liger-kernel 0.5.9__py3-none-any.whl → 0.5.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/dpo_loss.py +1 -1
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/jsd_loss.py +2 -2
- liger_kernel/ops/dyt.py +113 -179
- liger_kernel/ops/grpo_loss.py +310 -0
- liger_kernel/ops/sparsemax.py +167 -0
- liger_kernel/transformers/__init__.py +5 -0
- liger_kernel/transformers/dyt.py +5 -3
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +8 -0
- liger_kernel/transformers/grpo_loss.py +98 -0
- liger_kernel/transformers/model/gemma.py +0 -8
- liger_kernel/transformers/model/gemma2.py +0 -6
- liger_kernel/transformers/model/gemma3.py +0 -8
- liger_kernel/transformers/model/glm4.py +0 -6
- liger_kernel/transformers/model/llama.py +56 -11
- liger_kernel/transformers/model/llava.py +0 -8
- liger_kernel/transformers/model/mistral.py +0 -6
- liger_kernel/transformers/model/mixtral.py +0 -8
- liger_kernel/transformers/model/mllama.py +0 -7
- liger_kernel/transformers/model/olmo2.py +0 -6
- liger_kernel/transformers/model/paligemma.py +0 -8
- liger_kernel/transformers/model/phi3.py +0 -8
- liger_kernel/transformers/model/qwen2.py +0 -8
- liger_kernel/transformers/model/qwen2_5_vl.py +0 -6
- liger_kernel/transformers/model/qwen2_vl.py +0 -6
- liger_kernel/transformers/model/qwen3.py +0 -6
- liger_kernel/transformers/model/qwen3_moe.py +128 -0
- liger_kernel/transformers/monkey_patch.py +122 -13
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +21 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/utils.py +11 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.5.10.dist-info}/METADATA +34 -20
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.5.10.dist-info}/RECORD +39 -33
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.5.10.dist-info}/WHEEL +1 -1
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.5.10.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.5.10.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.5.10.dist-info}/top_level.txt +0 -0
|
@@ -128,7 +128,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
128
128
|
compute_nll_loss: bool = False,
|
|
129
129
|
compiled: bool = True,
|
|
130
130
|
use_ref_model: bool = True,
|
|
131
|
-
average_log_prob: bool =
|
|
131
|
+
average_log_prob: bool = False,
|
|
132
132
|
chunk_size: int = 1,
|
|
133
133
|
):
|
|
134
134
|
"""
|
|
@@ -222,7 +222,6 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
|
222
222
|
(_ref_chosen_input_chunks if use_ref_model else [None] * len(_chosen_input_chunks)),
|
|
223
223
|
(_ref_rejected_input_chunks if use_ref_model else [None] * len(_rejected_input_chunks)),
|
|
224
224
|
(_chosen_nll_target_chunks if nll_target is not None else [None] * len(_chosen_input_chunks)),
|
|
225
|
-
strict=False,
|
|
226
225
|
):
|
|
227
226
|
input_chunk = torch.cat([chosen_input_chunk, rejected_input_chunk], dim=0)
|
|
228
227
|
ref_input_chunk = (
|
|
@@ -150,8 +150,8 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
|
|
|
150
150
|
teacher_input: torch.Tensor,
|
|
151
151
|
teacher_weight: torch.Tensor,
|
|
152
152
|
true_labels: torch.LongTensor,
|
|
153
|
-
student_bias: torch.Tensor,
|
|
154
|
-
teacher_bias: torch.Tensor,
|
|
153
|
+
student_bias: torch.Tensor = None,
|
|
154
|
+
teacher_bias: torch.Tensor = None,
|
|
155
155
|
) -> torch.Tensor:
|
|
156
156
|
"""
|
|
157
157
|
Compute the JSD distillation loss.
|
liger_kernel/ops/dyt.py
CHANGED
|
@@ -4,7 +4,8 @@ import torch
|
|
|
4
4
|
import triton
|
|
5
5
|
import triton.language as tl
|
|
6
6
|
|
|
7
|
-
from
|
|
7
|
+
from triton.language.extra.libdevice import tanh
|
|
8
|
+
|
|
8
9
|
from liger_kernel.ops.utils import compare_version
|
|
9
10
|
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
11
|
from liger_kernel.ops.utils import infer_device
|
|
@@ -20,187 +21,126 @@ else:
|
|
|
20
21
|
from triton.language.math import tanh
|
|
21
22
|
|
|
22
23
|
|
|
24
|
+
# @triton.autotune([triton.Config({"BLOCK_N":bn}, num_stages=ns, num_warps=nw)
|
|
25
|
+
# for bn in [1024, 2048, 4096]
|
|
26
|
+
# for ns in [1,2,4]
|
|
27
|
+
# for nw in [4, 8, 16, 32]
|
|
28
|
+
# ],
|
|
29
|
+
# key=['N'])
|
|
23
30
|
@triton.jit
|
|
24
|
-
def _dyt_fwd_kernel(
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
):
|
|
35
|
-
"""
|
|
36
|
-
Reference:
|
|
37
|
-
https://arxiv.org/abs/2503.10622
|
|
38
|
-
|
|
39
|
-
Shapes:
|
|
40
|
-
- x: (BT, C)
|
|
41
|
-
- alpha: (1)
|
|
42
|
-
- gamma: (C)
|
|
43
|
-
- beta: (C)
|
|
44
|
-
"""
|
|
45
|
-
row_idx = tl.program_id(0)
|
|
46
|
-
offsets = tl.arange(0, BLOCK_SIZE)
|
|
47
|
-
mask = offsets < n_cols
|
|
48
|
-
|
|
49
|
-
x_ptr += row_idx * x_row_stride
|
|
50
|
-
y_ptr += row_idx * y_row_stride
|
|
51
|
-
|
|
52
|
-
alpha = tl.load(alpha_ptr)
|
|
53
|
-
gamma = tl.load(gamma_ptr + offsets, mask=mask)
|
|
54
|
-
beta = tl.load(beta_ptr + offsets, mask=mask)
|
|
55
|
-
x = tl.load(x_ptr + offsets, mask=mask)
|
|
56
|
-
y = gamma * tanh((alpha * x).cast(tl.float32)) + beta
|
|
57
|
-
tl.store(y_ptr + offsets, y, mask=mask)
|
|
31
|
+
def _dyt_fwd_kernel(X, Y, Alpha, Gamma, Beta, HAVE_BETA: tl.constexpr, N: tl.constexpr, BLOCK_N: tl.constexpr = 1024):
|
|
32
|
+
col = tl.cast(tl.program_id(0), tl.int64) * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
33
|
+
mask = col < N
|
|
34
|
+
row_id = tl.cast(tl.program_id(1), tl.int64)
|
|
35
|
+
|
|
36
|
+
X += row_id * N
|
|
37
|
+
Y += row_id * N
|
|
38
|
+
alpha = tl.load(Alpha).to(tl.float32)
|
|
39
|
+
|
|
40
|
+
gamma = tl.load(Gamma + col, mask=mask, other=0.0).to(tl.float32)
|
|
58
41
|
|
|
42
|
+
x = tl.load(X + col, mask=mask, other=0.0).to(tl.float32)
|
|
59
43
|
|
|
44
|
+
tanh_x = tanh(alpha * x)
|
|
45
|
+
y = tanh_x * gamma
|
|
46
|
+
if HAVE_BETA:
|
|
47
|
+
beta = tl.load(Beta + col, mask=mask, other=0.0).to(tl.float32)
|
|
48
|
+
y += beta
|
|
49
|
+
tl.store(Y + col, y, mask=mask)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
# @triton.autotune([triton.Config({"BLOCK_N":bn}, num_stages=ns, num_warps=nw)
|
|
53
|
+
# for bn in [1024, 2048, 4096]
|
|
54
|
+
# for ns in [1,2,4]
|
|
55
|
+
# for nw in [4, 8, 16]
|
|
56
|
+
# ],
|
|
57
|
+
# key=['N'])
|
|
60
58
|
@triton.jit
|
|
61
59
|
def _dyt_bwd_kernel(
|
|
62
|
-
|
|
63
|
-
x_row_stride,
|
|
64
|
-
dy_ptr,
|
|
65
|
-
dy_row_stride,
|
|
66
|
-
dx_ptr,
|
|
67
|
-
dx_row_stride,
|
|
68
|
-
alpha_ptr,
|
|
69
|
-
dalpha_ptr,
|
|
70
|
-
gamma_ptr,
|
|
71
|
-
dgamma_ptr,
|
|
72
|
-
dgamma_row_stride,
|
|
73
|
-
n_cols,
|
|
74
|
-
n_rows,
|
|
75
|
-
ROWS_PER_PROGRAM: tl.constexpr,
|
|
76
|
-
BLOCK_SIZE: tl.constexpr,
|
|
60
|
+
DY, DX, DA, DG, DB, X, Alpha, Gamma, HAVE_BETA: tl.constexpr, M, N: tl.constexpr, BLOCK_N: tl.constexpr = 1024
|
|
77
61
|
):
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
dalpha = 0.0
|
|
106
|
-
dgamma = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
|
107
|
-
|
|
108
|
-
x_ptr += row_start * x_row_stride
|
|
109
|
-
dx_ptr += row_start * dx_row_stride
|
|
110
|
-
dy_ptr += row_start * dy_row_stride
|
|
111
|
-
alpha = tl.load(alpha_ptr)
|
|
112
|
-
gamma = tl.load(gamma_ptr + offsets, mask=mask, other=0.0)
|
|
113
|
-
|
|
114
|
-
for _ in tl.range(row_start, row_end):
|
|
115
|
-
dy = tl.load(dy_ptr + offsets, mask=mask, other=0.0)
|
|
116
|
-
x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
|
|
117
|
-
tanh_ax = tanh((alpha * x).cast(tl.float32))
|
|
118
|
-
sech2_ax = 1 - tanh_ax * tanh_ax
|
|
119
|
-
|
|
120
|
-
dx = dy * gamma * sech2_ax * alpha
|
|
121
|
-
dalpha += tl.sum(dy * gamma * sech2_ax * x)
|
|
122
|
-
dgamma += dy * tanh_ax
|
|
123
|
-
tl.store(dx_ptr + offsets, dx, mask=mask)
|
|
124
|
-
|
|
125
|
-
dy_ptr += dy_row_stride
|
|
126
|
-
x_ptr += x_row_stride
|
|
127
|
-
dx_ptr += dx_row_stride
|
|
128
|
-
|
|
129
|
-
tl.store(dgamma_ptr + pid * dgamma_row_stride + offsets, dgamma, mask=mask)
|
|
130
|
-
tl.store(dalpha_ptr + pid, dalpha)
|
|
131
|
-
|
|
132
|
-
pass
|
|
62
|
+
col = tl.cast(tl.program_id(0), tl.int64) * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
63
|
+
mask = col < N
|
|
64
|
+
start_row_id = tl.cast(tl.program_id(1), tl.int64)
|
|
65
|
+
|
|
66
|
+
alpha = tl.load(Alpha).to(tl.float32)
|
|
67
|
+
da = 0.0
|
|
68
|
+
gamma = tl.load(Gamma + col, mask=mask, other=0.0).to(tl.float32)
|
|
69
|
+
dg = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
70
|
+
if HAVE_BETA:
|
|
71
|
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
72
|
+
for row_id in range(start_row_id, M, tl.num_programs(1)):
|
|
73
|
+
x = tl.load(X + row_id * N + col, mask=mask, other=0.0).to(tl.float32)
|
|
74
|
+
dy = tl.load(DY + row_id * N + col, mask=mask, other=0.0).to(tl.float32)
|
|
75
|
+
tanh_x = tanh(alpha * x)
|
|
76
|
+
if HAVE_BETA:
|
|
77
|
+
db += dy
|
|
78
|
+
dg += dy * tanh_x
|
|
79
|
+
tmp = (1 - tanh_x * tanh_x) * dy * gamma
|
|
80
|
+
da += tl.sum(x * tmp, 0)
|
|
81
|
+
dx = alpha * tmp
|
|
82
|
+
tl.store(DX + row_id * N + col, dx, mask=mask)
|
|
83
|
+
|
|
84
|
+
tl.store(DG + start_row_id * N + col, dg, mask=mask)
|
|
85
|
+
if HAVE_BETA:
|
|
86
|
+
tl.store(DB + start_row_id * N + col, db, mask=mask)
|
|
87
|
+
tl.store(DA + start_row_id * tl.cdiv(N, 512) + tl.program_id(0), da)
|
|
133
88
|
|
|
134
89
|
|
|
135
90
|
def liger_dyt_fwd(x, alpha, gamma, beta):
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
91
|
+
assert x.is_contiguous()
|
|
92
|
+
HAVE_BETA = True if beta is not None else False
|
|
93
|
+
input_shape = x.shape
|
|
94
|
+
x = x.view(-1, input_shape[-1])
|
|
95
|
+
M, N = x.shape
|
|
96
|
+
|
|
140
97
|
y = torch.empty_like(x)
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
98
|
+
|
|
99
|
+
if N >= 4096:
|
|
100
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 2048), "num_warps": 4, "num_stages": 1}
|
|
101
|
+
else:
|
|
102
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 1024), "num_warps": 4, "num_stages": 1}
|
|
103
|
+
|
|
104
|
+
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_N"]), M)
|
|
105
|
+
_dyt_fwd_kernel[(grid)](
|
|
106
|
+
x,
|
|
107
|
+
y,
|
|
108
|
+
alpha,
|
|
109
|
+
gamma,
|
|
110
|
+
beta,
|
|
111
|
+
HAVE_BETA,
|
|
112
|
+
N,
|
|
113
|
+
**kwargs,
|
|
153
114
|
)
|
|
154
|
-
return y.view(
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
def liger_dyt_bwd(dy, x, alpha, gamma):
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
165
|
-
sm_count = 1
|
|
115
|
+
return y.view(input_shape)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def liger_dyt_bwd(dy, x, alpha, gamma, beta):
|
|
119
|
+
assert dy.is_contiguous()
|
|
120
|
+
input_shape = x.shape
|
|
121
|
+
x = x.view(-1, input_shape[-1])
|
|
122
|
+
M, N = x.shape
|
|
123
|
+
HAVE_BETA = True if beta is not None else False
|
|
124
|
+
|
|
166
125
|
device = infer_device()
|
|
167
126
|
if device == "cuda":
|
|
168
|
-
|
|
127
|
+
NUM_SMS = torch.cuda.get_device_properties(x.device).multi_processor_count
|
|
169
128
|
elif device == "xpu":
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
dy_ptr=dy,
|
|
186
|
-
dy_row_stride=dy.stride(0),
|
|
187
|
-
dx_ptr=dx,
|
|
188
|
-
dx_row_stride=dx.stride(0),
|
|
189
|
-
alpha_ptr=alpha,
|
|
190
|
-
dalpha_ptr=_dalpha,
|
|
191
|
-
gamma_ptr=gamma,
|
|
192
|
-
dgamma_ptr=_dgamma,
|
|
193
|
-
dgamma_row_stride=_dgamma.stride(0),
|
|
194
|
-
n_cols=n_cols,
|
|
195
|
-
n_rows=n_rows,
|
|
196
|
-
ROWS_PER_PROGRAM=rows_per_program,
|
|
197
|
-
BLOCK_SIZE=BLOCK_SIZE,
|
|
198
|
-
num_warps=num_warps,
|
|
199
|
-
)
|
|
200
|
-
dalpha = _dalpha.sum(dim=0, keepdim=True).to(dtype)
|
|
201
|
-
dgamma = _dgamma.sum(dim=0).to(dtype)
|
|
202
|
-
dbeta = dy.sum(dim=0).to(dtype)
|
|
203
|
-
return dx.view(*shape), dalpha, dgamma, dbeta
|
|
129
|
+
NUM_SMS = torch.xpu.get_device_properties(x.device).gpu_subslice_count
|
|
130
|
+
|
|
131
|
+
da = torch.zeros(NUM_SMS, triton.cdiv(N, 512), dtype=torch.float32, device=x.device)
|
|
132
|
+
dg = torch.empty(NUM_SMS, N, dtype=torch.float32, device=x.device)
|
|
133
|
+
db = torch.empty(NUM_SMS, N, dtype=torch.float32, device=x.device) if HAVE_BETA else None
|
|
134
|
+
dx = torch.empty_like(dy)
|
|
135
|
+
|
|
136
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 1024), "num_warps": 8, "num_stages": 2}
|
|
137
|
+
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_N"]), NUM_SMS)
|
|
138
|
+
_dyt_bwd_kernel[grid](dy, dx, da, dg, db, x, alpha, gamma, HAVE_BETA, M, N, **kwargs)
|
|
139
|
+
if HAVE_BETA:
|
|
140
|
+
db = db.sum(0).to(x.dtype)
|
|
141
|
+
dg = dg.sum(0).to(gamma.dtype)
|
|
142
|
+
da = da.sum().to(x.dtype).unsqueeze(0)
|
|
143
|
+
return dx.view(input_shape), da, dg, db
|
|
204
144
|
|
|
205
145
|
|
|
206
146
|
class LigerDyTFunction(torch.autograd.Function):
|
|
@@ -208,18 +148,12 @@ class LigerDyTFunction(torch.autograd.Function):
|
|
|
208
148
|
@ensure_contiguous
|
|
209
149
|
def forward(ctx, x, alpha, gamma, beta):
|
|
210
150
|
y = liger_dyt_fwd(x, alpha, gamma, beta)
|
|
211
|
-
ctx.save_for_backward(x, alpha, gamma)
|
|
151
|
+
ctx.save_for_backward(x, alpha, gamma, beta)
|
|
212
152
|
return y
|
|
213
153
|
|
|
214
154
|
@staticmethod
|
|
215
155
|
@ensure_contiguous
|
|
216
|
-
def backward(ctx,
|
|
217
|
-
x, alpha, gamma = ctx.saved_tensors
|
|
218
|
-
dx, dalpha, dgamma, dbeta = liger_dyt_bwd(
|
|
219
|
-
|
|
220
|
-
x,
|
|
221
|
-
alpha,
|
|
222
|
-
gamma,
|
|
223
|
-
)
|
|
224
|
-
|
|
225
|
-
return (dx, dalpha, dgamma, dbeta)
|
|
156
|
+
def backward(ctx, dy):
|
|
157
|
+
x, alpha, gamma, beta = ctx.saved_tensors
|
|
158
|
+
dx, dalpha, dgamma, dbeta = liger_dyt_bwd(dy, x, alpha, gamma, beta)
|
|
159
|
+
return dx, dalpha, dgamma, dbeta
|
|
@@ -0,0 +1,310 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import triton
|
|
3
|
+
import triton.language as tl
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@triton.jit
|
|
7
|
+
def _selective_log_softmax_kernel(
|
|
8
|
+
LOGITS,
|
|
9
|
+
INPUT_IDS,
|
|
10
|
+
LOG_P,
|
|
11
|
+
MASK,
|
|
12
|
+
TEMPERATURE,
|
|
13
|
+
stride_input_ids_b,
|
|
14
|
+
L: tl.constexpr,
|
|
15
|
+
N: tl.constexpr,
|
|
16
|
+
BLOCK_N: tl.constexpr = 4096,
|
|
17
|
+
):
|
|
18
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
|
19
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
|
20
|
+
|
|
21
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
|
22
|
+
INPUT_IDS += off_b * stride_input_ids_b + off_l
|
|
23
|
+
LOG_P += off_b * L + off_l
|
|
24
|
+
|
|
25
|
+
if MASK is not None:
|
|
26
|
+
MASK += off_b * stride_input_ids_b + off_l
|
|
27
|
+
not_skip = tl.load(MASK)
|
|
28
|
+
if not_skip == 0:
|
|
29
|
+
return
|
|
30
|
+
|
|
31
|
+
m_i = float("-inf")
|
|
32
|
+
l_i = 0.0
|
|
33
|
+
for start in range(0, N, BLOCK_N):
|
|
34
|
+
cols = start + tl.arange(0, BLOCK_N)
|
|
35
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
|
|
36
|
+
new_m_i = tl.maximum(m_i, tl.max(logits))
|
|
37
|
+
alpha = tl.exp(m_i - new_m_i)
|
|
38
|
+
l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
|
|
39
|
+
m_i = new_m_i
|
|
40
|
+
lse = m_i + tl.log(l_i)
|
|
41
|
+
|
|
42
|
+
ids = tl.load(INPUT_IDS)
|
|
43
|
+
x = tl.load(LOGITS + ids).to(tl.float32) / TEMPERATURE
|
|
44
|
+
logp = x - lse
|
|
45
|
+
tl.store(LOG_P, logp)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
# compue old_logp and ref_logp, it reduce 10G peak Memory. it does not requires grad
|
|
49
|
+
@torch.no_grad
|
|
50
|
+
def fused_selective_log_softmax(logits: torch.Tensor, input_ids: torch.Tensor, temperature: float = 0.9, mask=None):
|
|
51
|
+
assert logits.is_contiguous()
|
|
52
|
+
B, L_ADD_1, N = logits.shape
|
|
53
|
+
L = L_ADD_1 - 1
|
|
54
|
+
input_ids = input_ids[:, -L:]
|
|
55
|
+
if mask is not None:
|
|
56
|
+
mask = mask[:, -L:]
|
|
57
|
+
log_p = torch.zeros(B, L, dtype=torch.float32, device=logits.device)
|
|
58
|
+
kwargs = {"BLOCK_N": 2048, "num_stages": 4, "num_warps": 1}
|
|
59
|
+
_selective_log_softmax_kernel[(B, L)](
|
|
60
|
+
logits, input_ids, log_p, mask, temperature, input_ids.stride(0), L, N, **kwargs
|
|
61
|
+
)
|
|
62
|
+
return log_p
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
# @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
|
|
66
|
+
# for BLOCK_N in [2048, 4096, 8192]
|
|
67
|
+
# for ns in [1, 2, 4]
|
|
68
|
+
# for nw in [1, 2, 4, 8, 16]],
|
|
69
|
+
# key=['N'])
|
|
70
|
+
@triton.jit
|
|
71
|
+
def _grpo_loss_fwd_kernel(
|
|
72
|
+
LOGITS,
|
|
73
|
+
OLD_LOGP,
|
|
74
|
+
REF_LOGP,
|
|
75
|
+
INPUT_IDS,
|
|
76
|
+
COMPLETION_MASK,
|
|
77
|
+
ADVANTAGES,
|
|
78
|
+
LOSS,
|
|
79
|
+
LSE,
|
|
80
|
+
KL,
|
|
81
|
+
IS_CLIPPED,
|
|
82
|
+
TEMPERATURE,
|
|
83
|
+
BETA: tl.constexpr,
|
|
84
|
+
EPS_LOW,
|
|
85
|
+
EPS_HIGH,
|
|
86
|
+
L: tl.constexpr,
|
|
87
|
+
N: tl.constexpr,
|
|
88
|
+
BLOCK_N: tl.constexpr = 4096,
|
|
89
|
+
):
|
|
90
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
|
91
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
|
92
|
+
|
|
93
|
+
if COMPLETION_MASK is not None:
|
|
94
|
+
COMPLETION_MASK += off_b * L + off_l
|
|
95
|
+
not_skip = tl.load(COMPLETION_MASK)
|
|
96
|
+
if not_skip == 0:
|
|
97
|
+
return
|
|
98
|
+
|
|
99
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
|
100
|
+
INPUT_IDS += off_b * L + off_l
|
|
101
|
+
ADVANTAGES += off_b
|
|
102
|
+
LOSS += off_b * L + off_l
|
|
103
|
+
LSE += off_b * L + off_l
|
|
104
|
+
IS_CLIPPED += off_b * L + off_l
|
|
105
|
+
|
|
106
|
+
m_i = float("-inf")
|
|
107
|
+
l_i = 0.0
|
|
108
|
+
for start in range(0, N, BLOCK_N):
|
|
109
|
+
cols = start + tl.arange(0, BLOCK_N)
|
|
110
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
|
|
111
|
+
new_m_i = tl.maximum(m_i, tl.max(logits))
|
|
112
|
+
alpha = tl.exp(m_i - new_m_i)
|
|
113
|
+
l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
|
|
114
|
+
m_i = new_m_i
|
|
115
|
+
lse = m_i + tl.log(l_i)
|
|
116
|
+
|
|
117
|
+
idx = tl.load(INPUT_IDS)
|
|
118
|
+
x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
|
|
119
|
+
logp = x - lse
|
|
120
|
+
if OLD_LOGP is None:
|
|
121
|
+
old_logp = logp
|
|
122
|
+
else:
|
|
123
|
+
OLD_LOGP += off_b * L + off_l
|
|
124
|
+
old_logp = tl.load(OLD_LOGP).to(tl.float32)
|
|
125
|
+
coef_1 = tl.exp(logp - old_logp)
|
|
126
|
+
coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
|
|
127
|
+
advantage = tl.load(ADVANTAGES).to(tl.float32)
|
|
128
|
+
per_token_loss1 = coef_1 * advantage
|
|
129
|
+
per_token_loss2 = coef_2 * advantage
|
|
130
|
+
per_token_loss = -tl.minimum(per_token_loss1, per_token_loss2)
|
|
131
|
+
is_clipped = per_token_loss1 < per_token_loss2
|
|
132
|
+
|
|
133
|
+
if BETA != 0.0:
|
|
134
|
+
REF_LOGP += off_b * L + off_l
|
|
135
|
+
KL += off_b * L + off_l
|
|
136
|
+
ref_logp = tl.load(REF_LOGP).to(tl.float32)
|
|
137
|
+
kl = tl.exp(ref_logp - logp) - (ref_logp - logp) - 1
|
|
138
|
+
per_token_loss += BETA * kl
|
|
139
|
+
tl.store(KL, kl)
|
|
140
|
+
|
|
141
|
+
tl.store(LOSS, per_token_loss)
|
|
142
|
+
tl.store(LSE, lse)
|
|
143
|
+
tl.store(IS_CLIPPED, is_clipped)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
# @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
|
|
147
|
+
# for BLOCK_N in [2048, 4096, 8192]
|
|
148
|
+
# for ns in [1, 2, 4]
|
|
149
|
+
# for nw in [1, 2, 4, 8, 16]],
|
|
150
|
+
# key=['N'])
|
|
151
|
+
@triton.jit
|
|
152
|
+
def _grpo_loss_bwd_kernel(
|
|
153
|
+
DLOSS,
|
|
154
|
+
DLOGITS,
|
|
155
|
+
LOGITS,
|
|
156
|
+
OLD_LOGP,
|
|
157
|
+
REF_LOGP,
|
|
158
|
+
INPUT_IDS,
|
|
159
|
+
ADVANTAGES,
|
|
160
|
+
COMPLETION_MASK,
|
|
161
|
+
LSE,
|
|
162
|
+
TEMPERATURE,
|
|
163
|
+
BETA: tl.constexpr,
|
|
164
|
+
EPS_LOW,
|
|
165
|
+
EPS_HIGH,
|
|
166
|
+
loss_stride0,
|
|
167
|
+
loss_stride1,
|
|
168
|
+
L: tl.constexpr,
|
|
169
|
+
N: tl.constexpr,
|
|
170
|
+
BLOCK_N: tl.constexpr = 4096,
|
|
171
|
+
):
|
|
172
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
|
173
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
|
174
|
+
|
|
175
|
+
DLOGITS += off_b * (L + 1) * N + off_l * N
|
|
176
|
+
if COMPLETION_MASK is not None:
|
|
177
|
+
COMPLETION_MASK += off_b * L + off_l
|
|
178
|
+
not_skip = tl.load(COMPLETION_MASK)
|
|
179
|
+
if not_skip == 0:
|
|
180
|
+
for start in range(0, N, BLOCK_N):
|
|
181
|
+
cols = tl.arange(0, BLOCK_N) + start
|
|
182
|
+
tl.store(DLOGITS + cols, 0.0, mask=cols < N)
|
|
183
|
+
return
|
|
184
|
+
|
|
185
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
|
186
|
+
DLOSS += off_b * loss_stride0 + off_l * loss_stride1
|
|
187
|
+
INPUT_IDS += off_b * L + off_l
|
|
188
|
+
ADVANTAGES += off_b
|
|
189
|
+
LSE += off_b * L + off_l
|
|
190
|
+
|
|
191
|
+
dloss = tl.load(DLOSS).to(tl.float32)
|
|
192
|
+
lse = tl.load(LSE).to(tl.float32)
|
|
193
|
+
|
|
194
|
+
idx = tl.load(INPUT_IDS)
|
|
195
|
+
x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
|
|
196
|
+
logp = x - lse
|
|
197
|
+
if OLD_LOGP is None:
|
|
198
|
+
old_logp = logp
|
|
199
|
+
else:
|
|
200
|
+
OLD_LOGP += off_b * L + off_l
|
|
201
|
+
old_logp = tl.load(OLD_LOGP).to(tl.float32)
|
|
202
|
+
coef_1 = tl.exp(logp - old_logp)
|
|
203
|
+
coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
|
|
204
|
+
advantage = tl.load(ADVANTAGES).to(tl.float32)
|
|
205
|
+
per_token_loss1 = coef_1 * advantage
|
|
206
|
+
per_token_loss2 = coef_2 * advantage
|
|
207
|
+
mask = per_token_loss2 >= per_token_loss1
|
|
208
|
+
|
|
209
|
+
dlogp = -per_token_loss1 * mask
|
|
210
|
+
if BETA != 0.0:
|
|
211
|
+
REF_LOGP += off_b * L + off_l
|
|
212
|
+
ref_logp = tl.load(REF_LOGP).to(tl.float32)
|
|
213
|
+
dlogp += BETA * (1 - tl.exp(ref_logp - logp))
|
|
214
|
+
|
|
215
|
+
dlogp = dlogp * dloss / TEMPERATURE
|
|
216
|
+
tl.debug_barrier()
|
|
217
|
+
for start_n in tl.range(0, N, BLOCK_N):
|
|
218
|
+
cols = start_n + tl.arange(0, BLOCK_N)
|
|
219
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=-float("inf")).to(tl.float32) / TEMPERATURE
|
|
220
|
+
probs = tl.exp(logits - lse)
|
|
221
|
+
dlogits = tl.where(cols == idx, 1 - probs, -probs) * dlogp
|
|
222
|
+
tl.store(DLOGITS + cols, dlogits, mask=cols < N)
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
class GrpoLossFunction(torch.autograd.Function):
|
|
226
|
+
@staticmethod
|
|
227
|
+
def forward(
|
|
228
|
+
ctx,
|
|
229
|
+
logits,
|
|
230
|
+
old_logp,
|
|
231
|
+
ref_logp,
|
|
232
|
+
completion_ids,
|
|
233
|
+
advantages,
|
|
234
|
+
completion_mask,
|
|
235
|
+
temperature,
|
|
236
|
+
beta,
|
|
237
|
+
eps_low,
|
|
238
|
+
eps_high,
|
|
239
|
+
inplace,
|
|
240
|
+
):
|
|
241
|
+
assert logits.is_contiguous() and completion_ids.is_contiguous()
|
|
242
|
+
assert old_logp is None or old_logp.is_contiguous()
|
|
243
|
+
assert (ref_logp is not None and ref_logp.is_contiguous()) if beta != 0.0 else True
|
|
244
|
+
|
|
245
|
+
B, L_ADD_1, N = logits.shape
|
|
246
|
+
L = L_ADD_1 - 1
|
|
247
|
+
|
|
248
|
+
if completion_mask is not None:
|
|
249
|
+
assert completion_mask.is_contiguous()
|
|
250
|
+
|
|
251
|
+
loss = torch.zeros(B, L, device=logits.device, dtype=torch.float32)
|
|
252
|
+
lse = torch.zeros_like(loss)
|
|
253
|
+
is_clipped = torch.zeros_like(loss)
|
|
254
|
+
kl = torch.zeros_like(loss) if beta != 0.0 else None
|
|
255
|
+
kwargs = {"BLOCK_N": 2048, "num_stages": 2, "num_warps": 1}
|
|
256
|
+
_grpo_loss_fwd_kernel[(B, L)](
|
|
257
|
+
logits,
|
|
258
|
+
old_logp,
|
|
259
|
+
ref_logp,
|
|
260
|
+
completion_ids,
|
|
261
|
+
completion_mask,
|
|
262
|
+
advantages,
|
|
263
|
+
loss,
|
|
264
|
+
lse,
|
|
265
|
+
kl,
|
|
266
|
+
is_clipped,
|
|
267
|
+
temperature,
|
|
268
|
+
beta,
|
|
269
|
+
eps_low,
|
|
270
|
+
eps_high,
|
|
271
|
+
L,
|
|
272
|
+
N,
|
|
273
|
+
**kwargs,
|
|
274
|
+
)
|
|
275
|
+
ctx.save_for_backward(logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse)
|
|
276
|
+
ctx.infos = (temperature, beta, eps_low, eps_high, inplace)
|
|
277
|
+
# return loss
|
|
278
|
+
return loss, kl, is_clipped
|
|
279
|
+
|
|
280
|
+
@staticmethod
|
|
281
|
+
def backward(ctx, *args):
|
|
282
|
+
dloss = args[0]
|
|
283
|
+
# print(dloss.shape)
|
|
284
|
+
logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse = ctx.saved_tensors
|
|
285
|
+
temperature, beta, eps_low, eps_high, inplace = ctx.infos
|
|
286
|
+
B, L_ADD_1, N = logits.shape
|
|
287
|
+
L = L_ADD_1 - 1
|
|
288
|
+
dlogits = logits.data if inplace else torch.empty_like(logits)
|
|
289
|
+
kwargs = {"BLOCK_N": 4096, "num_stages": 1, "num_warps": 16}
|
|
290
|
+
_grpo_loss_bwd_kernel[(B, L)](
|
|
291
|
+
dloss,
|
|
292
|
+
dlogits,
|
|
293
|
+
logits,
|
|
294
|
+
old_logp,
|
|
295
|
+
ref_logp,
|
|
296
|
+
completion_ids,
|
|
297
|
+
advantages,
|
|
298
|
+
completion_mask,
|
|
299
|
+
lse,
|
|
300
|
+
temperature,
|
|
301
|
+
beta,
|
|
302
|
+
eps_low,
|
|
303
|
+
eps_high,
|
|
304
|
+
*dloss.stride(),
|
|
305
|
+
L,
|
|
306
|
+
N,
|
|
307
|
+
**kwargs,
|
|
308
|
+
)
|
|
309
|
+
dlogits[:, -1, :] = 0
|
|
310
|
+
return dlogits, None, None, None, None, None, None, None, None, None, None
|