder_input")
|
|
159
|
+
x = tf.keras.layers.Dense(
|
|
160
|
+
units=self.units,
|
|
161
|
+
activation=self.activation,
|
|
162
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
163
|
+
name="decoder_dense_1",
|
|
164
|
+
)(inputs)
|
|
165
|
+
outputs = tf.keras.layers.Dense(
|
|
166
|
+
units=self.input_shape_parm,
|
|
167
|
+
activation=self.activation,
|
|
168
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
169
|
+
name="decoder_dense_2",
|
|
170
|
+
)(x)
|
|
171
|
+
|
|
172
|
+
self._decoder = tf.keras.Model(inputs, outputs, name="decoder")
|
|
173
|
+
|
|
174
|
+
def _build_classifier(self):
|
|
175
|
+
"""Build the classifier model."""
|
|
176
|
+
# Input shape is decoded + encoded features
|
|
177
|
+
if self.vae_mode:
|
|
178
|
+
input_dim = self.input_shape_parm + self.vae_units
|
|
179
|
+
else:
|
|
180
|
+
input_dim = self.input_shape_parm + int(self.units / 2)
|
|
181
|
+
|
|
182
|
+
inputs = tf.keras.Input(shape=(input_dim,), name="classifier_input")
|
|
183
|
+
x = inputs
|
|
184
|
+
|
|
185
|
+
# Build hidden layers
|
|
186
|
+
if self.num_layers > 1 and not self.lora_mode:
|
|
187
|
+
for i in range(self.num_layers - 1):
|
|
188
|
+
x = tf.keras.layers.Dense(
|
|
189
|
+
units=self.units,
|
|
190
|
+
activation=self.activation,
|
|
191
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
192
|
+
name=f"classifier_dense_{i+1}",
|
|
193
|
+
)(x)
|
|
194
|
+
if self.dropout:
|
|
195
|
+
x = tf.keras.layers.Dropout(self.dropout, name=f"classifier_dropout_{i+1}")(x)
|
|
196
|
+
|
|
197
|
+
elif self.lora_mode and self.num_layers > 1:
|
|
198
|
+
for i in range(self.num_layers - 1):
|
|
199
|
+
x = LoRALayer(units=self.units, rank=self.lora_rank, name=f"LoRA_{i}")(x)
|
|
200
|
+
x = tf.keras.layers.Activation(self.activation, name=f"lora_activation_{i+1}")(x)
|
|
201
|
+
if self.dropout:
|
|
202
|
+
x = tf.keras.layers.Dropout(self.dropout, name=f"lora_dropout_{i+1}")(x)
|
|
203
|
+
|
|
204
|
+
# Output layer
|
|
205
|
+
outputs = tf.keras.layers.Dense(
|
|
206
|
+
units=self.num_classes,
|
|
207
|
+
activation=self.classifier_activation,
|
|
208
|
+
kernel_regularizer=l2(self.l2_reg),
|
|
209
|
+
name="classifier_output",
|
|
210
|
+
)(x)
|
|
211
|
+
|
|
212
|
+
self._classifier = tf.keras.Model(inputs, outputs, name="classifier")
|
|
213
|
+
|
|
214
|
+
def _build_main_model(self):
|
|
215
|
+
"""Build the main model that combines encoder, decoder, and classifier."""
|
|
216
|
+
inputs = tf.keras.Input(shape=(self.input_shape_parm,), name="main_input")
|
|
217
|
+
|
|
218
|
+
# Encoder forward pass
|
|
219
|
+
if self.vae_mode:
|
|
220
|
+
mean, log_var = self._encoder(inputs)
|
|
221
|
+
# Sampling layer
|
|
222
|
+
encoded = tf.keras.layers.Lambda(
|
|
223
|
+
sampling_wrapper, output_shape=sampling_output_shape, name="sampling_layer"
|
|
224
|
+
)([mean, log_var])
|
|
225
|
+
else:
|
|
226
|
+
encoded = self._encoder(inputs)
|
|
227
|
+
|
|
228
|
+
# Decoder forward pass
|
|
229
|
+
decoded = self._decoder(encoded)
|
|
230
|
+
|
|
231
|
+
# Combine decoded and encoded features
|
|
232
|
+
combined = tf.keras.layers.Concatenate(name="combine_features")([decoded, encoded])
|
|
233
|
+
|
|
234
|
+
# Classifier forward pass
|
|
235
|
+
outputs = self._classifier(combined)
|
|
236
|
+
|
|
237
|
+
self._main_model = tf.keras.Model(
|
|
238
|
+
inputs=inputs, outputs=outputs, name="auto_classifier_main"
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
def _build_models(self):
|
|
242
|
+
"""Build all component models."""
|
|
243
|
+
self._build_encoder()
|
|
244
|
+
self._build_decoder()
|
|
245
|
+
self._build_classifier()
|
|
246
|
+
self._build_main_model()
|
|
247
|
+
|
|
248
|
+
@property
|
|
249
|
+
def encoder(self):
|
|
250
|
+
"""Get the encoder model."""
|
|
251
|
+
return self._encoder
|
|
252
|
+
|
|
253
|
+
@encoder.setter
|
|
254
|
+
def encoder(self, value):
|
|
255
|
+
"""Set the encoder model and rebuild main model."""
|
|
256
|
+
self._encoder = value
|
|
257
|
+
if self._decoder and self._classifier:
|
|
258
|
+
self._build_main_model()
|
|
259
|
+
|
|
260
|
+
@property
|
|
261
|
+
def decoder(self):
|
|
262
|
+
"""Get the decoder model."""
|
|
263
|
+
return self._decoder
|
|
264
|
+
|
|
265
|
+
@decoder.setter
|
|
266
|
+
def decoder(self, value):
|
|
267
|
+
"""Set the decoder model and rebuild main model."""
|
|
268
|
+
self._decoder = value
|
|
269
|
+
if self._encoder and self._classifier:
|
|
270
|
+
self._build_main_model()
|
|
271
|
+
|
|
272
|
+
@property
|
|
273
|
+
def classifier(self):
|
|
274
|
+
"""Get the classifier model."""
|
|
275
|
+
return self._classifier
|
|
276
|
+
|
|
277
|
+
@classifier.setter
|
|
278
|
+
def classifier(self, value):
|
|
279
|
+
"""Set the classifier model and rebuild main model."""
|
|
280
|
+
self._classifier = value
|
|
281
|
+
if self._encoder and self._decoder:
|
|
282
|
+
self._build_main_model()
|
|
283
|
+
|
|
284
|
+
def train_encoder_decoder(
|
|
285
|
+
self, data, epochs, batch_size, validation_split=0.2, patience=10, **kwargs
|
|
286
|
+
):
|
|
287
|
+
"""
|
|
288
|
+
Trains the encoder and decoder on the input data.
|
|
289
|
+
|
|
290
|
+
Parameters
|
|
291
|
+
----------
|
|
292
|
+
data : tf.data.Dataset, np.ndarray
|
|
293
|
+
The input data.
|
|
294
|
+
epochs : int
|
|
295
|
+
The number of epochs to train for.
|
|
296
|
+
batch_size : int
|
|
297
|
+
The batch size to use.
|
|
298
|
+
validation_split : float
|
|
299
|
+
The proportion of the dataset to use for validation. Default is 0.2.
|
|
300
|
+
patience : int
|
|
301
|
+
The number of epochs to wait before early stopping. Default is 10.
|
|
302
|
+
"""
|
|
303
|
+
verbose = kwargs.get("verbose", True)
|
|
304
|
+
optimizer = kwargs.get("optimizer", tf.keras.optimizers.Adam())
|
|
305
|
+
|
|
306
|
+
# Prepare data
|
|
307
|
+
if isinstance(data, np.ndarray):
|
|
308
|
+
data = tf.data.Dataset.from_tensor_slices(data).batch(batch_size)
|
|
309
|
+
data = data.map(lambda x: tf.cast(x, tf.float32))
|
|
310
|
+
|
|
311
|
+
early_stopping = EarlyStopping(patience=patience)
|
|
312
|
+
train_batches = data.take(int((1 - validation_split) * len(data)))
|
|
313
|
+
val_batches = data.skip(int((1 - validation_split) * len(data)))
|
|
314
|
+
|
|
315
|
+
for epoch in range(epochs):
|
|
316
|
+
train_loss = 0
|
|
317
|
+
val_loss = 0
|
|
318
|
+
|
|
319
|
+
# Training step
|
|
320
|
+
for train_batch in train_batches:
|
|
321
|
+
loss_train = train_step(
|
|
322
|
+
train_batch, self._encoder, self._decoder, optimizer, self.vae_mode
|
|
323
|
+
)
|
|
324
|
+
train_loss = loss_train # Keep last batch loss
|
|
325
|
+
|
|
326
|
+
# Validation step
|
|
327
|
+
for val_batch in val_batches:
|
|
328
|
+
loss_val = cal_loss_step(
|
|
329
|
+
val_batch, self._encoder, self._decoder, self.vae_mode, False
|
|
330
|
+
)
|
|
331
|
+
val_loss = loss_val # Keep last batch loss
|
|
332
|
+
|
|
333
|
+
early_stopping(train_loss)
|
|
334
|
+
|
|
335
|
+
if early_stopping.stop_training:
|
|
336
|
+
if verbose:
|
|
337
|
+
print(f"Early stopping triggered at epoch {epoch}.")
|
|
338
|
+
break
|
|
339
|
+
|
|
340
|
+
if epoch % 10 == 0 and verbose:
|
|
341
|
+
print(
|
|
342
|
+
f"Epoch {epoch}: Train Loss: {train_loss:.6f} Validation Loss: {val_loss:.6f}"
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
self.freeze_encoder_decoder()
|
|
346
|
+
|
|
347
|
+
def freeze_encoder_decoder(self):
|
|
348
|
+
"""Freezes the encoder and decoder layers to prevent them from being updated during training."""
|
|
349
|
+
if self._encoder:
|
|
350
|
+
for layer in self._encoder.layers:
|
|
351
|
+
layer.trainable = False
|
|
352
|
+
if self._decoder:
|
|
353
|
+
for layer in self._decoder.layers:
|
|
354
|
+
layer.trainable = False
|
|
355
|
+
|
|
356
|
+
# Rebuild main model to reflect trainability changes
|
|
357
|
+
self._build_main_model()
|
|
358
|
+
|
|
359
|
+
def unfreeze_encoder_decoder(self):
|
|
360
|
+
"""Unfreezes the encoder and decoder layers allowing them to be updated during training."""
|
|
361
|
+
if self._encoder:
|
|
362
|
+
for layer in self._encoder.layers:
|
|
363
|
+
layer.trainable = True
|
|
364
|
+
if self._decoder:
|
|
365
|
+
for layer in self._decoder.layers:
|
|
366
|
+
layer.trainable = True
|
|
367
|
+
|
|
368
|
+
# Rebuild main model to reflect trainability changes
|
|
369
|
+
self._build_main_model()
|
|
370
|
+
|
|
371
|
+
def set_encoder_decoder(self, source_model):
|
|
372
|
+
"""
|
|
373
|
+
Sets the encoder and decoder layers from another AutoClassifier instance,
|
|
374
|
+
ensuring compatibility in dimensions.
|
|
375
|
+
|
|
376
|
+
Parameters
|
|
377
|
+
----------
|
|
378
|
+
source_model : AutoClassifier
|
|
379
|
+
The source model to copy the encoder and decoder layers from.
|
|
380
|
+
|
|
381
|
+
Raises
|
|
382
|
+
------
|
|
383
|
+
ValueError
|
|
384
|
+
If the input shape or units of the source model do not match.
|
|
385
|
+
"""
|
|
386
|
+
if not isinstance(source_model, AutoClassifier):
|
|
387
|
+
raise ValueError("Source model must be an instance of AutoClassifier.")
|
|
388
|
+
|
|
389
|
+
if self.input_shape_parm != source_model.input_shape_parm:
|
|
390
|
+
raise ValueError(
|
|
391
|
+
f"Incompatible input shape. Expected {self.input_shape_parm}, got {source_model.input_shape_parm}."
|
|
392
|
+
)
|
|
393
|
+
if self.units != source_model.units:
|
|
394
|
+
raise ValueError(
|
|
395
|
+
f"Incompatible number of units. Expected {self.units}, got {source_model.units}."
|
|
396
|
+
)
|
|
397
|
+
|
|
398
|
+
# Clone and copy weights
|
|
399
|
+
if source_model._encoder:
|
|
400
|
+
self._encoder = tf.keras.models.clone_model(source_model._encoder)
|
|
401
|
+
self._encoder.set_weights(source_model._encoder.get_weights())
|
|
402
|
+
|
|
403
|
+
if source_model._decoder:
|
|
404
|
+
self._decoder = tf.keras.models.clone_model(source_model._decoder)
|
|
405
|
+
self._decoder.set_weights(source_model._decoder.get_weights())
|
|
406
|
+
|
|
407
|
+
# Rebuild main model with new encoder/decoder
|
|
408
|
+
self._build_main_model()
|
|
409
|
+
|
|
410
|
+
# Main model interface methods
|
|
411
|
+
def __call__(self, x, training=None):
|
|
412
|
+
"""Forward pass through the model."""
|
|
413
|
+
return self._main_model(x, training=training)
|
|
414
|
+
|
|
415
|
+
def compile(self, *args, **kwargs):
|
|
416
|
+
"""Compile the main model."""
|
|
417
|
+
return self._main_model.compile(*args, **kwargs)
|
|
418
|
+
|
|
419
|
+
def fit(self, *args, **kwargs):
|
|
420
|
+
"""Fit the main model."""
|
|
421
|
+
return self._main_model.fit(*args, **kwargs)
|
|
422
|
+
|
|
423
|
+
def evaluate(self, *args, **kwargs):
|
|
424
|
+
"""Evaluate the main model."""
|
|
425
|
+
return self._main_model.evaluate(*args, **kwargs)
|
|
426
|
+
|
|
427
|
+
def predict(self, *args, **kwargs):
|
|
428
|
+
"""Predict using the main model."""
|
|
429
|
+
return self._main_model.predict(*args, **kwargs)
|
|
430
|
+
|
|
431
|
+
def save(self, filepath, **kwargs):
|
|
432
|
+
"""
|
|
433
|
+
Save the complete model including all components.
|
|
434
|
+
|
|
435
|
+
Parameters
|
|
436
|
+
----------
|
|
437
|
+
filepath : str
|
|
438
|
+
Path where to save the model.
|
|
439
|
+
"""
|
|
440
|
+
import os
|
|
441
|
+
|
|
442
|
+
# Create directory if it doesn't exist
|
|
443
|
+
os.makedirs(filepath, exist_ok=True)
|
|
444
|
+
|
|
445
|
+
# Save all component models
|
|
446
|
+
self._encoder.save(os.path.join(filepath, "encoder.keras"))
|
|
447
|
+
self._decoder.save(os.path.join(filepath, "decoder.keras"))
|
|
448
|
+
self._classifier.save(os.path.join(filepath, "classifier.keras"))
|
|
449
|
+
self._main_model.save(os.path.join(filepath, "main_model.keras"))
|
|
450
|
+
|
|
451
|
+
# Save configuration
|
|
452
|
+
import json
|
|
453
|
+
|
|
454
|
+
config = {
|
|
455
|
+
"input_shape_parm": self.input_shape_parm,
|
|
456
|
+
"num_classes": self.num_classes,
|
|
457
|
+
"units": self.units,
|
|
458
|
+
"activation": self.activation,
|
|
459
|
+
"classifier_activation": self.classifier_activation,
|
|
460
|
+
"num_layers": self.num_layers,
|
|
461
|
+
"dropout": self.dropout,
|
|
462
|
+
"l2_reg": self.l2_reg,
|
|
463
|
+
"vae_mode": self.vae_mode,
|
|
464
|
+
"vae_units": self.vae_units,
|
|
465
|
+
"lora_mode": self.lora_mode,
|
|
466
|
+
"lora_rank": self.lora_rank,
|
|
467
|
+
}
|
|
468
|
+
|
|
469
|
+
with open(os.path.join(filepath, "config.json"), "w") as f:
|
|
470
|
+
json.dump(config, f, indent=2)
|
|
471
|
+
|
|
472
|
+
@classmethod
|
|
473
|
+
def load(cls, filepath):
|
|
474
|
+
"""
|
|
475
|
+
Load a complete model from saved components.
|
|
476
|
+
|
|
477
|
+
Parameters
|
|
478
|
+
----------
|
|
479
|
+
filepath : str
|
|
480
|
+
Path where the model was saved.
|
|
481
|
+
|
|
482
|
+
Returns
|
|
483
|
+
-------
|
|
484
|
+
AutoClassifier
|
|
485
|
+
The loaded model instance.
|
|
486
|
+
"""
|
|
487
|
+
import json
|
|
488
|
+
import os
|
|
489
|
+
|
|
490
|
+
# Load configuration
|
|
491
|
+
with open(os.path.join(filepath, "config.json"), "r") as f:
|
|
492
|
+
config = json.load(f)
|
|
493
|
+
|
|
494
|
+
# Create new instance
|
|
495
|
+
instance = cls(**config)
|
|
496
|
+
|
|
497
|
+
# Load component models
|
|
498
|
+
instance._encoder = tf.keras.models.load_model(os.path.join(filepath, "encoder.keras"))
|
|
499
|
+
instance._decoder = tf.keras.models.load_model(os.path.join(filepath, "decoder.keras"))
|
|
500
|
+
instance._classifier = tf.keras.models.load_model(
|
|
501
|
+
os.path.join(filepath, "classifier.keras")
|
|
502
|
+
)
|
|
503
|
+
instance._main_model = tf.keras.models.load_model(
|
|
504
|
+
os.path.join(filepath, "main_model.keras")
|
|
505
|
+
)
|
|
506
|
+
|
|
507
|
+
return instance
|
|
508
|
+
|
|
509
|
+
# Additional properties and methods for compatibility
|
|
510
|
+
@property
|
|
511
|
+
def weights(self):
|
|
512
|
+
"""Get all model weights."""
|
|
513
|
+
return self._main_model.weights
|
|
514
|
+
|
|
515
|
+
def get_weights(self):
|
|
516
|
+
"""Get all model weights."""
|
|
517
|
+
return self._main_model.get_weights()
|
|
518
|
+
|
|
519
|
+
def set_weights(self, weights):
|
|
520
|
+
"""Set all model weights."""
|
|
521
|
+
return self._main_model.set_weights(weights)
|
|
522
|
+
|
|
523
|
+
@property
|
|
524
|
+
def trainable_variables(self):
|
|
525
|
+
"""Get trainable variables."""
|
|
526
|
+
return self._main_model.trainable_variables
|
|
527
|
+
|
|
528
|
+
@property
|
|
529
|
+
def non_trainable_variables(self):
|
|
530
|
+
"""Get non-trainable variables."""
|
|
531
|
+
return self._main_model.non_trainable_variables
|
|
532
|
+
|
|
533
|
+
def summary(self, *args, **kwargs):
|
|
534
|
+
"""Print model summary."""
|
|
535
|
+
print("=== AutoClassifier Summary ===")
|
|
536
|
+
print("\n--- Encoder ---")
|
|
537
|
+
self._encoder.summary(*args, **kwargs)
|
|
538
|
+
print("\n--- Decoder ---")
|
|
539
|
+
self._decoder.summary(*args, **kwargs)
|
|
540
|
+
print("\n--- Classifier ---")
|
|
541
|
+
self._classifier.summary(*args, **kwargs)
|
|
542
|
+
print("\n--- Main Model ---")
|
|
543
|
+
self._main_model.summary(*args, **kwargs)
|
|
544
|
+
|
|
545
|
+
def get_config(self):
|
|
546
|
+
"""Get model configuration."""
|
|
547
|
+
return {
|
|
548
|
+
"input_shape_parm": self.input_shape_parm,
|
|
549
|
+
"num_classes": self.num_classes,
|
|
550
|
+
"units": self.units,
|
|
551
|
+
"activation": self.activation,
|
|
552
|
+
"classifier_activation": self.classifier_activation,
|
|
553
|
+
"num_layers": self.num_layers,
|
|
554
|
+
"dropout": self.dropout,
|
|
555
|
+
"l2_reg": self.l2_reg,
|
|
556
|
+
"vae_mode": self.vae_mode,
|
|
557
|
+
"vae_units": self.vae_units,
|
|
558
|
+
"lora_mode": self.lora_mode,
|
|
559
|
+
"lora_rank": self.lora_rank,
|
|
560
|
+
}
|
|
561
|
+
|
|
562
|
+
|
|
563
|
+
def call_existing_code(
|
|
564
|
+
units: int,
|
|
565
|
+
activation: str,
|
|
566
|
+
threshold: float,
|
|
567
|
+
optimizer: str,
|
|
568
|
+
input_shape_parm: None | int = None,
|
|
569
|
+
num_classes: None | int = None,
|
|
570
|
+
num_layers: int = 1,
|
|
571
|
+
**kwargs,
|
|
572
|
+
) -> AutoClassifier:
|
|
573
|
+
"""
|
|
574
|
+
Calls an existing AutoClassifier instance.
|
|
575
|
+
|
|
576
|
+
Parameters
|
|
577
|
+
----------
|
|
578
|
+
units : `int`
|
|
579
|
+
The number of neurons in each hidden layer.
|
|
580
|
+
activation : `str`
|
|
581
|
+
The type of activation function to use for the neural network layers.
|
|
582
|
+
threshold : `float`
|
|
583
|
+
The threshold for the classifier.
|
|
584
|
+
optimizer : `str`
|
|
585
|
+
The type of optimizer to use for the neural network layers.
|
|
586
|
+
input_shape_parm : `None` | `int`
|
|
587
|
+
The shape of the input data.
|
|
588
|
+
num_classes : `int`
|
|
589
|
+
The number of classes in the dataset.
|
|
590
|
+
num_layers : `int`
|
|
591
|
+
The number of hidden layers in the classifier. Default is 1.
|
|
592
|
+
|
|
593
|
+
Keyword Arguments
|
|
594
|
+
-----------------
|
|
595
|
+
vae_mode : `bool`
|
|
596
|
+
Whether to use variational autoencoder mode. Default is False.
|
|
597
|
+
vae_units : `int`
|
|
598
|
+
The number of units in the variational autoencoder. Default is 2.
|
|
599
|
+
|
|
600
|
+
Returns
|
|
601
|
+
-------
|
|
602
|
+
`AutoClassifier`
|
|
603
|
+
The AutoClassifier instance.
|
|
604
|
+
"""
|
|
605
|
+
dropout = kwargs.get("dropout", None)
|
|
606
|
+
l2_reg = kwargs.get("l2_reg", 0.0)
|
|
607
|
+
vae_mode = kwargs.get("vae_mode", False)
|
|
608
|
+
vae_units = kwargs.get("vae_units", 2)
|
|
609
|
+
model = AutoClassifier(
|
|
610
|
+
input_shape_parm=input_shape_parm,
|
|
611
|
+
num_classes=num_classes,
|
|
612
|
+
units=units,
|
|
613
|
+
activation=activation,
|
|
614
|
+
num_layers=num_layers,
|
|
615
|
+
dropout=dropout,
|
|
616
|
+
l2_reg=l2_reg,
|
|
617
|
+
vae_mode=vae_mode,
|
|
618
|
+
vae_units=vae_units,
|
|
619
|
+
)
|
|
620
|
+
model.compile(
|
|
621
|
+
optimizer=optimizer,
|
|
622
|
+
loss=tf.keras.losses.CategoricalCrossentropy(),
|
|
623
|
+
metrics=[tf.keras.metrics.F1Score(threshold=threshold)],
|
|
624
|
+
)
|
|
625
|
+
return model._main_model
|
|
626
|
+
|
|
627
|
+
|
|
628
|
+
def build_model(
|
|
629
|
+
hp, input_shape_parm: None | int, num_classes: None | int, **kwargs
|
|
630
|
+
) -> AutoClassifier:
|
|
631
|
+
"""Builds a neural network model using Keras Tuner's search algorithm.
|
|
632
|
+
|
|
633
|
+
Parameters
|
|
634
|
+
----------
|
|
635
|
+
hp : `keras_tuner.HyperParameters`
|
|
636
|
+
The hyperparameters to tune.
|
|
637
|
+
input_shape_parm : `None` | `int`
|
|
638
|
+
The shape of the input data.
|
|
639
|
+
num_classes : `int`
|
|
640
|
+
The number of classes in the dataset.
|
|
641
|
+
|
|
642
|
+
Keyword Arguments
|
|
643
|
+
-----------------
|
|
644
|
+
Additional keyword arguments to pass to the model.
|
|
645
|
+
|
|
646
|
+
hyperparameters : `dict`
|
|
647
|
+
The hyperparameters to set.
|
|
648
|
+
|
|
649
|
+
Returns
|
|
650
|
+
-------
|
|
651
|
+
`keras.Model`
|
|
652
|
+
The neural network model.
|
|
653
|
+
"""
|
|
654
|
+
hyperparameters = kwargs.get("hyperparameters", None)
|
|
655
|
+
hyperparameters_keys = hyperparameters.keys() if hyperparameters is not None else []
|
|
656
|
+
|
|
657
|
+
units = (
|
|
658
|
+
hp.Int(
|
|
659
|
+
"units",
|
|
660
|
+
min_value=int(input_shape_parm * 0.2),
|
|
661
|
+
max_value=int(input_shape_parm * 1.5),
|
|
662
|
+
step=2,
|
|
663
|
+
)
|
|
664
|
+
if "units" not in hyperparameters_keys
|
|
665
|
+
else (
|
|
666
|
+
hp.Choice("units", hyperparameters["units"])
|
|
667
|
+
if isinstance(hyperparameters["units"], list)
|
|
668
|
+
else hyperparameters["units"]
|
|
669
|
+
)
|
|
670
|
+
)
|
|
671
|
+
activation = (
|
|
672
|
+
hp.Choice("activation", ["sigmoid", "relu", "tanh", "selu", "softplus", "softsign"])
|
|
673
|
+
if "activation" not in hyperparameters_keys
|
|
674
|
+
else (
|
|
675
|
+
hp.Choice("activation", hyperparameters["activation"])
|
|
676
|
+
if isinstance(hyperparameters["activation"], list)
|
|
677
|
+
else hyperparameters["activation"]
|
|
678
|
+
)
|
|
679
|
+
)
|
|
680
|
+
optimizer = (
|
|
681
|
+
hp.Choice("optimizer", ["sgd", "adam", "adadelta", "rmsprop", "adamax", "adagrad"])
|
|
682
|
+
if "optimizer" not in hyperparameters_keys
|
|
683
|
+
else (
|
|
684
|
+
hp.Choice("optimizer", hyperparameters["optimizer"])
|
|
685
|
+
if isinstance(hyperparameters["optimizer"], list)
|
|
686
|
+
else hyperparameters["optimizer"]
|
|
687
|
+
)
|
|
688
|
+
)
|
|
689
|
+
threshold = (
|
|
690
|
+
hp.Float("threshold", min_value=0.1, max_value=0.9, sampling="log")
|
|
691
|
+
if "threshold" not in hyperparameters_keys
|
|
692
|
+
else (
|
|
693
|
+
hp.Choice("threshold", hyperparameters["threshold"])
|
|
694
|
+
if isinstance(hyperparameters["threshold"], list)
|
|
695
|
+
else hyperparameters["threshold"]
|
|
696
|
+
)
|
|
697
|
+
)
|
|
698
|
+
num_layers = (
|
|
699
|
+
hp.Int("num_layers", min_value=1, max_value=10, step=1)
|
|
700
|
+
if "num_layers" not in hyperparameters_keys
|
|
701
|
+
else (
|
|
702
|
+
hp.Choice("num_layers", hyperparameters["num_layers"])
|
|
703
|
+
if isinstance(hyperparameters["num_layers"], list)
|
|
704
|
+
else hyperparameters["num_layers"]
|
|
705
|
+
)
|
|
706
|
+
)
|
|
707
|
+
dropout = (
|
|
708
|
+
hp.Float("dropout", min_value=0.1, max_value=0.9, sampling="log")
|
|
709
|
+
if "dropout" not in hyperparameters_keys
|
|
710
|
+
else (
|
|
711
|
+
hp.Choice("dropout", hyperparameters["dropout"])
|
|
712
|
+
if isinstance(hyperparameters["dropout"], list)
|
|
713
|
+
else hyperparameters["dropout"]
|
|
714
|
+
)
|
|
715
|
+
)
|
|
716
|
+
l2_reg = (
|
|
717
|
+
hp.Float("l2_reg", min_value=1e-6, max_value=0.1, sampling="log")
|
|
718
|
+
if "l2_reg" not in hyperparameters_keys
|
|
719
|
+
else (
|
|
720
|
+
hp.Choice("l2_reg", hyperparameters["l2_reg"])
|
|
721
|
+
if isinstance(hyperparameters["l2_reg"], list)
|
|
722
|
+
else hyperparameters["l2_reg"]
|
|
723
|
+
)
|
|
724
|
+
)
|
|
725
|
+
vae_mode = (
|
|
726
|
+
hp.Choice("vae_mode", [True, False])
|
|
727
|
+
if "vae_mode" not in hyperparameters_keys
|
|
728
|
+
else hyperparameters["vae_mode"]
|
|
729
|
+
)
|
|
730
|
+
|
|
731
|
+
try:
|
|
732
|
+
vae_units = (
|
|
733
|
+
hp.Int("vae_units", min_value=2, max_value=10, step=1)
|
|
734
|
+
if ("vae_units" not in hyperparameters_keys) and vae_mode
|
|
735
|
+
else (
|
|
736
|
+
hp.Choice("vae_units", hyperparameters["vae_units"])
|
|
737
|
+
if isinstance(hyperparameters["vae_units"], list)
|
|
738
|
+
else hyperparameters["vae_units"]
|
|
739
|
+
)
|
|
740
|
+
)
|
|
741
|
+
except KeyError:
|
|
742
|
+
vae_units = None
|
|
743
|
+
|
|
744
|
+
model = call_existing_code(
|
|
745
|
+
units=units,
|
|
746
|
+
activation=activation,
|
|
747
|
+
threshold=threshold,
|
|
748
|
+
optimizer=optimizer,
|
|
749
|
+
input_shape_parm=input_shape_parm,
|
|
750
|
+
num_classes=num_classes,
|
|
751
|
+
num_layers=num_layers,
|
|
752
|
+
dropout=dropout,
|
|
753
|
+
l2_reg=l2_reg,
|
|
754
|
+
vae_mode=vae_mode,
|
|
755
|
+
vae_units=vae_units,
|
|
756
|
+
)
|
|
757
|
+
return model
|
|
758
|
+
|
|
759
|
+
|
|
760
|
+
@suppress_warnings
|
|
761
|
+
def setup_model(
|
|
762
|
+
data: pd.DataFrame,
|
|
763
|
+
target: str,
|
|
764
|
+
epochs: int,
|
|
765
|
+
train_size: float = 0.7,
|
|
766
|
+
seed=None,
|
|
767
|
+
train_mode: bool = True,
|
|
768
|
+
filepath: str = "./my_dir/best_model",
|
|
769
|
+
method: str = "Hyperband",
|
|
770
|
+
**kwargs,
|
|
771
|
+
) -> AutoClassifier:
|
|
772
|
+
"""Setup model for training and tuning.
|
|
773
|
+
|
|
774
|
+
Parameters
|
|
775
|
+
----------
|
|
776
|
+
data : `pd.DataFrame`
|
|
777
|
+
The dataset to train the model on.
|
|
778
|
+
target : `str`
|
|
779
|
+
The name of the target column.
|
|
780
|
+
epochs : `int`
|
|
781
|
+
The number of epochs to train the model for.
|
|
782
|
+
train_size : `float`
|
|
783
|
+
The proportion of the dataset to use for training.
|
|
784
|
+
seed : `None` | `int`
|
|
785
|
+
The random seed to use for reproducibility.
|
|
786
|
+
train_mode : `bool`
|
|
787
|
+
Whether to train the model or not.
|
|
788
|
+
filepath : `str`
|
|
789
|
+
The path to save the best model to.
|
|
790
|
+
method : `str`
|
|
791
|
+
The method to use for hyperparameter tuning. Options are "Hyperband" and "RandomSearch".
|
|
792
|
+
|
|
793
|
+
Keyword Arguments
|
|
794
|
+
-----------------
|
|
795
|
+
Additional keyword arguments to pass to the model.
|
|
796
|
+
|
|
797
|
+
max_trials : `int`
|
|
798
|
+
The maximum number of trials to perform.
|
|
799
|
+
directory : `str`
|
|
800
|
+
The directory to save the model to.
|
|
801
|
+
project_name : `str`
|
|
802
|
+
The name of the project.
|
|
803
|
+
objective : `str`
|
|
804
|
+
The objective to optimize.
|
|
805
|
+
verbose : `bool`
|
|
806
|
+
Whether to print verbose output.
|
|
807
|
+
hyperparameters : `dict`
|
|
808
|
+
The hyperparameters to set.
|
|
809
|
+
|
|
810
|
+
Returns
|
|
811
|
+
-------
|
|
812
|
+
model : `AutoClassifier`
|
|
813
|
+
The trained model.
|
|
814
|
+
"""
|
|
815
|
+
max_trials = kwargs.get("max_trials", 10)
|
|
816
|
+
directory = kwargs.get("directory", "./my_dir")
|
|
817
|
+
project_name = kwargs.get("project_name", "get_best")
|
|
818
|
+
objective = kwargs.get("objective", "val_loss")
|
|
819
|
+
verbose = kwargs.get("verbose", True)
|
|
820
|
+
hyperparameters = kwargs.get("hyperparameters", None)
|
|
821
|
+
|
|
822
|
+
X = data.drop(columns=target)
|
|
823
|
+
input_sample = X.sample(1)
|
|
824
|
+
y = data[target]
|
|
825
|
+
assert (
|
|
826
|
+
X.select_dtypes(include=["object"]).empty == True
|
|
827
|
+
), "Categorical variables within the DataFrame must be encoded, this is done by using the DataFrameEncoder from likelihood."
|
|
828
|
+
validation_split = 1.0 - train_size
|
|
829
|
+
|
|
830
|
+
if train_mode:
|
|
831
|
+
try:
|
|
832
|
+
if (not os.path.exists(directory)) and directory != "./":
|
|
833
|
+
os.makedirs(directory)
|
|
834
|
+
elif directory != "./":
|
|
835
|
+
print(f"Directory {directory} already exists, it will be deleted.")
|
|
836
|
+
rmtree(directory)
|
|
837
|
+
os.makedirs(directory)
|
|
838
|
+
except:
|
|
839
|
+
print("Warning: unable to create directory")
|
|
840
|
+
|
|
841
|
+
y_encoder = OneHotEncoder()
|
|
842
|
+
y = y_encoder.encode(y.to_list())
|
|
843
|
+
X = X.to_numpy()
|
|
844
|
+
input_sample.to_numpy()
|
|
845
|
+
X = np.asarray(X).astype(np.float32)
|
|
846
|
+
input_sample = np.asarray(input_sample).astype(np.float32)
|
|
847
|
+
y = np.asarray(y).astype(np.float32)
|
|
848
|
+
|
|
849
|
+
input_shape_parm = X.shape[1]
|
|
850
|
+
num_classes = y.shape[1]
|
|
851
|
+
global build_model
|
|
852
|
+
build_model = partial(
|
|
853
|
+
build_model,
|
|
854
|
+
input_shape_parm=input_shape_parm,
|
|
855
|
+
num_classes=num_classes,
|
|
856
|
+
hyperparameters=hyperparameters,
|
|
857
|
+
)
|
|
858
|
+
|
|
859
|
+
if method == "Hyperband":
|
|
860
|
+
tuner = keras_tuner.Hyperband(
|
|
861
|
+
hypermodel=build_model,
|
|
862
|
+
objective=objective,
|
|
863
|
+
max_epochs=epochs,
|
|
864
|
+
factor=3,
|
|
865
|
+
directory=directory,
|
|
866
|
+
project_name=project_name,
|
|
867
|
+
seed=seed,
|
|
868
|
+
)
|
|
869
|
+
elif method == "RandomSearch":
|
|
870
|
+
tuner = keras_tuner.RandomSearch(
|
|
871
|
+
hypermodel=build_model,
|
|
872
|
+
objective=objective,
|
|
873
|
+
max_trials=max_trials,
|
|
874
|
+
directory=directory,
|
|
875
|
+
project_name=project_name,
|
|
876
|
+
seed=seed,
|
|
877
|
+
)
|
|
878
|
+
|
|
879
|
+
tuner.search(X, y, epochs=epochs, validation_split=validation_split, verbose=verbose)
|
|
880
|
+
models = tuner.get_best_models(num_models=2)
|
|
881
|
+
best_model = models[0]
|
|
882
|
+
best_model(input_sample)
|
|
883
|
+
|
|
884
|
+
best_model.save(filepath if filepath.endswith(".keras") else filepath + ".keras")
|
|
885
|
+
|
|
886
|
+
if verbose:
|
|
887
|
+
tuner.results_summary()
|
|
888
|
+
else:
|
|
889
|
+
best_model = tf.keras.models.load_model(
|
|
890
|
+
filepath if filepath.endswith(".keras") else filepath + ".keras"
|
|
891
|
+
)
|
|
892
|
+
best_hps = tuner.get_best_hyperparameters(1)[0].values
|
|
893
|
+
vae_mode = best_hps.get("vae_mode", hyperparameters.get("vae_mode", False))
|
|
894
|
+
best_hps["vae_units"] = None if not vae_mode else best_hps["vae_units"]
|
|
895
|
+
|
|
896
|
+
return best_model, pd.DataFrame(best_hps, index=["Value"]).dropna(axis=1)
|