likelihood 1.5.8__py3-none-any.whl → 2.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -154,7 +154,7 @@ def xicor(X: np.ndarray, Y: np.ndarray, ties: bool = True, random_seed: int = No
154
154
  The first variable to be correlated. Must have at least one dimension.
155
155
  Y : `np.ndarray`
156
156
  The second variable to be correlated. Must have at least one dimension.
157
- ties : bool
157
+ ties : `bool`
158
158
  Whether to handle ties using randomization.
159
159
  random_seed : int, optional
160
160
  Seed for the random number generator for reproducibility.
@@ -356,9 +356,9 @@ def find_multiples(target: int) -> tuple[int, int] | None:
356
356
  Returns
357
357
  -------
358
358
  tuple[int, int] | None
359
- If i and i+1 both divide target, returns (i, i+1).
360
- Otherwise, returns (i, target // i).
361
- Returns None if no factors are found.
359
+ If `i` and `i+1` both divide target, returns (i, i+1).
360
+ Otherwise, returns `(i, target // i)`.
361
+ Returns `None` if no factors are found.
362
362
  """
363
363
  for i in range(2, target + 1):
364
364
  if target % i == 0:
likelihood/tools/tools.py CHANGED
@@ -8,10 +8,15 @@ import matplotlib.pyplot as plt
8
8
  import numpy as np
9
9
  import pandas as pd
10
10
  import yaml
11
+ from packaging import version
11
12
  from pandas.core.frame import DataFrame
12
13
 
13
- # Suppress RankWarning
14
- warnings.simplefilter("ignore", np.RankWarning)
14
+ if version.parse(np.__version__) < version.parse("2.0.0"):
15
+ filter = np.RankWarning
16
+ else:
17
+ filter = np.exceptions.RankWarning
18
+
19
+ warnings.simplefilter("ignore", filter)
15
20
 
16
21
  # -------------------------------------------------------------------------
17
22
 
@@ -856,7 +861,7 @@ class DataFrameEncoder:
856
861
  """Encodes the `object` type columns of the dataframe
857
862
 
858
863
  Keyword Arguments:
859
- ----------
864
+ ------------------
860
865
  - save_mode (`bool`): An optional integer parameter. By default it is set to `True`
861
866
  - dictionary_name (`str`): An optional string parameter. By default it is set to `labelencoder_dictionary`
862
867
  - norm_method (`str`): An optional string parameter to perform normalization. By default it is set to `None`
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: likelihood
3
- Version: 1.5.8
3
+ Version: 2.0.1
4
4
  Summary: A package that performs the maximum likelihood algorithm.
5
5
  Home-page: https://github.com/jzsmoreno/likelihood/
6
6
  Author: J. A. Moreno-Guerra
@@ -20,9 +20,10 @@ Requires-Dist: pydocstyle>=6.3.0
20
20
  Requires-Dist: flake8>=6.0.0
21
21
  Requires-Dist: isort>=5.12.0
22
22
  Requires-Dist: mypy>=1.4.1
23
- Requires-Dist: numpy<2.0.0
23
+ Requires-Dist: numpy<3.0.0,>=1.26.4
24
24
  Requires-Dist: pydot==2.0.0
25
25
  Requires-Dist: matplotlib
26
+ Requires-Dist: packaging
26
27
  Requires-Dist: graphviz
27
28
  Requires-Dist: seaborn
28
29
  Requires-Dist: pyyaml
@@ -32,7 +33,7 @@ Requires-Dist: tqdm
32
33
  Provides-Extra: full
33
34
  Requires-Dist: networkx; extra == "full"
34
35
  Requires-Dist: pyvis; extra == "full"
35
- Requires-Dist: tensorflow==2.15.0; extra == "full"
36
+ Requires-Dist: tensorflow>=2.15.0; extra == "full"
36
37
  Requires-Dist: keras-tuner; extra == "full"
37
38
  Requires-Dist: scikit-learn; extra == "full"
38
39
  Dynamic: author
@@ -0,0 +1,30 @@
1
+ likelihood/__init__.py,sha256=5C0hapdsk85XZhN_rssRAEFpkRRuKNtj6cyRbqD2_gM,994
2
+ likelihood/main.py,sha256=fcCkGOOWKjfvw2tLVqjuKPV8t0rVCIT9FlbYcOv4EYo,7974
3
+ likelihood/graph/__init__.py,sha256=vUY4pKlnm3eSVTXd2d-5JDPawhqGNRIKRhaHIobsNws,188
4
+ likelihood/graph/_nn.py,sha256=Sh7dRz8QSI08Ydfw9e--uCxc4KMtHUsCz_-C-loXklQ,13883
5
+ likelihood/graph/graph.py,sha256=bLrNMvIh7GOTdPTwnNss8oPZ7cbSHQScAsH_ttmVUK0,3294
6
+ likelihood/graph/nn.py,sha256=uxCxGt1suKmThmEjFope2ew93-WlgvGhgr6RVCHwzhM,11420
7
+ likelihood/models/__init__.py,sha256=e6nB4w47w0Q9DrAFeP3OcUgcoHOtf7Il4mBhgf4AARg,52
8
+ likelihood/models/hmm.py,sha256=0s0gFySH1u4NjRaZDxiZ8oeTaFhFrw1x0GJxwy3dFrA,6253
9
+ likelihood/models/regression.py,sha256=9cakyGlJCEO6WfpoKLh3GxdXQeQp7cUvJIkQ5odT0TA,9404
10
+ likelihood/models/simulation.py,sha256=xsl4mJ2qFCuZR_B9LfQcLjV6OtONU1zyESX3CCUfOiw,8619
11
+ likelihood/models/utils.py,sha256=dvigPi_hxcs5ntfHr7Y1JvP5ULtMW3kkN0nJpS4orE8,1319
12
+ likelihood/models/deep/__init__.py,sha256=I55FciI0BfljYdhW2OGNqcpYV57FhPZETZX7Y1y9GVQ,303
13
+ likelihood/models/deep/_autoencoders.py,sha256=CeD79YzU7DdPd92wUNG_EtPVQOBgsgYoC4uS2JF3b6o,30939
14
+ likelihood/models/deep/_predictor.py,sha256=XI4QfVM7PS_60zYtmi-V8UzNDrASFiDMVPmV17BB8lM,27984
15
+ likelihood/models/deep/autoencoders.py,sha256=muUBH9BclOK8ViI7PijyMOBBLVox6uwuIabyJvpU5qw,30729
16
+ likelihood/models/deep/gan.py,sha256=rTnaLmIPjsKg6_0B8JZOVwPxdx59rHmqvzDitdJMCQ4,10924
17
+ likelihood/models/deep/predictor.py,sha256=q5tPaAbF7s5XIcxVr6fyHTQdZa9tlixO9vb9a9Cw0wM,27831
18
+ likelihood/models/deep/rl.py,sha256=VVuwHwK24d2fe3uNHliE1QJsKGZAPhx_pdgj3jqN5rQ,11565
19
+ likelihood/tools/__init__.py,sha256=N1IhMDzacsGQT2MIYBMBC0zTxes78vC_0gGrwkuPgmg,78
20
+ likelihood/tools/cat_embed.py,sha256=SJ7o1vbrNYp21fLLcjRnWpUDcz1nVSe8TmMvsLIz5CI,7346
21
+ likelihood/tools/figures.py,sha256=waF0NHIMrctCmaLhcuz5DMcXyRKynmn6aG0XITYCTLc,10940
22
+ likelihood/tools/impute.py,sha256=n87Tv-xLUAdPl7BQLFcLWSsXBZbXksahyCayJWMydXc,9485
23
+ likelihood/tools/models_tools.py,sha256=-QAfvCy9mw-ZyeJHzJJ7O6eDfUXghtA7KfFtTc-Tp0A,14607
24
+ likelihood/tools/numeric_tools.py,sha256=JeLECoVS3ayFH53kUYkAMs0fzALZV1M22-tBLM-Q34g,12264
25
+ likelihood/tools/tools.py,sha256=5vPUHrm8D4ODsg-MP4uZ3NgXV9fNbs0Olx7RWtUdVDU,42196
26
+ likelihood-2.0.1.dist-info/licenses/LICENSE,sha256=XWHWt9egYEUHGPTnlcZfJKLPmysacOwdiLj_-J7Z9ew,1066
27
+ likelihood-2.0.1.dist-info/METADATA,sha256=3mLJAcVO4jzu4IoCVVaSBPMxBWV-xnHs_f_DvvN9G0c,2917
28
+ likelihood-2.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
29
+ likelihood-2.0.1.dist-info/top_level.txt,sha256=KDiBLr870YTxqLFqObTOSrTK10uw8dFsITSNLlte3PA,11
30
+ likelihood-2.0.1.dist-info/RECORD,,
@@ -1,26 +0,0 @@
1
- likelihood/__init__.py,sha256=5C0hapdsk85XZhN_rssRAEFpkRRuKNtj6cyRbqD2_gM,994
2
- likelihood/main.py,sha256=fcCkGOOWKjfvw2tLVqjuKPV8t0rVCIT9FlbYcOv4EYo,7974
3
- likelihood/graph/__init__.py,sha256=6TuFDfmXTwpLyHl7_KqBfdzW6zqHjGzIFvymjFPlvjI,21
4
- likelihood/graph/graph.py,sha256=bLrNMvIh7GOTdPTwnNss8oPZ7cbSHQScAsH_ttmVUK0,3294
5
- likelihood/graph/nn.py,sha256=uxCxGt1suKmThmEjFope2ew93-WlgvGhgr6RVCHwzhM,11420
6
- likelihood/models/__init__.py,sha256=e6nB4w47w0Q9DrAFeP3OcUgcoHOtf7Il4mBhgf4AARg,52
7
- likelihood/models/hmm.py,sha256=0s0gFySH1u4NjRaZDxiZ8oeTaFhFrw1x0GJxwy3dFrA,6253
8
- likelihood/models/regression.py,sha256=9cakyGlJCEO6WfpoKLh3GxdXQeQp7cUvJIkQ5odT0TA,9404
9
- likelihood/models/simulation.py,sha256=6OD2IXAnbctxtOzUJ2b9vKW7_tdGs4dQYmQQShqsioA,8443
10
- likelihood/models/utils.py,sha256=dvigPi_hxcs5ntfHr7Y1JvP5ULtMW3kkN0nJpS4orE8,1319
11
- likelihood/models/deep/__init__.py,sha256=UV_VYhySvrNnB4a0VXYM4wK3KKF7ytjLFFfwvnaZWaA,82
12
- likelihood/models/deep/autoencoders.py,sha256=02sgVTB-78DNUndyrzFGoiNZAY87KF953C-bdB2Dj3I,30731
13
- likelihood/models/deep/gan.py,sha256=prLgKEoJu6NdvT_ICfn7rBdjppga2LlvDRsTjVA8Ug0,10922
14
- likelihood/models/deep/predictor.py,sha256=Q9-PsgcViTDXm52h67Qdjd3HbjpLlXyAPxSqioUvgiA,27778
15
- likelihood/tools/__init__.py,sha256=N1IhMDzacsGQT2MIYBMBC0zTxes78vC_0gGrwkuPgmg,78
16
- likelihood/tools/cat_embed.py,sha256=SJ7o1vbrNYp21fLLcjRnWpUDcz1nVSe8TmMvsLIz5CI,7346
17
- likelihood/tools/figures.py,sha256=waF0NHIMrctCmaLhcuz5DMcXyRKynmn6aG0XITYCTLc,10940
18
- likelihood/tools/impute.py,sha256=n87Tv-xLUAdPl7BQLFcLWSsXBZbXksahyCayJWMydXc,9485
19
- likelihood/tools/models_tools.py,sha256=c3-vac-1MYSarYDtfR6XfVC7X_WY9auS7y2_3Z973IQ,8875
20
- likelihood/tools/numeric_tools.py,sha256=Hwf-lbqROqPPZ9N7eVzKIDyZxFGQdP53isWxPqpG0eo,12254
21
- likelihood/tools/tools.py,sha256=lk9BIskjUKYQ1XVwARm9jAjHuLQ4UO68aZY8oxkzk5c,42056
22
- likelihood-1.5.8.dist-info/licenses/LICENSE,sha256=XWHWt9egYEUHGPTnlcZfJKLPmysacOwdiLj_-J7Z9ew,1066
23
- likelihood-1.5.8.dist-info/METADATA,sha256=RmHunm_vrHb6AbiVasPO4J3GogK7U2lEpmwqVr8QU0E,2883
24
- likelihood-1.5.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
25
- likelihood-1.5.8.dist-info/top_level.txt,sha256=KDiBLr870YTxqLFqObTOSrTK10uw8dFsITSNLlte3PA,11
26
- likelihood-1.5.8.dist-info/RECORD,,