likelihood 2.2.0.dev1__cp311-cp311-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,68 @@
1
+ Metadata-Version: 2.4
2
+ Name: likelihood
3
+ Version: 2.2.0.dev1
4
+ Summary: A package that performs the maximum likelihood algorithm.
5
+ Author-email: "J. A. Moreno-Guerra" <jzs.gm27@gmail.com>
6
+ Maintainer-email: Jafet Castañeda <jafetcc17@gmail.com>
7
+ License: MIT
8
+ Project-URL: Homepage, https://github.com/jzsmoreno/likelihood/
9
+ Classifier: Programming Language :: Python :: 3
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Operating System :: OS Independent
12
+ Requires-Python: <3.13,>=3.10
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
15
+ Requires-Dist: black[jupyter]>=24.3.0
16
+ Requires-Dist: mypy-extensions>=1.0.0
17
+ Requires-Dist: types-openpyxl>=3.1.0.15
18
+ Requires-Dist: pydocstyle>=6.3.0
19
+ Requires-Dist: flake8>=6.0.0
20
+ Requires-Dist: isort>=5.12.0
21
+ Requires-Dist: mypy>=1.4.1
22
+ Requires-Dist: numpy<3.0.0,>=1.26.4
23
+ Requires-Dist: pydot==2.0.0
24
+ Requires-Dist: matplotlib
25
+ Requires-Dist: packaging
26
+ Requires-Dist: graphviz
27
+ Requires-Dist: seaborn
28
+ Requires-Dist: pyyaml
29
+ Requires-Dist: pandas
30
+ Requires-Dist: corner
31
+ Requires-Dist: tqdm
32
+ Provides-Extra: full
33
+ Requires-Dist: networkx; extra == "full"
34
+ Requires-Dist: pyvis; extra == "full"
35
+ Requires-Dist: tensorflow>=2.15.0; extra == "full"
36
+ Requires-Dist: keras-tuner; extra == "full"
37
+ Requires-Dist: scikit-learn; extra == "full"
38
+ Requires-Dist: torch; extra == "full"
39
+ Dynamic: license-file
40
+
41
+ ![likelihood](https://raw.githubusercontent.com/jzsmoreno/likelihood/main/likelihood.png)
42
+
43
+ ![GitHub last commit](https://img.shields.io/github/last-commit/jzsmoreno/likelihood?style=for-the-badge)
44
+ ![GitHub repo size](https://img.shields.io/github/repo-size/jzsmoreno/likelihood?style=for-the-badge)
45
+ ![License](https://img.shields.io/github/license/jzsmoreno/likelihood?style=for-the-badge)
46
+
47
+ <!-- Project description -->
48
+ This repository contains the code to build the [likelihood package](./likelihood/) which contains tools for typical tasks in maintain machine learning models in production and the training of custom models, for more information review our [`documentation`](https://jzsmoreno.github.io/likelihood/).
49
+
50
+ ## Prerequisites
51
+
52
+ Before you begin, ensure you have met the following requirements:
53
+
54
+ * You have a _Windows/Linux/Mac_ machine running [Python 3.10+](https://www.python.org/).
55
+ * You have installed the latest versions of [`pip`](https://pip.pypa.io/en/stable/installing/) and [`virtualenv`](https://virtualenv.pypa.io/en/stable/installation/) or `conda` ([Anaconda](https://www.anaconda.com/distribution/)).
56
+
57
+ ## Installation
58
+
59
+ This package can be easily installed with pip:
60
+ ```bash
61
+ pip install likelihood
62
+ ```
63
+
64
+ ## Examples
65
+
66
+ You can check the [examples](https://github.com/jzsmoreno/likelihood/tree/main/examples) folder.
67
+
68
+ More examples will be added soon.
@@ -0,0 +1,37 @@
1
+ likelihood/VERSION,sha256=Xadl-Uqp5hOa9P48C0wyfsxpbJxNmitKAK92ea7nqsk,9
2
+ likelihood/__init__.py,sha256=e2AiFru2wEpWnK6frQlzEI-4r8UyU59ltxtkvOs-nEI,1032
3
+ likelihood/main.py,sha256=fcCkGOOWKjfvw2tLVqjuKPV8t0rVCIT9FlbYcOv4EYo,7974
4
+ likelihood/pipes.py,sha256=Jrf3rXBgta9eedl0xmRK5MBu-EUDYpCGGvjP7gq_AhU,14959
5
+ likelihood/rust_py_integration.cpython-311-x86_64-linux-gnu.so,sha256=VBH87vMgzTPZSfFUDDIXeiffimgcppTSQ10yeJndUU0,519640
6
+ likelihood/graph/__init__.py,sha256=vUY4pKlnm3eSVTXd2d-5JDPawhqGNRIKRhaHIobsNws,188
7
+ likelihood/graph/_nn.py,sha256=72pVq-qpPbHgbWbEvzsKp2sXhlK4nOjzK-Hmn2VLrkY,9376
8
+ likelihood/graph/graph.py,sha256=SBXt4s4xv18hlLgjBMC3fXHmOsUw0HbC3dU15CK0YXY,3076
9
+ likelihood/graph/nn.py,sha256=ekcJgUv1fcv-jgkCUYr7Uc9PHjE5EFN5t3b0dTQvOHo,11417
10
+ likelihood/models/__init__.py,sha256=lUpogJ2H5_XdFuaz6RmVZdy1ydhbrKc-BvzHQ_ww5uk,80
11
+ likelihood/models/environments.py,sha256=ygSMNTVXHHPUBrOkny4P5Fj3Idgdvl8BVrziQ-5_O64,7243
12
+ likelihood/models/hmm.py,sha256=3H4iSlVvqiIVGPWYO4eQLRJ6quZRzOFhhCMDvIe1Bxs,6246
13
+ likelihood/models/regression.py,sha256=ZkE2rpKdqfjYwxdtW5ojHkUsrIZazioRH0uQbRmKrKw,14235
14
+ likelihood/models/simulation.py,sha256=6_FGcvlhEVsa33BJY0I4Kf3wQTwAr5mq6t8chy_E4QI,8287
15
+ likelihood/models/utils.py,sha256=M-fw-0AcuXCVUjodvuc5jHMA6REYQhQ8viwqvjHFHv4,2287
16
+ likelihood/models/deep/__init__.py,sha256=kjHZl_9ODuyOvheILcbteNfmWc-ia6-fDmoCNp37cEM,325
17
+ likelihood/models/deep/_autoencoders.py,sha256=K59DLM0M7IwhWlO5guZpGDwb5NT-WV0zBD2-Zy5VeZg,30975
18
+ likelihood/models/deep/_predictor.py,sha256=Xjpi6B10ZOQqhI9s1ksAdyjSq6obLd9Xv00eo3xZAOc,27959
19
+ likelihood/models/deep/autoencoders.py,sha256=iO-uLqn-CplMvzf3oMExhAAF6_WAFsc6La2WJY62urw,30724
20
+ likelihood/models/deep/bandit.py,sha256=sqhM2xY3WVZVSrGB3oiQsj7-9VVJtQ46VKbjPQZhDVQ,3560
21
+ likelihood/models/deep/gan.py,sha256=rTnaLmIPjsKg6_0B8JZOVwPxdx59rHmqvzDitdJMCQ4,10924
22
+ likelihood/models/deep/predictor.py,sha256=4BP8dE4VpxicJHBn6pS_bal4nvpQd4FG0txDlRKmnBM,27806
23
+ likelihood/models/deep/rl.py,sha256=tbaCvm7jjKb7Vk7CH5twc4eS8BGi5qXDk8SHYf6UDCc,11510
24
+ likelihood/tools/__init__.py,sha256=C5r18DQdyBVePyxtlfdVLr9SMFnXeVuvgcZgmN5-3dY,122
25
+ likelihood/tools/cat_embed.py,sha256=sWXw0QcEPWxJO_2igZDA-9Yjv_5PBD4jTy0BZwmw1vQ,7321
26
+ likelihood/tools/figures.py,sha256=waF0NHIMrctCmaLhcuz5DMcXyRKynmn6aG0XITYCTLc,10940
27
+ likelihood/tools/impute.py,sha256=nbZ-nv0lVClx7mr9KbCKWiyDmsL3u6bhIGbE_EJpAs4,9477
28
+ likelihood/tools/models_tools.py,sha256=Ui0whAK1U1YmLdZsKHJSnBvwmx5yiQr_3W1yhhElRI0,29131
29
+ likelihood/tools/numeric_tools.py,sha256=vchoTY_SK0KIVVZZ7eVqanjkXtfsGsB_WdLCN_VcffA,12169
30
+ likelihood/tools/reports.py,sha256=lD37V8Ht4AY8U9euVubCdCi-r6bRpyMux79_yb-cl5U,11572
31
+ likelihood/tools/tools.py,sha256=bTbcVnF1bmxM0c6A7OUJbVJk9yjyBkKbeRYzGXIWfxw,43145
32
+ src/lib.rs,sha256=CskmEWCdmPc8zj2K67rL3Da7xk6lJ7P09_QEPyab_A8,265
33
+ likelihood-2.2.0.dev1.dist-info/METADATA,sha256=uZRVM6zE04Lt1ePCBUqtOznMsj2OebuksLiBJeq98dQ,2710
34
+ likelihood-2.2.0.dev1.dist-info/WHEEL,sha256=ptdNhcz7F011fm2xqzsw9H0zbeySnoIW2ebxajFGch4,114
35
+ likelihood-2.2.0.dev1.dist-info/top_level.txt,sha256=GB6AiEUDMvTRbx_JH5l0uEdbvyhXcvWRs49GANj8ShY,47
36
+ likelihood-2.2.0.dev1.dist-info/RECORD,,
37
+ likelihood-2.2.0.dev1.dist-info/licenses/LICENSE,sha256=XWHWt9egYEUHGPTnlcZfJKLPmysacOwdiLj_-J7Z9ew,1066
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.2)
3
+ Root-Is-Purelib: false
4
+ Tag: cp311-cp311-manylinux_2_28_x86_64
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2020 jzsmoreno
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,7 @@
1
+ build
2
+ dist
3
+ docs
4
+ examples
5
+ likelihood
6
+ src
7
+ target
src/lib.rs ADDED
@@ -0,0 +1,12 @@
1
+ use pyo3::prelude::*;
2
+
3
+ #[pyfunction]
4
+ fn print_hello() {
5
+ println!("Hello from Rust integration!");
6
+ }
7
+
8
+ #[pymodule]
9
+ fn rust_py_integration(_py: Python, m: &Bound<'_, PyModule>) -> PyResult<()> {
10
+ m.add_function(wrap_pyfunction!(print_hello, m)?)?;
11
+ Ok(())
12
+ }