liger-kernel 0.6.1__py3-none-any.whl → 0.6.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -13,6 +13,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
13
13
  ref_chosen_logps=None,
14
14
  ref_rejected_logps=None,
15
15
  beta=0.1,
16
+ loss_type="sigmoid",
16
17
  ):
17
18
  """
18
19
  Paper: https://arxiv.org/pdf/2305.18290
@@ -48,8 +49,50 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
48
49
  chosen_rewards = beta * chosen_logratios
49
50
  rejected_rewards = beta * rejected_logratios
50
51
 
51
- logits_diff = beta * (chosen_logratios - rejected_logratios)
52
- loss = -F.logsigmoid(logits_diff).sum() / (full_target.shape[0] // 2)
52
+ if loss_type == "sigmoid":
53
+ logits_diff = beta * (chosen_logratios - rejected_logratios)
54
+ loss = -F.logsigmoid(logits_diff).sum() / (full_target.shape[0] // 2)
55
+
56
+ elif loss_type == "apo_zero":
57
+ # Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266)
58
+ # Use this loss when you believe the chosen outputs are better than your model's default output
59
+ losses_chosen = 1 - F.sigmoid(beta * chosen_logratios) # Increase chosen likelihood
60
+ losses_rejected = F.sigmoid(beta * rejected_logratios)
61
+ losses = losses_chosen + losses_rejected
62
+ loss = losses.sum() / (full_target.shape[0] // 2)
63
+
64
+ elif loss_type == "apo_down":
65
+ # Eqn (8) of the APO paper (https://huggingface.co/papers/2408.06266)
66
+ # Use this loss when you believe the chosen outputs are worse than your model's default output.
67
+ # Decrease chosen likelihood and decrease rejected likelihood more
68
+ losses_chosen = F.sigmoid(beta * chosen_logratios)
69
+ losses_rejected = 1 - F.sigmoid(beta * (chosen_logratios - rejected_logratios))
70
+ losses = losses_chosen + losses_rejected
71
+ loss = losses.sum() / (full_target.shape[0] // 2)
72
+
73
+ elif loss_type == "sppo_hard":
74
+ # In the paper (https://huggingface.co/papers/2405.00675), SPPO employs a soft probability approach,
75
+ # estimated using the PairRM score. The probability calculation is conducted outside of the trainer class.
76
+ # The version described here is the hard probability version, where P in Equation (4.7) of Algorithm 1 is
77
+ # set to 1 for the winner and 0 for the loser.
78
+ a = chosen_logps - ref_chosen_logps
79
+ b = rejected_logps - ref_rejected_logps
80
+ losses = (a - 0.5 / beta) ** 2 + (b + 0.5 / beta) ** 2
81
+ loss = losses.sum() / (full_target.shape[0] // 2)
82
+
83
+ elif loss_type == "nca_pair":
84
+ losses = (
85
+ -F.logsigmoid(chosen_rewards)
86
+ - 0.5 * F.logsigmoid(-chosen_rewards)
87
+ - 0.5 * F.logsigmoid(-rejected_rewards)
88
+ )
89
+ loss = losses.sum() / (full_target.shape[0] // 2)
90
+
91
+ else:
92
+ raise ValueError(
93
+ f"Unsupported loss_type: {loss_type}. Supported types are: sigmoid, apo_zero, apo_down, sppo_hard, nca_pair"
94
+ )
95
+
53
96
  return loss, chosen_rewards, rejected_rewards
54
97
 
55
98
  @classmethod
@@ -70,6 +113,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
70
113
  use_ref_model=True,
71
114
  average_log_prob=False,
72
115
  chunk_size=1,
116
+ loss_type="sigmoid",
73
117
  ):
74
118
  """
75
119
  Fused linear layer with DPO loss.
@@ -108,12 +152,13 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
108
152
  ref_bias=ref_bias,
109
153
  average_log_prob=average_log_prob,
110
154
  chunk_size=chunk_size,
155
+ loss_type=loss_type,
111
156
  )
112
157
 
113
158
  @staticmethod
114
159
  def backward(ctx, *grad_output):
115
160
  grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
116
- return *grads, None, None, None, None, None, None, None, None, None, None
161
+ return *grads, None, None, None, None, None, None, None, None, None, None, None
117
162
 
118
163
 
119
164
  class LigerFusedLinearDPOLoss(torch.nn.Module):
@@ -130,6 +175,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
130
175
  use_ref_model: bool = True,
131
176
  average_log_prob: bool = False,
132
177
  chunk_size: int = 1,
178
+ loss_type: str = "sigmoid",
133
179
  ):
134
180
  """
135
181
  Args:
@@ -149,6 +195,10 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
149
195
  self.use_ref_model = use_ref_model
150
196
  self.average_log_prob = average_log_prob
151
197
  self.chunk_size = chunk_size
198
+ self.loss_type = loss_type
199
+ supported_loss_types = {"sigmoid", "apo_zero", "apo_down", "sppo_hard", "nca_pair"}
200
+ if self.loss_type not in supported_loss_types:
201
+ raise ValueError(f"Unsupported loss_type: {self.loss_type}. Supported types are: {supported_loss_types}")
152
202
 
153
203
  def forward(
154
204
  self,
@@ -175,4 +225,5 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
175
225
  self.use_ref_model,
176
226
  self.average_log_prob,
177
227
  self.chunk_size,
228
+ self.loss_type,
178
229
  )
@@ -25,6 +25,7 @@ def fused_linear_cross_entropy_forward(
25
25
  reduction="mean",
26
26
  softcap=None,
27
27
  return_z_loss=False,
28
+ accum_dtype=None,
28
29
  ):
29
30
  assert isinstance(return_z_loss, bool), f"return_z_loss must be True or False. Got: {return_z_loss}"
30
31
  device = _input.device
@@ -44,10 +45,16 @@ def fused_linear_cross_entropy_forward(
44
45
  chunk_size = triton.next_power_of_2(triton.cdiv(BT, inc_factor)) # (BT + inc_factor - 1) // inc_factor
45
46
  num_chunks = triton.cdiv(BT, chunk_size) # (BT + chunk_size - 1) // chunk_size
46
47
 
47
- grad_weight = torch.zeros_like(weight, device=device) if weight.requires_grad else None
48
48
  grad_input = torch.zeros_like(_input, device=device)
49
- grad_bias = torch.zeros_like(bias, device=device) if bias is not None else None
50
- # we use fp32 for loss accumulator
49
+
50
+ # we use fp32 for loss and gradients accumulator
51
+ if accum_dtype is None:
52
+ grad_weight = torch.zeros_like(weight, device=device) if weight.requires_grad else None
53
+ grad_bias = torch.zeros_like(bias, device=device) if bias is not None else None
54
+ else:
55
+ grad_weight = torch.zeros_like(weight, dtype=accum_dtype, device=device) if weight.requires_grad else None
56
+ grad_bias = torch.zeros_like(bias, dtype=accum_dtype, device=device) if bias is not None else None
57
+
51
58
  loss_1d = torch.zeros(BT, dtype=torch.float32, device=device)
52
59
  z_loss_1d = torch.zeros(BT, dtype=_input.dtype, device=_input.device) if return_z_loss else None
53
60
 
@@ -124,16 +131,7 @@ def fused_linear_cross_entropy_forward(
124
131
  grad_input[start_idx:end_idx] = grad_logits_chunk @ weight
125
132
 
126
133
  if grad_weight is not None:
127
- torch.addmm(
128
- input=grad_weight,
129
- mat1=logits_chunk.t().to(
130
- _input_chunk.dtype
131
- ), # In an autocast scenario without bias, differing logits_chunk data types will cause an addmm operation error.
132
- mat2=_input_chunk,
133
- out=grad_weight,
134
- alpha=1.0,
135
- beta=1.0,
136
- )
134
+ grad_weight += torch.mm(grad_logits_chunk.t(), _input_chunk).float()
137
135
 
138
136
  if bias is not None:
139
137
  torch.add(
@@ -151,6 +149,11 @@ def fused_linear_cross_entropy_forward(
151
149
  else:
152
150
  loss = torch.sum(loss_1d)
153
151
  z_loss = torch.sum(z_loss_1d) if return_z_loss else None
152
+
153
+ # Cast back to original dtype
154
+ grad_weight = grad_weight.to(weight.dtype) if grad_weight is not None else None
155
+ grad_bias = grad_bias.to(bias.dtype) if grad_bias is not None else None
156
+
154
157
  return loss, z_loss, grad_input, grad_weight, grad_bias
155
158
 
156
159
 
@@ -217,6 +220,7 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
217
220
  reduction="mean",
218
221
  softcap=None,
219
222
  return_z_loss: bool = False,
223
+ accum_dtype=None,
220
224
  ):
221
225
  """
222
226
  Fusing the last linear layer with cross-entropy loss
@@ -235,6 +239,8 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
235
239
  ignore_index: the index to ignore in the target
236
240
  label_smoothing (float): The amount of smoothing when computing the loss, where 0.0 means no smoothing.
237
241
  reduction: reduction to apply
242
+ accum_dtype (torch.dtype): the dtype of intermediate result buffers for weight and bias gradient accumulations.
243
+ Recommended to set `accum_dtype` to higher precision, e.g. `torch.float32`, if the training is unstable with original dtype. Default: `None`, performing accumulations in original dtype
238
244
  """
239
245
 
240
246
  loss, z_loss, grad_input, grad_weight, grad_bias = fused_linear_cross_entropy_forward(
@@ -249,6 +255,7 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
249
255
  reduction=reduction,
250
256
  softcap=softcap,
251
257
  return_z_loss=return_z_loss,
258
+ accum_dtype=accum_dtype,
252
259
  )
253
260
  # downcast to dtype and store for backward
254
261
  ctx.save_for_backward(
@@ -280,4 +287,5 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
280
287
  None,
281
288
  None,
282
289
  None,
290
+ None,
283
291
  )
@@ -0,0 +1,225 @@
1
+ import torch
2
+ import triton
3
+ import triton.language as tl
4
+
5
+
6
+ def _prepare_freqs(freqs_cis: torch.Tensor, seq_len: int, head_dim_half: int):
7
+ # Split or unpack complex frequencies into real and imag parts
8
+ if freqs_cis.is_complex():
9
+ freqs_real = freqs_cis.real
10
+ freqs_imag = freqs_cis.imag
11
+ else:
12
+ # Already split: last dim should be 2*head_dim_half
13
+ if freqs_cis.shape[-1] == 2 * head_dim_half:
14
+ freqs_real = freqs_cis[..., :head_dim_half]
15
+ freqs_imag = freqs_cis[..., head_dim_half:]
16
+ else:
17
+ raise ValueError(
18
+ f"Unexpected freqs_cis shape for non-complex input: {freqs_cis.shape}, expected last dim = {2 * head_dim_half}"
19
+ )
20
+
21
+ # Canonicalize to shape (seq_len, head_dim_half):
22
+ # 1) Ensure the last dimension is head_dim_half
23
+ if freqs_real.shape[-1] != head_dim_half:
24
+ raise ValueError(f"Unexpected last dim for freqs: {freqs_real.shape[-1]} (expected {head_dim_half})")
25
+ # 2) Flatten all leading dims to a single row dimension
26
+ freqs_real = freqs_real.reshape(-1, head_dim_half)
27
+ freqs_imag = freqs_imag.reshape(-1, head_dim_half)
28
+ # 3) If we have fewer rows than seq_len, allow broadcasting when single row
29
+ if freqs_real.shape[0] < seq_len:
30
+ if freqs_real.shape[0] == 1:
31
+ freqs_real = freqs_real.expand(seq_len, -1)
32
+ freqs_imag = freqs_imag.expand(seq_len, -1)
33
+ else:
34
+ raise ValueError(f"Insufficient rows in freqs: {freqs_real.shape[0]} < seq_len={seq_len}")
35
+ # 4) If we have more rows than seq_len (e.g., batch present), take the first seq_len rows
36
+ elif freqs_real.shape[0] > seq_len:
37
+ freqs_real = freqs_real[:seq_len]
38
+ freqs_imag = freqs_imag[:seq_len]
39
+
40
+ return freqs_real, freqs_imag
41
+
42
+
43
+ def _maybe_to_dtype(t: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
44
+ return t if t.dtype == dtype else t.to(dtype)
45
+
46
+
47
+ def _maybe_contiguous(t: torch.Tensor) -> torch.Tensor:
48
+ return t if t.is_contiguous() else t.contiguous()
49
+
50
+
51
+ def _cast_and_contiguous(q, k, freqs_real, freqs_imag):
52
+ # Choose compute dtype: use fp32 only when inputs are fp32; otherwise keep input dtype for performance
53
+ compute_dtype = torch.float32 if q.dtype == torch.float32 else q.dtype
54
+
55
+ # Make sure q/k share the same dtype before casting to compute dtype
56
+ if k.dtype != q.dtype:
57
+ k = k.to(q.dtype)
58
+
59
+ q = _maybe_contiguous(_maybe_to_dtype(q, compute_dtype))
60
+ k = _maybe_contiguous(_maybe_to_dtype(k, compute_dtype))
61
+ freqs_real = _maybe_contiguous(_maybe_to_dtype(freqs_real, compute_dtype))
62
+ freqs_imag = _maybe_contiguous(_maybe_to_dtype(freqs_imag, compute_dtype))
63
+ return q, k, freqs_real, freqs_imag
64
+
65
+
66
+ @triton.jit
67
+ def _llama4_rope_kernel(
68
+ q_ptr,
69
+ k_ptr,
70
+ freqs_real_ptr,
71
+ freqs_imag_ptr,
72
+ q_row_stride,
73
+ k_row_stride,
74
+ q_head_stride,
75
+ k_head_stride,
76
+ freqs_row_stride,
77
+ seq_len,
78
+ batch_size,
79
+ imag_sign,
80
+ head_dim_half: tl.constexpr,
81
+ n_q_heads: tl.constexpr,
82
+ n_k_heads: tl.constexpr,
83
+ BLOCK_SIZE: tl.constexpr,
84
+ ):
85
+ """
86
+ H100-optimized RoPE kernel with improved parallelization across heads and dimensions.
87
+ Grid: (batch*seq, head)
88
+ """
89
+ # 2D grid
90
+ pid_bs = tl.program_id(0) # over batch*seq
91
+ pid_h = tl.program_id(1) # over heads
92
+
93
+ batch_idx = pid_bs // seq_len
94
+ seq_idx = pid_bs % seq_len
95
+
96
+ # Bounds check
97
+ if batch_idx >= batch_size or seq_idx >= seq_len:
98
+ return
99
+
100
+ # Base pointers for this (batch, seq) position
101
+ base_offset = batch_idx * seq_len + seq_idx
102
+ q_base = q_ptr + base_offset * q_row_stride
103
+ k_base = k_ptr + base_offset * k_row_stride
104
+
105
+ # Tiling over dim/2
106
+ for d_start in tl.static_range(0, head_dim_half, BLOCK_SIZE):
107
+ d_indices = d_start + tl.arange(0, BLOCK_SIZE)
108
+ mask_d = d_indices < head_dim_half
109
+
110
+ # Load frequencies once per tile (freqs layout: [seq_len, head_dim_half])
111
+ freq_idx = d_indices
112
+ freqs_real = tl.load(freqs_real_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
113
+ freqs_imag = tl.load(freqs_imag_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
114
+ freqs_imag = freqs_imag * imag_sign
115
+
116
+ # Process one query head per program in pid_h
117
+ if pid_h < n_q_heads:
118
+ q_head_ptr = q_base + pid_h * q_head_stride
119
+ q_real = tl.load(q_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
120
+ q_imag = tl.load(q_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
121
+
122
+ # Complex multiply with FMAs: (a+ib)*(c+i d) = (a*c - b*d) + i(a*d + b*c)
123
+ new_q_real = tl.math.fma(q_real, freqs_real, -(q_imag * freqs_imag))
124
+ new_q_imag = tl.math.fma(q_real, freqs_imag, q_imag * freqs_real)
125
+
126
+ tl.store(q_head_ptr + d_indices * 2, new_q_real, mask=mask_d)
127
+ tl.store(q_head_ptr + d_indices * 2 + 1, new_q_imag, mask=mask_d)
128
+
129
+ # Process one key head per program in pid_h
130
+ if pid_h < n_k_heads:
131
+ k_head_ptr = k_base + pid_h * k_head_stride
132
+ k_real = tl.load(k_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
133
+ k_imag = tl.load(k_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
134
+
135
+ new_k_real = tl.math.fma(k_real, freqs_real, -(k_imag * freqs_imag))
136
+ new_k_imag = tl.math.fma(k_real, freqs_imag, k_imag * freqs_real)
137
+
138
+ tl.store(k_head_ptr + d_indices * 2, new_k_real, mask=mask_d)
139
+ tl.store(k_head_ptr + d_indices * 2 + 1, new_k_imag, mask=mask_d)
140
+
141
+
142
+ def _select_kernel_meta(head_dim_half: int):
143
+ # Heuristic tuning for block size and num_warps
144
+ if head_dim_half >= 256:
145
+ return 128, 8
146
+ if head_dim_half >= 96:
147
+ return 128, 4
148
+ if head_dim_half >= 48:
149
+ return 64, 4
150
+ if head_dim_half >= 24:
151
+ return 32, 2
152
+ return 16, 2
153
+
154
+
155
+ def llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE: int = None, imag_sign: float = 1.0):
156
+ # Save original dtype for casting back
157
+ original_dtype = q.dtype
158
+
159
+ batch_size, seq_len, n_q_heads, head_dim = q.shape
160
+ _, _, n_k_heads, _ = k.shape
161
+ head_dim_half = head_dim // 2
162
+
163
+ # Prepare frequencies
164
+ freqs_real, freqs_imag = _prepare_freqs(freqs_cis, seq_len, head_dim_half)
165
+
166
+ # Cast to appropriate dtype and make contiguous only when needed
167
+ q, k, freqs_real, freqs_imag = _cast_and_contiguous(q, k, freqs_real, freqs_imag)
168
+
169
+ # H100-optimized meta-params
170
+ if BLOCK_SIZE is None:
171
+ BLOCK_SIZE, num_warps = _select_kernel_meta(head_dim_half)
172
+ else:
173
+ # Provide a default num_warps if caller pins BLOCK_SIZE
174
+ _, num_warps = _select_kernel_meta(head_dim_half)
175
+
176
+ # 2D grid: one program per (batch, seq, head)
177
+ n_heads_max = max(n_q_heads, n_k_heads)
178
+ grid = (batch_size * seq_len, n_heads_max)
179
+
180
+ # Launch kernel
181
+ _llama4_rope_kernel[grid](
182
+ q,
183
+ k,
184
+ freqs_real,
185
+ freqs_imag,
186
+ q.stride(1),
187
+ k.stride(1),
188
+ q.stride(2),
189
+ k.stride(2),
190
+ freqs_real.stride(0),
191
+ seq_len,
192
+ batch_size,
193
+ imag_sign,
194
+ head_dim_half,
195
+ n_q_heads,
196
+ n_k_heads,
197
+ BLOCK_SIZE,
198
+ num_warps=num_warps,
199
+ num_stages=2,
200
+ )
201
+
202
+ # Cast back to original dtype only if it differs from compute dtype
203
+ if q.dtype != original_dtype:
204
+ q = q.to(original_dtype)
205
+ if k.dtype != original_dtype:
206
+ k = k.to(original_dtype)
207
+
208
+ return q, k
209
+
210
+
211
+ class LigerLlama4RopeFunction(torch.autograd.Function):
212
+ @staticmethod
213
+ def forward(ctx, q, k, freqs_cis, BLOCK_SIZE: int = None):
214
+ q_out, k_out = llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE, imag_sign=1.0)
215
+ ctx.save_for_backward(freqs_cis.detach() if isinstance(freqs_cis, torch.Tensor) else freqs_cis)
216
+ ctx.BLOCK_SIZE = BLOCK_SIZE
217
+ return q_out, k_out
218
+
219
+ @staticmethod
220
+ def backward(ctx, dq, dk):
221
+ (freqs_cis,) = ctx.saved_tensors
222
+ BLOCK_SIZE = getattr(ctx, "BLOCK_SIZE", None)
223
+ # Use imag_sign=-1.0 for conjugate without materializing a new tensor
224
+ dq_out, dk_out = llama4_rope_forward(dq, dk, freqs_cis, BLOCK_SIZE, imag_sign=-1.0)
225
+ return dq_out, dk_out, None
@@ -10,9 +10,15 @@ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinea
10
10
  from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
11
11
  from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
12
12
  from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
13
+ from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
13
14
  from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
15
+ from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
16
+ from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
17
+ from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
14
18
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
15
19
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
20
+ from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
21
+ from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
16
22
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
17
23
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
18
24
  from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
@@ -29,6 +35,7 @@ if TYPE_CHECKING:
29
35
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
30
36
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
31
37
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
38
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
32
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
33
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
34
41
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
@@ -87,6 +94,7 @@ def __getattr__(name: str):
87
94
  "apply_liger_kernel_to_gemma3",
88
95
  "apply_liger_kernel_to_gemma3_text",
89
96
  "apply_liger_kernel_to_glm4",
97
+ "apply_liger_kernel_to_glm4v",
90
98
  "apply_liger_kernel_to_granite",
91
99
  "apply_liger_kernel_to_llama",
92
100
  "apply_liger_kernel_to_llava",
@@ -125,11 +133,17 @@ __all__ = [
125
133
  "LigerFusedAddRMSNorm",
126
134
  "LigerRMSNorm",
127
135
  "liger_rotary_pos_emb",
136
+ "liger_llama4_text_rotary_pos_emb",
137
+ "liger_llama4_vision_rotary_pos_emb",
128
138
  "LigerBlockSparseTop2MLP",
129
139
  "LigerPhi3SwiGLUMLP",
130
140
  "LigerQwen3MoeSwiGLUMLP",
131
141
  "LigerSwiGLUMLP",
132
142
  "LigerTVDLoss",
143
+ "LigerKLDIVLoss",
144
+ "LigerMultiTokenAttention",
145
+ "LigerSoftmax",
146
+ "LigerSparsemax",
133
147
  ]
134
148
 
135
149
  # Add transformer-dependent symbols only if available
@@ -144,6 +158,7 @@ if _TRANSFORMERS_AVAILABLE:
144
158
  "apply_liger_kernel_to_gemma3",
145
159
  "apply_liger_kernel_to_gemma3_text",
146
160
  "apply_liger_kernel_to_glm4",
161
+ "apply_liger_kernel_to_glm4v",
147
162
  "apply_liger_kernel_to_granite",
148
163
  "apply_liger_kernel_to_llama",
149
164
  "apply_liger_kernel_to_llava",
@@ -0,0 +1,5 @@
1
+ from liger_kernel.transformers.experimental.embedding import LigerEmbedding # noqa: F401
2
+
3
+ __all__ = [
4
+ "LigerEmbedding",
5
+ ]
@@ -64,6 +64,7 @@ def liger_fused_linear_cross_entropy(
64
64
  reduction: str = "mean",
65
65
  softcap: Optional[float] = None,
66
66
  return_z_loss: bool = False,
67
+ accum_dtype=None,
67
68
  ):
68
69
  loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
69
70
  input,
@@ -77,6 +78,7 @@ def liger_fused_linear_cross_entropy(
77
78
  reduction,
78
79
  softcap,
79
80
  return_z_loss,
81
+ accum_dtype,
80
82
  )
81
83
  if not return_z_loss:
82
84
  return loss
@@ -15,6 +15,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
15
15
  reduction: str = "mean",
16
16
  softcap: Optional[float] = None,
17
17
  return_z_loss: bool = False,
18
+ accum_dtype: Optional[torch.dtype] = None,
18
19
  ):
19
20
  super().__init__()
20
21
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -32,6 +33,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
32
33
  self.reduction = reduction
33
34
  self.softcap = softcap
34
35
  self.return_z_loss = return_z_loss
36
+ self.accum_dtype = accum_dtype
35
37
 
36
38
  def forward(self, lin_weight, _input, target, bias=None):
37
39
  loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
@@ -46,6 +48,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
46
48
  self.reduction,
47
49
  self.softcap,
48
50
  self.return_z_loss,
51
+ self.accum_dtype,
49
52
  )
50
53
  if not self.return_z_loss:
51
54
  return loss
@@ -0,0 +1,93 @@
1
+ """
2
+ Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
3
+ Supports both text and vision RoPE variants with fused operations for optimal performance.
4
+ """
5
+
6
+ import torch
7
+
8
+ from liger_kernel.ops.llama4_rope import LigerLlama4RopeFunction
9
+
10
+
11
+ def liger_llama4_text_rotary_pos_emb(
12
+ xq: torch.Tensor,
13
+ xk: torch.Tensor,
14
+ freqs_cis: torch.Tensor,
15
+ ) -> tuple[torch.Tensor, torch.Tensor]:
16
+ """
17
+ Liger-optimized implementation of Llama4 text rotary position embedding.
18
+
19
+ This implementation uses a fused Triton kernel for complex multiplication,
20
+ providing significant performance improvements over the original PyTorch implementation.
21
+
22
+ Args:
23
+ xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
24
+ xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
25
+ freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
26
+
27
+ Returns:
28
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
29
+ """
30
+ # Use fused Triton kernel for complex RoPE
31
+ return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
32
+
33
+
34
+ def liger_llama4_vision_rotary_pos_emb(
35
+ query: torch.Tensor,
36
+ key: torch.Tensor,
37
+ freqs_ci: torch.Tensor,
38
+ ) -> tuple[torch.Tensor, torch.Tensor]:
39
+ """
40
+ Liger-optimized implementation of Llama4 vision rotary position embedding.
41
+
42
+ This implementation uses the same fused Triton kernel as text RoPE,
43
+ providing performance improvements for vision transformer attention.
44
+
45
+ Args:
46
+ query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
47
+ key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
48
+ freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
49
+
50
+ Returns:
51
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
52
+ """
53
+ # Handle broadcasting for vision RoPE
54
+ if freqs_ci.dim() == 3:
55
+ try:
56
+ # Try the regular 3D expansion
57
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
58
+ except RuntimeError as e:
59
+ if "expand" in str(e) and "4" in str(e):
60
+ # The tensor is actually 4D internally, handle it differently
61
+ freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
62
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
63
+ else:
64
+ raise e
65
+ elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
66
+ # Squeeze the middle dimension to get (1, seq_len, head_dim//2)
67
+ freqs_ci = freqs_ci.squeeze(2)
68
+ elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
69
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
70
+ else:
71
+ raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
72
+
73
+ # Use the same fused kernel as text RoPE
74
+ return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
75
+
76
+
77
+ # Note: We only patch the functions, not the classes
78
+ # The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
79
+
80
+
81
+ # Convenience functions for monkey patching
82
+ def apply_liger_llama4_rope_full(modeling_module):
83
+ """
84
+ Apply Liger optimizations to Llama4 RoPE functions.
85
+
86
+ Args:
87
+ modeling_module: The transformers modeling module to patch
88
+ """
89
+ # Replace the text RoPE function
90
+ modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
91
+
92
+ # Replace the vision RoPE function
93
+ modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import CausalLMOutputWithPast
9
+ from transformers.utils.deprecation import deprecate_kwarg
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+
14
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
32
+ r"""
33
+ Args:
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+
39
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
40
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
41
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
42
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
43
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
44
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
45
+
46
+ Returns:
47
+
48
+ Example:
49
+
50
+ ```python
51
+ >>> from PIL import Image
52
+ >>> from transformers import AutoTokenizer, Glm4vForConditionalGeneration
53
+
54
+ >>> MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
55
+ >>> messages = [
56
+ {
57
+ "role": "user",
58
+ "content": [
59
+ {
60
+ "type": "image",
61
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
62
+ },
63
+ {
64
+ "type": "text",
65
+ "text": "describe this image"
66
+ }
67
+ ],
68
+ }
69
+ ]
70
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
71
+ >>> model = Glm4vForConditionalGeneration.from_pretrained(
72
+ pretrained_model_name_or_path=MODEL_PATH,
73
+ torch_dtype=torch.bfloat16,
74
+ device_map="auto",
75
+ )
76
+ >>> inputs = processor.apply_chat_template(
77
+ messages,
78
+ tokenize=True,
79
+ add_generation_prompt=True,
80
+ return_dict=True,
81
+ return_tensors="pt"
82
+ ).to(model.device)
83
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
84
+ output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
85
+ <think>Got it, let's describe the image. First, there's a vintage car, specifically a Volkswagen Beetle
86
+ ```"""
87
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
88
+ output_hidden_states = (
89
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
90
+ )
91
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
92
+
93
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
94
+ outputs = self.model(
95
+ input_ids=input_ids,
96
+ attention_mask=attention_mask,
97
+ position_ids=position_ids,
98
+ past_key_values=past_key_values,
99
+ inputs_embeds=inputs_embeds,
100
+ use_cache=use_cache,
101
+ output_attentions=output_attentions,
102
+ output_hidden_states=output_hidden_states,
103
+ return_dict=return_dict,
104
+ cache_position=cache_position,
105
+ **kwargs,
106
+ )
107
+
108
+ hidden_states = outputs[0]
109
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
110
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
111
+ kept_hidden_states = hidden_states[:, slice_indices, :]
112
+
113
+ shift_labels = kwargs.pop("shift_labels", None)
114
+ logits = None
115
+ loss = None
116
+
117
+ if skip_logits and labels is None and shift_labels is None:
118
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
119
+
120
+ if skip_logits is None:
121
+ # By default, if in training mode, don't materialize logits
122
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
123
+
124
+ if skip_logits:
125
+ loss = LigerForCausalLMLoss(
126
+ hidden_states=kept_hidden_states,
127
+ lm_head_weight=self.lm_head.weight,
128
+ labels=labels,
129
+ shift_labels=shift_labels,
130
+ hidden_size=self.config.hidden_size,
131
+ **kwargs,
132
+ )
133
+
134
+ else:
135
+ logits = self.lm_head(kept_hidden_states)
136
+ if labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ vocab_size=self.config.vocab_size,
141
+ **kwargs,
142
+ )
143
+
144
+ return CausalLMOutputWithPast(
145
+ loss=loss,
146
+ logits=logits,
147
+ past_key_values=outputs.past_key_values,
148
+ hidden_states=outputs.hidden_states,
149
+ attentions=outputs.attentions,
150
+ )
@@ -13,6 +13,7 @@ def fixed_fused_linear_cross_entropy(
13
13
  num_items_in_batch: Optional[int] = None,
14
14
  ignore_index: int = -100,
15
15
  final_logit_softcapping: Optional[float] = None,
16
+ accum_dtype: Optional[torch.dtype] = None,
16
17
  **kwargs,
17
18
  ):
18
19
  reduction = "sum" if num_items_in_batch is not None else "mean"
@@ -23,6 +24,7 @@ def fixed_fused_linear_cross_entropy(
23
24
  reduction=reduction,
24
25
  ignore_index=ignore_index,
25
26
  softcap=final_logit_softcapping,
27
+ accum_dtype=accum_dtype,
26
28
  )
27
29
  if reduction == "sum":
28
30
  loss = loss / num_items_in_batch
@@ -190,7 +190,9 @@ def lce_forward(
190
190
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
191
191
  )
192
192
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
193
-
193
+ # Filter out accum_dtype from kwargs for model call as MllamaTextModel doesn't accept it in transformers 4.49.0
194
+ # but preserve it for loss function calls
195
+ model_kwargs = {k: v for k, v in kwargs.items() if k != "accum_dtype"}
194
196
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
195
197
  outputs = self.model(
196
198
  input_ids=input_ids,
@@ -206,7 +208,7 @@ def lce_forward(
206
208
  output_hidden_states=output_hidden_states,
207
209
  return_dict=return_dict,
208
210
  cache_position=cache_position,
209
- **kwargs,
211
+ **model_kwargs,
210
212
  )
211
213
 
212
214
  hidden_states = outputs[0]
@@ -5,131 +5,12 @@ from typing import Union
5
5
 
6
6
  import torch
7
7
 
8
- from torch.nn import CrossEntropyLoss
8
+ from transformers.modeling_outputs import BaseModelOutputWithPast
9
9
  from transformers.modeling_outputs import CausalLMOutputWithPast
10
- from transformers.utils.deprecation import deprecate_kwarg
11
10
 
12
- from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
13
11
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
12
 
15
13
 
16
- def lce_forward_deprecated(
17
- self,
18
- input_ids: torch.LongTensor = None,
19
- attention_mask: Optional[torch.Tensor] = None,
20
- position_ids: Optional[torch.LongTensor] = None,
21
- past_key_values: Optional[List[torch.FloatTensor]] = None,
22
- inputs_embeds: Optional[torch.FloatTensor] = None,
23
- labels: Optional[torch.LongTensor] = None,
24
- use_cache: Optional[bool] = None,
25
- output_attentions: Optional[bool] = None,
26
- output_hidden_states: Optional[bool] = None,
27
- return_dict: Optional[bool] = None,
28
- cache_position: Optional[torch.LongTensor] = None,
29
- skip_logits: Optional[bool] = None,
30
- ) -> Union[Tuple, CausalLMOutputWithPast]:
31
- r"""
32
- Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
33
-
34
-
35
- Args:
36
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
37
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
38
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
39
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
40
-
41
- Returns:
42
-
43
- Example:
44
-
45
- ```python
46
- >>> from transformers import AutoTokenizer, Phi3ForCausalLM
47
-
48
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
49
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
50
-
51
- >>> prompt = "This is an example script ."
52
- >>> inputs = tokenizer(prompt, return_tensors="pt")
53
-
54
- >>> # Generate
55
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
56
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
57
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
58
- ```"""
59
-
60
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
- output_hidden_states = (
62
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
- )
64
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
-
66
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
- outputs = self.model(
68
- input_ids=input_ids,
69
- attention_mask=attention_mask,
70
- position_ids=position_ids,
71
- past_key_values=past_key_values,
72
- inputs_embeds=inputs_embeds,
73
- use_cache=use_cache,
74
- output_attentions=output_attentions,
75
- output_hidden_states=output_hidden_states,
76
- return_dict=return_dict,
77
- )
78
-
79
- hidden_states = outputs[0]
80
-
81
- loss = None
82
- logits = None
83
-
84
- if skip_logits and labels is None:
85
- raise ValueError("skip_logits is True, but labels is None")
86
-
87
- if skip_logits is None:
88
- # By default, if in training mode, don't materialize logits
89
- skip_logits = self.training and labels is not None
90
-
91
- if skip_logits:
92
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
93
- shift_labels = labels[..., 1:].contiguous()
94
-
95
- # flatten tokens
96
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
97
- shift_labels = shift_labels.view(-1)
98
-
99
- lce = LigerFusedLinearCrossEntropyLoss()
100
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
101
- else:
102
- logits = self.lm_head(hidden_states)
103
-
104
- loss = None
105
- if labels is not None:
106
- # Upcast to float if we need to compute the loss to avoid potential precision issues
107
- logits = logits.float()
108
- # Shift so that tokens < n predict n
109
- shift_logits = logits[..., :-1, :].contiguous()
110
- shift_labels = labels[..., 1:].contiguous()
111
- # Flatten the tokens
112
- loss_fct = CrossEntropyLoss()
113
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
114
- shift_labels = shift_labels.view(-1)
115
- # Enable model parallelism
116
- shift_labels = shift_labels.to(shift_logits.device)
117
- loss = loss_fct(shift_logits, shift_labels)
118
-
119
- if not return_dict:
120
- output = (logits,) + outputs[1:]
121
- return (loss,) + output if loss is not None else output
122
-
123
- return CausalLMOutputWithPast(
124
- loss=loss,
125
- logits=logits,
126
- past_key_values=outputs.past_key_values,
127
- hidden_states=outputs.hidden_states,
128
- attentions=outputs.attentions,
129
- )
130
-
131
-
132
- @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
133
14
  def lce_forward(
134
15
  self,
135
16
  input_ids: torch.LongTensor = None,
@@ -148,73 +29,41 @@ def lce_forward(
148
29
  **kwargs,
149
30
  ) -> Union[Tuple, CausalLMOutputWithPast]:
150
31
  r"""
151
- Args:
152
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
153
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
154
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
155
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
156
-
157
- logits_to_keep (`int` or `torch.Tensor`, *optional*):
158
- If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
159
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
160
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
161
- If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
162
- This is useful when using packed tensor format (single dimension for batch and sequence length).
163
-
164
- Returns:
165
-
166
32
  Example:
167
33
 
168
34
  ```python
169
35
  >>> from transformers import AutoTokenizer, Phi3ForCausalLM
170
36
 
171
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
172
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
37
+ >>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
38
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
173
39
 
174
- >>> prompt = "This is an example script ."
40
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
175
41
  >>> inputs = tokenizer(prompt, return_tensors="pt")
176
42
 
177
43
  >>> # Generate
178
44
  >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
179
45
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
180
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
46
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
181
47
  ```"""
182
48
 
183
- from transformers.models.phi3.modeling_phi3 import logging
184
-
185
- logger = logging.get_logger(__name__)
186
-
187
- if (
188
- use_cache
189
- and self.config.rope_scaling
190
- and cache_position is not None
191
- and cache_position[0] == self.config.original_max_position_embeddings
192
- ):
193
- logger.warning(
194
- f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
195
- )
196
-
197
49
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
198
50
  output_hidden_states = (
199
51
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
200
52
  )
201
53
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
202
54
 
203
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
204
- outputs = self.model(
55
+ outputs: BaseModelOutputWithPast = self.model(
205
56
  input_ids=input_ids,
206
57
  attention_mask=attention_mask,
207
58
  position_ids=position_ids,
208
59
  past_key_values=past_key_values,
209
60
  inputs_embeds=inputs_embeds,
210
61
  use_cache=use_cache,
211
- output_attentions=output_attentions,
212
- output_hidden_states=output_hidden_states,
213
- return_dict=return_dict,
62
+ cache_position=cache_position,
214
63
  **kwargs,
215
64
  )
216
65
 
217
- hidden_states = outputs[0]
66
+ hidden_states = outputs.last_hidden_state
218
67
  # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
219
68
  slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
220
69
  kept_hidden_states = hidden_states[:, slice_indices, :]
@@ -26,7 +26,6 @@ from liger_kernel.transformers.model.mistral import lce_forward as mistral_lce_f
26
26
  from liger_kernel.transformers.model.mixtral import lce_forward as mixtral_lce_forward
27
27
  from liger_kernel.transformers.model.mixtral import lce_forward_deprecated as mixtral_lce_forward_deprecated
28
28
  from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
29
- from liger_kernel.transformers.model.phi3 import lce_forward_deprecated as phi3_lce_forward_deprecated
30
29
  from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
31
30
  from liger_kernel.transformers.model.qwen2 import lce_forward_deprecated as qwen2_lce_forward_deprecated
32
31
  from liger_kernel.transformers.model.smollm3 import lce_forward as smollm3_lce_forward
@@ -449,7 +448,7 @@ def apply_liger_kernel_to_llava(
449
448
 
450
449
 
451
450
  def apply_liger_kernel_to_llama4(
452
- rope: bool = False,
451
+ rope: bool = True,
453
452
  cross_entropy: bool = False,
454
453
  fused_linear_cross_entropy: bool = True,
455
454
  rms_norm: bool = True,
@@ -485,7 +484,9 @@ def apply_liger_kernel_to_llama4(
485
484
  from liger_kernel.transformers.model.llama4 import lce_forward as llama4_lce_forward
486
485
 
487
486
  if rope:
488
- raise NotImplementedError("liger_rotary_pos_emb is not available for Llama4 models.")
487
+ from liger_kernel.transformers.llama4_rope import apply_liger_llama4_rope_full
488
+
489
+ apply_liger_llama4_rope_full(modeling_llama4)
489
490
  if rms_norm:
490
491
  modeling_llama4.Llama4TextRMSNorm = LigerRMSNorm
491
492
  if swiglu:
@@ -1675,25 +1676,14 @@ def apply_liger_kernel_to_phi3(
1675
1676
  if swiglu:
1676
1677
  modeling_phi3.Phi3MLP = LigerPhi3SwiGLUMLP
1677
1678
  if cross_entropy:
1678
- if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
1679
- from transformers.loss.loss_utils import nn
1679
+ from transformers.loss.loss_utils import nn
1680
1680
 
1681
- nn.functional.cross_entropy = liger_cross_entropy
1682
- else:
1683
- logger.warning(TRANSFORMER_DEPRECATION_WARNING)
1684
- modeling_phi3.CrossEntropyLoss = LigerCrossEntropyLoss
1681
+ nn.functional.cross_entropy = liger_cross_entropy
1685
1682
  if fused_linear_cross_entropy:
1686
- if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
1687
- if model is not None:
1688
- model.forward = MethodType(phi3_lce_forward, model)
1689
- else:
1690
- modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
1691
- else: # if version < 4.46.1
1692
- logger.warning(TRANSFORMER_DEPRECATION_WARNING)
1693
- if model is not None:
1694
- model.forward = MethodType(phi3_lce_forward_deprecated, model)
1695
- else:
1696
- modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward_deprecated
1683
+ if model is not None:
1684
+ model.forward = MethodType(phi3_lce_forward, model)
1685
+ else:
1686
+ modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
1697
1687
 
1698
1688
  if model is not None:
1699
1689
  # The model instance already exists, so we need to additionally patch the
@@ -1849,6 +1839,95 @@ def apply_liger_kernel_to_glm4(
1849
1839
  _patch_rms_norm_module(decoder_layer.post_mlp_layernorm, in_place=False)
1850
1840
 
1851
1841
 
1842
+ def apply_liger_kernel_to_glm4v(
1843
+ rope: bool = False,
1844
+ cross_entropy: bool = False,
1845
+ fused_linear_cross_entropy: bool = True,
1846
+ rms_norm: bool = True,
1847
+ swiglu: bool = True,
1848
+ model: PreTrainedModel = None,
1849
+ ) -> None:
1850
+ """
1851
+ Apply Liger kernels to replace original implementation in HuggingFace GLM-4v models.
1852
+
1853
+ Args:
1854
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is False.
1855
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
1856
+ fused_linear_cross_entropy (bool):
1857
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
1858
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
1859
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
1860
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
1861
+ swiglu (bool): Whether to apply Liger's SwiGLU Glm4MLP. Default is True.
1862
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
1863
+ loaded. Default is None.
1864
+ """
1865
+ assert not (cross_entropy and fused_linear_cross_entropy), (
1866
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
1867
+ )
1868
+
1869
+ from transformers.models.glm4v import modeling_glm4v
1870
+ from transformers.models.glm4v.modeling_glm4v import Glm4vForConditionalGeneration
1871
+ from transformers.models.glm4v.modeling_glm4v import Glm4vModel
1872
+ from transformers.models.glm4v.modeling_glm4v import Glm4vTextModel
1873
+ from transformers.models.glm4v.modeling_glm4v import Glm4vVisionModel
1874
+
1875
+ from liger_kernel.transformers.model.glm4v import lce_forward as glm4v_lce_forward
1876
+ from liger_kernel.transformers.rms_norm import LigerRMSNormForGlm4
1877
+
1878
+ if rope:
1879
+ raise NotImplementedError("liger_rotary_pos_emb is not available for Glm4 models.")
1880
+ if rms_norm:
1881
+ modeling_glm4v.Glm4vRMSNorm = LigerRMSNormForGlm4
1882
+ if cross_entropy:
1883
+ from transformers.loss.loss_utils import nn
1884
+
1885
+ nn.functional.cross_entropy = liger_cross_entropy
1886
+ if fused_linear_cross_entropy:
1887
+ if model is not None:
1888
+ model.forward = MethodType(glm4v_lce_forward, model)
1889
+ else:
1890
+ modeling_glm4v.Glm4vForConditionalGeneration.forward = glm4v_lce_forward
1891
+
1892
+ if model is not None:
1893
+ # The model instance already exists, so we need to additionally patch the
1894
+ # instance variables that reference already-instantiated modules
1895
+ if isinstance(model, (Glm4vForConditionalGeneration, Glm4vModel)):
1896
+ # Note: language_model and visual properties can be accessed throught conditional class for BC.
1897
+ # Not sure if it is subject to changes in the future.
1898
+ # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4v/modeling_glm4v.py#L1305
1899
+ text_model: Glm4vTextModel = model.language_model
1900
+ vision_model: Glm4vVisionModel = model.visual
1901
+ elif isinstance(model, Glm4vTextModel):
1902
+ text_model: Glm4vTextModel = model
1903
+ vision_model = None
1904
+ else:
1905
+ # Note: Currently there's no support for patching vision model only. Feel free to raise an issue if needed.
1906
+ raise TypeError(
1907
+ f"Unsupported glm4.1v model type. `model` must be `Glm4VLForConditionalGeneration`, `Glm4vVisionModel` or `Glm4vTextModel`. Got: {type(model)}"
1908
+ )
1909
+
1910
+ if vision_model is not None:
1911
+ for vision_block in vision_model.blocks:
1912
+ if rms_norm:
1913
+ _patch_rms_norm_module(vision_block.norm1)
1914
+ _patch_rms_norm_module(vision_block.norm2)
1915
+ if swiglu:
1916
+ _patch_swiglu_module(vision_block.mlp, LigerSwiGLUMLP)
1917
+
1918
+ if text_model is not None:
1919
+ if rms_norm:
1920
+ _patch_rms_norm_module(text_model.norm)
1921
+ for decoder_layer in text_model.layers:
1922
+ if swiglu:
1923
+ _patch_swiglu_module(decoder_layer.mlp, LigerPhi3SwiGLUMLP)
1924
+ if rms_norm:
1925
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
1926
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1927
+ _patch_rms_norm_module(decoder_layer.post_self_attn_layernorm)
1928
+ _patch_rms_norm_module(decoder_layer.post_mlp_layernorm)
1929
+
1930
+
1852
1931
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
1853
1932
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
1854
1933
  "gemma": apply_liger_kernel_to_gemma,
@@ -1856,6 +1935,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
1856
1935
  "gemma3_text": apply_liger_kernel_to_gemma3_text,
1857
1936
  "gemma3": apply_liger_kernel_to_gemma3,
1858
1937
  "glm4": apply_liger_kernel_to_glm4,
1938
+ "glm4v": apply_liger_kernel_to_glm4v,
1859
1939
  "llama": apply_liger_kernel_to_llama,
1860
1940
  "llama4_text": apply_liger_kernel_to_llama4,
1861
1941
  "llama4": apply_liger_kernel_to_llama4,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: liger_kernel
3
- Version: 0.6.1
3
+ Version: 0.6.2
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -400,7 +400,7 @@ loss.backward()
400
400
  </a>
401
401
  </div>
402
402
  <div style="display: block;">
403
- <a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
403
+ <a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml">
404
404
  <img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml/badge.svg?event=schedule" alt="Build">
405
405
  </a>
406
406
  </div>
@@ -5,7 +5,7 @@ liger_kernel/chunked_loss/README.md,sha256=0FmkFC3hKBqyoDT5uTlIYmrvRkF-EOCR1y-EB
5
5
  liger_kernel/chunked_loss/__init__.py,sha256=J5_jNnzZ4gZmA38W5f_4oab7xMoNk1Xy-yh3X_Xlf-s,714
6
6
  liger_kernel/chunked_loss/cosine_similarity_loss.py,sha256=pZ07OQ6RI-c8uk96tDRlUXdt31-da7yWhfwircZlKRw,4198
7
7
  liger_kernel/chunked_loss/cpo_loss.py,sha256=Gzz1eU4kgcbdubFVRy55e8A1Cr-r45UgNicXwZIjmBU,5454
8
- liger_kernel/chunked_loss/dpo_loss.py,sha256=tapMiNdI8_ufW55iG0Ud4dmiW39gu1DzlvtoOCHrdGg,6259
8
+ liger_kernel/chunked_loss/dpo_loss.py,sha256=I83khNs3QQjuhr8U3NIOAACkbse6DNiBV-TulPZ0lXw,9006
9
9
  liger_kernel/chunked_loss/functional.py,sha256=-XPDbLml9dHmvoSU2VNTUrBDFehuzvuAGPikVetBMtI,1132
10
10
  liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=ooR-qnZCyWJN935oHCSWLaKKKyaYERyhNczRGi1VOiw,11935
11
11
  liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=AA19cpv6D8mo5RbSK5GRCcZoOSnpxV_Z1eJlAsC5eic,13434
@@ -20,7 +20,7 @@ liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
20
20
  liger_kernel/ops/cross_entropy.py,sha256=e8THGnhOcy_0SbOLABx67HEM7-B8a8pG7nDKbCRpQKM,19123
21
21
  liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
22
22
  liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
23
- liger_kernel/ops/fused_linear_cross_entropy.py,sha256=5fbGhN85n3zf0uIdJ7PYHWIRzTf0VTFiS0ARtOmqIP0,11020
23
+ liger_kernel/ops/fused_linear_cross_entropy.py,sha256=YFPXUOIZpM_4r7AlfjkwOgDhAE_0H2mFjdKtx8cv-T4,11594
24
24
  liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
25
25
  liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
26
26
  liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
@@ -29,6 +29,7 @@ liger_kernel/ops/grpo_loss.py,sha256=anRnv7k1-AV3pCC6_TqP0GMg78YYUfRAJrbpx6PVhl0
29
29
  liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
30
30
  liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
31
31
  liger_kernel/ops/layer_norm.py,sha256=BHPDuaogMTfIJkBJdqLZbOQouNWTf3fJVyOQOD7blCE,9901
32
+ liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
32
33
  liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
33
34
  liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
34
35
  liger_kernel/ops/rms_norm.py,sha256=DtvsWN5YktFAoc0JYSAwVeoZfryBFJlX-ipU7ooP01A,18891
@@ -40,14 +41,14 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
40
41
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
41
42
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
42
43
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
43
- liger_kernel/transformers/__init__.py,sha256=VoHQp5emsAJAouql37RuvtGFeZCoMIHgoIxfsyYMTc8,7564
44
+ liger_kernel/transformers/__init__.py,sha256=jkokP69dbCzUDTz-H6QowB5xNEflmgQ7Zv-_4MVuxpY,8440
44
45
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
45
46
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
46
47
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
47
48
  liger_kernel/transformers/fsdp.py,sha256=CUiyjTmjkjY7pLXQv8ly9rnzgXw6529csd9pvtJNMYc,3096
48
- liger_kernel/transformers/functional.py,sha256=PXnACWD7kzgge50RdOUuvtmOTS7DVkkrL7mm0cX5bOc,7734
49
+ liger_kernel/transformers/functional.py,sha256=XkYk_zb8xsRMtZtouYmlX_Tyyr-QA3WigSPF36DECYk,7777
49
50
  liger_kernel/transformers/fused_add_rms_norm.py,sha256=7_Bzg-x6lLe6W1qG2DtjDALhEpNZlC6N5GppEs9cTYY,1199
50
- liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=O8Sg5BT81nTaY9fSGoOY9dOD9ekibwwiuXhdUHaxntQ,1742
51
+ liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=_5AaQT2mcUEO2T7JGJYQafz6A1Efn9d3-Z3xFO_Xe0o,1862
51
52
  liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
52
53
  liger_kernel/transformers/fused_neighborhood_attention.py,sha256=TxYDUAt9B6WSP14aJP66C_2Mbds2sSIPGnamhUSTrC8,7957
53
54
  liger_kernel/transformers/geglu.py,sha256=mrgqzIUVd6lN7fkDKLkw5YaESDxDtFgbot430WwPVOQ,1107
@@ -56,7 +57,8 @@ liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-
56
57
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
57
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
58
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
59
- liger_kernel/transformers/monkey_patch.py,sha256=tXKo4EKVp3szpdqPh051oLZFrlg_hCbWRv0RpSX_kfY,89238
60
+ liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
+ liger_kernel/transformers/monkey_patch.py,sha256=pG3Yf0fMg4_0pAncc2wLtpdfXvmC5CROpNJ43-MmElM,93075
60
62
  liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
61
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
62
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -66,22 +68,24 @@ liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsA
66
68
  liger_kernel/transformers/swiglu.py,sha256=LZ8YeLIdv2k46JleZMjzubGk98smt6t780kSgcVLsQk,3454
67
69
  liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
68
70
  liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
71
+ liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
69
72
  liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
70
73
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
74
  liger_kernel/transformers/model/gemma.py,sha256=mNX-mIwV6jI4zfbrUHp0C468pOmjzsL7mjXipGt-eS0,10007
72
75
  liger_kernel/transformers/model/gemma2.py,sha256=R_JFPyWTk7RyA7D05ZiIaNO5pX8gWcvfWf-6rdCRMxs,11296
73
76
  liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2GhirHm4tpCf9ApAc,12785
74
77
  liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
78
+ liger_kernel/transformers/model/glm4v.py,sha256=zbV3agptEYpGAD0eeCRwIpJAhJUviTT5xQbbLlgpVnc,5957
75
79
  liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
76
80
  liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
77
81
  liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
78
- liger_kernel/transformers/model/loss_utils.py,sha256=WWAMdiONPaXpIvxyOim_0igLrYh0yyOok5Q9_L9xvZw,1787
82
+ liger_kernel/transformers/model/loss_utils.py,sha256=YiYsmRHIuoRnFjGpwyIM18DCsrPPmO32YWMWqkEm1UQ,1867
79
83
  liger_kernel/transformers/model/mistral.py,sha256=syYNL8dLThX2-4uC13Lu0krEZ5zw3InviDUR3AJmc-I,5500
80
84
  liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjYfr1xwRYtsHX0o,11396
81
- liger_kernel/transformers/model/mllama.py,sha256=my29NXk-p6ckQaP8qDIN8e318yI_9mQZHt38MV3SqLY,11280
85
+ liger_kernel/transformers/model/mllama.py,sha256=NhJtlXiuszJHo5YSJOvSGYH47ly7Hse8r-5BKznBg9s,11522
82
86
  liger_kernel/transformers/model/olmo2.py,sha256=6L_bo-ZUgO1lYppdJneOtYxNIylQKS6BiGp13g7Uq9E,5259
83
87
  liger_kernel/transformers/model/paligemma.py,sha256=xuIx3oOwTgftU3jqLfWOxUxgCLBNJh0yNC21an9qDjo,18773
84
- liger_kernel/transformers/model/phi3.py,sha256=zAzBVNOA16B16yy2HWsEgOMHhLoYkpWOWPgBT4z95WI,10655
88
+ liger_kernel/transformers/model/phi3.py,sha256=AwScxUe3LjmHHyQg4gW9bMoUI7uA6fUEMXJ3YhBiHtQ,4046
85
89
  liger_kernel/transformers/model/qwen2.py,sha256=3fpOTEOkniQmkCfN1KUa3KhseHJVzhj2Ht9FdYPUy-E,9962
86
90
  liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSWrwW4B9dYY2uOZDwg,6331
87
91
  liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
@@ -92,9 +96,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
92
96
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
93
97
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
94
98
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
95
- liger_kernel-0.6.1.dist-info/licenses/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
96
- liger_kernel-0.6.1.dist-info/licenses/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
97
- liger_kernel-0.6.1.dist-info/METADATA,sha256=_of0e7dKufrp2upc26bnv4VLBZvAbcdDA8Fssm3mIfk,24545
98
- liger_kernel-0.6.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
99
- liger_kernel-0.6.1.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
100
- liger_kernel-0.6.1.dist-info/RECORD,,
99
+ liger_kernel-0.6.2.dist-info/licenses/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
100
+ liger_kernel-0.6.2.dist-info/licenses/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
101
+ liger_kernel-0.6.2.dist-info/METADATA,sha256=vW1xVHcl4MfLYAF86zLMpZM_OVtBALaNsD4mZTRI0N8,24547
102
+ liger_kernel-0.6.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
103
+ liger_kernel-0.6.2.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
104
+ liger_kernel-0.6.2.dist-info/RECORD,,