likelihood 1.5.8__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- likelihood/graph/__init__.py +8 -0
- likelihood/graph/_nn.py +421 -0
- likelihood/models/deep/__init__.py +11 -2
- likelihood/models/deep/_autoencoders.py +895 -0
- likelihood/models/deep/_predictor.py +810 -0
- likelihood/models/deep/autoencoders.py +2 -2
- likelihood/models/deep/gan.py +4 -4
- likelihood/models/deep/predictor.py +1 -0
- likelihood/models/deep/rl.py +350 -0
- likelihood/models/simulation.py +9 -4
- likelihood/tools/models_tools.py +194 -7
- likelihood/tools/numeric_tools.py +4 -4
- likelihood/tools/tools.py +8 -3
- {likelihood-1.5.8.dist-info → likelihood-2.0.1.dist-info}/METADATA +4 -3
- likelihood-2.0.1.dist-info/RECORD +30 -0
- likelihood-1.5.8.dist-info/RECORD +0 -26
- {likelihood-1.5.8.dist-info → likelihood-2.0.1.dist-info}/WHEEL +0 -0
- {likelihood-1.5.8.dist-info → likelihood-2.0.1.dist-info}/licenses/LICENSE +0 -0
- {likelihood-1.5.8.dist-info → likelihood-2.0.1.dist-info}/top_level.txt +0 -0
|
@@ -154,7 +154,7 @@ def xicor(X: np.ndarray, Y: np.ndarray, ties: bool = True, random_seed: int = No
|
|
|
154
154
|
The first variable to be correlated. Must have at least one dimension.
|
|
155
155
|
Y : `np.ndarray`
|
|
156
156
|
The second variable to be correlated. Must have at least one dimension.
|
|
157
|
-
ties : bool
|
|
157
|
+
ties : `bool`
|
|
158
158
|
Whether to handle ties using randomization.
|
|
159
159
|
random_seed : int, optional
|
|
160
160
|
Seed for the random number generator for reproducibility.
|
|
@@ -356,9 +356,9 @@ def find_multiples(target: int) -> tuple[int, int] | None:
|
|
|
356
356
|
Returns
|
|
357
357
|
-------
|
|
358
358
|
tuple[int, int] | None
|
|
359
|
-
If i and i+1 both divide target, returns (i, i+1).
|
|
360
|
-
Otherwise, returns (i, target // i)
|
|
361
|
-
Returns None if no factors are found.
|
|
359
|
+
If `i` and `i+1` both divide target, returns (i, i+1).
|
|
360
|
+
Otherwise, returns `(i, target // i)`.
|
|
361
|
+
Returns `None` if no factors are found.
|
|
362
362
|
"""
|
|
363
363
|
for i in range(2, target + 1):
|
|
364
364
|
if target % i == 0:
|
likelihood/tools/tools.py
CHANGED
|
@@ -8,10 +8,15 @@ import matplotlib.pyplot as plt
|
|
|
8
8
|
import numpy as np
|
|
9
9
|
import pandas as pd
|
|
10
10
|
import yaml
|
|
11
|
+
from packaging import version
|
|
11
12
|
from pandas.core.frame import DataFrame
|
|
12
13
|
|
|
13
|
-
|
|
14
|
-
|
|
14
|
+
if version.parse(np.__version__) < version.parse("2.0.0"):
|
|
15
|
+
filter = np.RankWarning
|
|
16
|
+
else:
|
|
17
|
+
filter = np.exceptions.RankWarning
|
|
18
|
+
|
|
19
|
+
warnings.simplefilter("ignore", filter)
|
|
15
20
|
|
|
16
21
|
# -------------------------------------------------------------------------
|
|
17
22
|
|
|
@@ -856,7 +861,7 @@ class DataFrameEncoder:
|
|
|
856
861
|
"""Encodes the `object` type columns of the dataframe
|
|
857
862
|
|
|
858
863
|
Keyword Arguments:
|
|
859
|
-
|
|
864
|
+
------------------
|
|
860
865
|
- save_mode (`bool`): An optional integer parameter. By default it is set to `True`
|
|
861
866
|
- dictionary_name (`str`): An optional string parameter. By default it is set to `labelencoder_dictionary`
|
|
862
867
|
- norm_method (`str`): An optional string parameter to perform normalization. By default it is set to `None`
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: likelihood
|
|
3
|
-
Version:
|
|
3
|
+
Version: 2.0.1
|
|
4
4
|
Summary: A package that performs the maximum likelihood algorithm.
|
|
5
5
|
Home-page: https://github.com/jzsmoreno/likelihood/
|
|
6
6
|
Author: J. A. Moreno-Guerra
|
|
@@ -20,9 +20,10 @@ Requires-Dist: pydocstyle>=6.3.0
|
|
|
20
20
|
Requires-Dist: flake8>=6.0.0
|
|
21
21
|
Requires-Dist: isort>=5.12.0
|
|
22
22
|
Requires-Dist: mypy>=1.4.1
|
|
23
|
-
Requires-Dist: numpy<
|
|
23
|
+
Requires-Dist: numpy<3.0.0,>=1.26.4
|
|
24
24
|
Requires-Dist: pydot==2.0.0
|
|
25
25
|
Requires-Dist: matplotlib
|
|
26
|
+
Requires-Dist: packaging
|
|
26
27
|
Requires-Dist: graphviz
|
|
27
28
|
Requires-Dist: seaborn
|
|
28
29
|
Requires-Dist: pyyaml
|
|
@@ -32,7 +33,7 @@ Requires-Dist: tqdm
|
|
|
32
33
|
Provides-Extra: full
|
|
33
34
|
Requires-Dist: networkx; extra == "full"
|
|
34
35
|
Requires-Dist: pyvis; extra == "full"
|
|
35
|
-
Requires-Dist: tensorflow
|
|
36
|
+
Requires-Dist: tensorflow>=2.15.0; extra == "full"
|
|
36
37
|
Requires-Dist: keras-tuner; extra == "full"
|
|
37
38
|
Requires-Dist: scikit-learn; extra == "full"
|
|
38
39
|
Dynamic: author
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
likelihood/__init__.py,sha256=5C0hapdsk85XZhN_rssRAEFpkRRuKNtj6cyRbqD2_gM,994
|
|
2
|
+
likelihood/main.py,sha256=fcCkGOOWKjfvw2tLVqjuKPV8t0rVCIT9FlbYcOv4EYo,7974
|
|
3
|
+
likelihood/graph/__init__.py,sha256=vUY4pKlnm3eSVTXd2d-5JDPawhqGNRIKRhaHIobsNws,188
|
|
4
|
+
likelihood/graph/_nn.py,sha256=Sh7dRz8QSI08Ydfw9e--uCxc4KMtHUsCz_-C-loXklQ,13883
|
|
5
|
+
likelihood/graph/graph.py,sha256=bLrNMvIh7GOTdPTwnNss8oPZ7cbSHQScAsH_ttmVUK0,3294
|
|
6
|
+
likelihood/graph/nn.py,sha256=uxCxGt1suKmThmEjFope2ew93-WlgvGhgr6RVCHwzhM,11420
|
|
7
|
+
likelihood/models/__init__.py,sha256=e6nB4w47w0Q9DrAFeP3OcUgcoHOtf7Il4mBhgf4AARg,52
|
|
8
|
+
likelihood/models/hmm.py,sha256=0s0gFySH1u4NjRaZDxiZ8oeTaFhFrw1x0GJxwy3dFrA,6253
|
|
9
|
+
likelihood/models/regression.py,sha256=9cakyGlJCEO6WfpoKLh3GxdXQeQp7cUvJIkQ5odT0TA,9404
|
|
10
|
+
likelihood/models/simulation.py,sha256=xsl4mJ2qFCuZR_B9LfQcLjV6OtONU1zyESX3CCUfOiw,8619
|
|
11
|
+
likelihood/models/utils.py,sha256=dvigPi_hxcs5ntfHr7Y1JvP5ULtMW3kkN0nJpS4orE8,1319
|
|
12
|
+
likelihood/models/deep/__init__.py,sha256=I55FciI0BfljYdhW2OGNqcpYV57FhPZETZX7Y1y9GVQ,303
|
|
13
|
+
likelihood/models/deep/_autoencoders.py,sha256=CeD79YzU7DdPd92wUNG_EtPVQOBgsgYoC4uS2JF3b6o,30939
|
|
14
|
+
likelihood/models/deep/_predictor.py,sha256=XI4QfVM7PS_60zYtmi-V8UzNDrASFiDMVPmV17BB8lM,27984
|
|
15
|
+
likelihood/models/deep/autoencoders.py,sha256=muUBH9BclOK8ViI7PijyMOBBLVox6uwuIabyJvpU5qw,30729
|
|
16
|
+
likelihood/models/deep/gan.py,sha256=rTnaLmIPjsKg6_0B8JZOVwPxdx59rHmqvzDitdJMCQ4,10924
|
|
17
|
+
likelihood/models/deep/predictor.py,sha256=q5tPaAbF7s5XIcxVr6fyHTQdZa9tlixO9vb9a9Cw0wM,27831
|
|
18
|
+
likelihood/models/deep/rl.py,sha256=VVuwHwK24d2fe3uNHliE1QJsKGZAPhx_pdgj3jqN5rQ,11565
|
|
19
|
+
likelihood/tools/__init__.py,sha256=N1IhMDzacsGQT2MIYBMBC0zTxes78vC_0gGrwkuPgmg,78
|
|
20
|
+
likelihood/tools/cat_embed.py,sha256=SJ7o1vbrNYp21fLLcjRnWpUDcz1nVSe8TmMvsLIz5CI,7346
|
|
21
|
+
likelihood/tools/figures.py,sha256=waF0NHIMrctCmaLhcuz5DMcXyRKynmn6aG0XITYCTLc,10940
|
|
22
|
+
likelihood/tools/impute.py,sha256=n87Tv-xLUAdPl7BQLFcLWSsXBZbXksahyCayJWMydXc,9485
|
|
23
|
+
likelihood/tools/models_tools.py,sha256=-QAfvCy9mw-ZyeJHzJJ7O6eDfUXghtA7KfFtTc-Tp0A,14607
|
|
24
|
+
likelihood/tools/numeric_tools.py,sha256=JeLECoVS3ayFH53kUYkAMs0fzALZV1M22-tBLM-Q34g,12264
|
|
25
|
+
likelihood/tools/tools.py,sha256=5vPUHrm8D4ODsg-MP4uZ3NgXV9fNbs0Olx7RWtUdVDU,42196
|
|
26
|
+
likelihood-2.0.1.dist-info/licenses/LICENSE,sha256=XWHWt9egYEUHGPTnlcZfJKLPmysacOwdiLj_-J7Z9ew,1066
|
|
27
|
+
likelihood-2.0.1.dist-info/METADATA,sha256=3mLJAcVO4jzu4IoCVVaSBPMxBWV-xnHs_f_DvvN9G0c,2917
|
|
28
|
+
likelihood-2.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
29
|
+
likelihood-2.0.1.dist-info/top_level.txt,sha256=KDiBLr870YTxqLFqObTOSrTK10uw8dFsITSNLlte3PA,11
|
|
30
|
+
likelihood-2.0.1.dist-info/RECORD,,
|
|
@@ -1,26 +0,0 @@
|
|
|
1
|
-
likelihood/__init__.py,sha256=5C0hapdsk85XZhN_rssRAEFpkRRuKNtj6cyRbqD2_gM,994
|
|
2
|
-
likelihood/main.py,sha256=fcCkGOOWKjfvw2tLVqjuKPV8t0rVCIT9FlbYcOv4EYo,7974
|
|
3
|
-
likelihood/graph/__init__.py,sha256=6TuFDfmXTwpLyHl7_KqBfdzW6zqHjGzIFvymjFPlvjI,21
|
|
4
|
-
likelihood/graph/graph.py,sha256=bLrNMvIh7GOTdPTwnNss8oPZ7cbSHQScAsH_ttmVUK0,3294
|
|
5
|
-
likelihood/graph/nn.py,sha256=uxCxGt1suKmThmEjFope2ew93-WlgvGhgr6RVCHwzhM,11420
|
|
6
|
-
likelihood/models/__init__.py,sha256=e6nB4w47w0Q9DrAFeP3OcUgcoHOtf7Il4mBhgf4AARg,52
|
|
7
|
-
likelihood/models/hmm.py,sha256=0s0gFySH1u4NjRaZDxiZ8oeTaFhFrw1x0GJxwy3dFrA,6253
|
|
8
|
-
likelihood/models/regression.py,sha256=9cakyGlJCEO6WfpoKLh3GxdXQeQp7cUvJIkQ5odT0TA,9404
|
|
9
|
-
likelihood/models/simulation.py,sha256=6OD2IXAnbctxtOzUJ2b9vKW7_tdGs4dQYmQQShqsioA,8443
|
|
10
|
-
likelihood/models/utils.py,sha256=dvigPi_hxcs5ntfHr7Y1JvP5ULtMW3kkN0nJpS4orE8,1319
|
|
11
|
-
likelihood/models/deep/__init__.py,sha256=UV_VYhySvrNnB4a0VXYM4wK3KKF7ytjLFFfwvnaZWaA,82
|
|
12
|
-
likelihood/models/deep/autoencoders.py,sha256=02sgVTB-78DNUndyrzFGoiNZAY87KF953C-bdB2Dj3I,30731
|
|
13
|
-
likelihood/models/deep/gan.py,sha256=prLgKEoJu6NdvT_ICfn7rBdjppga2LlvDRsTjVA8Ug0,10922
|
|
14
|
-
likelihood/models/deep/predictor.py,sha256=Q9-PsgcViTDXm52h67Qdjd3HbjpLlXyAPxSqioUvgiA,27778
|
|
15
|
-
likelihood/tools/__init__.py,sha256=N1IhMDzacsGQT2MIYBMBC0zTxes78vC_0gGrwkuPgmg,78
|
|
16
|
-
likelihood/tools/cat_embed.py,sha256=SJ7o1vbrNYp21fLLcjRnWpUDcz1nVSe8TmMvsLIz5CI,7346
|
|
17
|
-
likelihood/tools/figures.py,sha256=waF0NHIMrctCmaLhcuz5DMcXyRKynmn6aG0XITYCTLc,10940
|
|
18
|
-
likelihood/tools/impute.py,sha256=n87Tv-xLUAdPl7BQLFcLWSsXBZbXksahyCayJWMydXc,9485
|
|
19
|
-
likelihood/tools/models_tools.py,sha256=c3-vac-1MYSarYDtfR6XfVC7X_WY9auS7y2_3Z973IQ,8875
|
|
20
|
-
likelihood/tools/numeric_tools.py,sha256=Hwf-lbqROqPPZ9N7eVzKIDyZxFGQdP53isWxPqpG0eo,12254
|
|
21
|
-
likelihood/tools/tools.py,sha256=lk9BIskjUKYQ1XVwARm9jAjHuLQ4UO68aZY8oxkzk5c,42056
|
|
22
|
-
likelihood-1.5.8.dist-info/licenses/LICENSE,sha256=XWHWt9egYEUHGPTnlcZfJKLPmysacOwdiLj_-J7Z9ew,1066
|
|
23
|
-
likelihood-1.5.8.dist-info/METADATA,sha256=RmHunm_vrHb6AbiVasPO4J3GogK7U2lEpmwqVr8QU0E,2883
|
|
24
|
-
likelihood-1.5.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
25
|
-
likelihood-1.5.8.dist-info/top_level.txt,sha256=KDiBLr870YTxqLFqObTOSrTK10uw8dFsITSNLlte3PA,11
|
|
26
|
-
likelihood-1.5.8.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|