likelihood 1.2.18__py3-none-any.whl → 1.2.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,11 +6,13 @@ import keras_tuner
6
6
  import numpy as np
7
7
  import pandas as pd
8
8
  import tensorflow as tf
9
+ from likelihood.tools import OneHotEncoder
9
10
  from pandas.core.frame import DataFrame
10
11
 
11
- from likelihood.tools import OneHotEncoder
12
+ tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
12
13
 
13
14
 
15
+ @tf.keras.utils.register_keras_serializable(package="Custom", name="AutoClassifier")
14
16
  class AutoClassifier(tf.keras.Model):
15
17
  """
16
18
  An auto-classifier model that automatically determines the best classification strategy based on the input data.
@@ -54,7 +56,7 @@ class AutoClassifier(tf.keras.Model):
54
56
  self.decoder = None
55
57
  self.classifier = None
56
58
 
57
- def build(self, input_shape_parm):
59
+ def build(self, input_shape):
58
60
  self.encoder = tf.keras.Sequential(
59
61
  [
60
62
  tf.keras.layers.Dense(units=self.units, activation=self.activation),
@@ -187,7 +189,7 @@ def setup_model(
187
189
  train_size: float = 0.7,
188
190
  seed=None,
189
191
  train_mode: bool = True,
190
- filepath: str = "./my_dir/best_model.keras",
192
+ filepath: str = "./my_dir/best_model",
191
193
  **kwargs,
192
194
  ) -> AutoClassifier:
193
195
  """Setup model for training and tuning.
@@ -236,6 +238,7 @@ def setup_model(
236
238
  verbose = kwargs["verbose"] if "verbose" in kwargs else True
237
239
 
238
240
  X = data.drop(columns=target)
241
+ input_sample = X.sample(1)
239
242
  y = data[target]
240
243
  # Verify if there are categorical columns in the dataframe
241
244
  assert (
@@ -260,8 +263,9 @@ def setup_model(
260
263
  y_encoder = OneHotEncoder()
261
264
  y = y_encoder.encode(y.to_list())
262
265
  X = X.to_numpy()
266
+ input_sample.to_numpy()
263
267
  X = np.asarray(X).astype(np.float32)
264
-
268
+ input_sample = np.asarray(input_sample).astype(np.float32)
265
269
  y = np.asarray(y).astype(np.float32)
266
270
 
267
271
  input_shape_parm = X.shape[1]
@@ -284,9 +288,10 @@ def setup_model(
284
288
  tuner.search(X, y, epochs=epochs, validation_split=validation_split)
285
289
  models = tuner.get_best_models(num_models=2)
286
290
  best_model = models[0]
291
+ best_model(input_sample)
287
292
 
288
293
  # save model
289
- best_model.save(filepath)
294
+ best_model.save(filepath, save_format="tf")
290
295
 
291
296
  if verbose:
292
297
  tuner.results_summary()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: likelihood
3
- Version: 1.2.18
3
+ Version: 1.2.20
4
4
  Summary: A package that performs the maximum likelihood algorithm.
5
5
  Home-page: https://github.com/jzsmoreno/likelihood/
6
6
  Author: J. A. Moreno-Guerra
@@ -8,12 +8,12 @@ likelihood/models/regression.py,sha256=9cakyGlJCEO6WfpoKLh3GxdXQeQp7cUvJIkQ5odT0
8
8
  likelihood/models/simulation.py,sha256=mdgQPg_LEY5svPaF4TFv-DoQRE2oP2ig_uXnwINtewM,4039
9
9
  likelihood/models/utils.py,sha256=VtEj07lV-GRoWraQgpfjU0jTt1Ntf9MXgYwe6XYQh20,1552
10
10
  likelihood/models/deep/__init__.py,sha256=-KIPippVaMqgG8mEgYjNxYQdqOUcFhUuKhbVe8TTCfo,28
11
- likelihood/models/deep/autoencoders.py,sha256=lUvFQ7lbjvIPR_IKFnK5VCrSa419P5dOaTL3qSHntJk,9623
11
+ likelihood/models/deep/autoencoders.py,sha256=s-3ZskcNtB3kg1lQD8KzJ0ff3R_OtVsePTYeShE4FxU,9940
12
12
  likelihood/tools/__init__.py,sha256=MCjsCWfBNKE2uMN0VizDN1uFzZ_md0X2WZeBdWhrCR8,50
13
13
  likelihood/tools/numeric_tools.py,sha256=cPTPgdww2ofxfyhJDomqvtXDgsSDs9iRQ7GHLt5Vl6M,8457
14
14
  likelihood/tools/tools.py,sha256=O39aPxTNsaBVSJFIkNsUESNSkfG4C7GG77wcR51a8IQ,42543
15
- likelihood-1.2.18.dist-info/LICENSE,sha256=XWHWt9egYEUHGPTnlcZfJKLPmysacOwdiLj_-J7Z9ew,1066
16
- likelihood-1.2.18.dist-info/METADATA,sha256=8nAjAwwqCDw8K9IBzKG2cgBU5DOLAA-N-RIlr02eyjU,2518
17
- likelihood-1.2.18.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
18
- likelihood-1.2.18.dist-info/top_level.txt,sha256=KDiBLr870YTxqLFqObTOSrTK10uw8dFsITSNLlte3PA,11
19
- likelihood-1.2.18.dist-info/RECORD,,
15
+ likelihood-1.2.20.dist-info/LICENSE,sha256=XWHWt9egYEUHGPTnlcZfJKLPmysacOwdiLj_-J7Z9ew,1066
16
+ likelihood-1.2.20.dist-info/METADATA,sha256=0Gw81rc3h8Ovr2ESuqRexKWQroFl9MUJMu3oi9wfAZw,2518
17
+ likelihood-1.2.20.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
18
+ likelihood-1.2.20.dist-info/top_level.txt,sha256=KDiBLr870YTxqLFqObTOSrTK10uw8dFsITSNLlte3PA,11
19
+ likelihood-1.2.20.dist-info/RECORD,,