liger-kernel 0.5.8__py3-none-any.whl → 0.5.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. liger_kernel/chunked_loss/dpo_loss.py +8 -1
  2. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  3. liger_kernel/chunked_loss/jsd_loss.py +2 -2
  4. liger_kernel/ops/cross_entropy.py +4 -1
  5. liger_kernel/ops/dyt.py +113 -179
  6. liger_kernel/ops/fused_linear_cross_entropy.py +4 -3
  7. liger_kernel/ops/grpo_loss.py +310 -0
  8. liger_kernel/ops/sparsemax.py +167 -0
  9. liger_kernel/transformers/__init__.py +11 -0
  10. liger_kernel/transformers/dyt.py +5 -3
  11. liger_kernel/transformers/fsdp.py +55 -0
  12. liger_kernel/transformers/functional.py +8 -0
  13. liger_kernel/transformers/fused_linear_cross_entropy.py +1 -2
  14. liger_kernel/transformers/grpo_loss.py +98 -0
  15. liger_kernel/transformers/model/gemma.py +8 -12
  16. liger_kernel/transformers/model/gemma2.py +8 -10
  17. liger_kernel/transformers/model/gemma3.py +3 -9
  18. liger_kernel/transformers/model/glm4.py +119 -0
  19. liger_kernel/transformers/model/llama.py +64 -15
  20. liger_kernel/transformers/model/llava.py +0 -8
  21. liger_kernel/transformers/model/mistral.py +8 -10
  22. liger_kernel/transformers/model/mixtral.py +8 -12
  23. liger_kernel/transformers/model/mllama.py +8 -11
  24. liger_kernel/transformers/model/olmo2.py +8 -10
  25. liger_kernel/transformers/model/paligemma.py +0 -8
  26. liger_kernel/transformers/model/phi3.py +8 -12
  27. liger_kernel/transformers/model/qwen2.py +8 -12
  28. liger_kernel/transformers/model/qwen2_5_vl.py +3 -7
  29. liger_kernel/transformers/model/qwen2_vl.py +3 -7
  30. liger_kernel/transformers/model/qwen3.py +112 -0
  31. liger_kernel/transformers/model/qwen3_moe.py +128 -0
  32. liger_kernel/transformers/monkey_patch.py +243 -13
  33. liger_kernel/transformers/sparsemax.py +16 -0
  34. liger_kernel/transformers/swiglu.py +21 -0
  35. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  36. liger_kernel/utils.py +11 -0
  37. {liger_kernel-0.5.8.dist-info → liger_kernel-0.5.10.dist-info}/METADATA +36 -20
  38. {liger_kernel-0.5.8.dist-info → liger_kernel-0.5.10.dist-info}/RECORD +42 -34
  39. {liger_kernel-0.5.8.dist-info → liger_kernel-0.5.10.dist-info}/WHEEL +1 -1
  40. {liger_kernel-0.5.8.dist-info → liger_kernel-0.5.10.dist-info}/licenses/LICENSE +0 -0
  41. {liger_kernel-0.5.8.dist-info → liger_kernel-0.5.10.dist-info}/licenses/NOTICE +0 -0
  42. {liger_kernel-0.5.8.dist-info → liger_kernel-0.5.10.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,310 @@
1
+ import torch
2
+ import triton
3
+ import triton.language as tl
4
+
5
+
6
+ @triton.jit
7
+ def _selective_log_softmax_kernel(
8
+ LOGITS,
9
+ INPUT_IDS,
10
+ LOG_P,
11
+ MASK,
12
+ TEMPERATURE,
13
+ stride_input_ids_b,
14
+ L: tl.constexpr,
15
+ N: tl.constexpr,
16
+ BLOCK_N: tl.constexpr = 4096,
17
+ ):
18
+ off_b = tl.program_id(0).cast(tl.int64)
19
+ off_l = tl.program_id(1).cast(tl.int64)
20
+
21
+ LOGITS += off_b * (L + 1) * N + off_l * N
22
+ INPUT_IDS += off_b * stride_input_ids_b + off_l
23
+ LOG_P += off_b * L + off_l
24
+
25
+ if MASK is not None:
26
+ MASK += off_b * stride_input_ids_b + off_l
27
+ not_skip = tl.load(MASK)
28
+ if not_skip == 0:
29
+ return
30
+
31
+ m_i = float("-inf")
32
+ l_i = 0.0
33
+ for start in range(0, N, BLOCK_N):
34
+ cols = start + tl.arange(0, BLOCK_N)
35
+ logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
36
+ new_m_i = tl.maximum(m_i, tl.max(logits))
37
+ alpha = tl.exp(m_i - new_m_i)
38
+ l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
39
+ m_i = new_m_i
40
+ lse = m_i + tl.log(l_i)
41
+
42
+ ids = tl.load(INPUT_IDS)
43
+ x = tl.load(LOGITS + ids).to(tl.float32) / TEMPERATURE
44
+ logp = x - lse
45
+ tl.store(LOG_P, logp)
46
+
47
+
48
+ # compue old_logp and ref_logp, it reduce 10G peak Memory. it does not requires grad
49
+ @torch.no_grad
50
+ def fused_selective_log_softmax(logits: torch.Tensor, input_ids: torch.Tensor, temperature: float = 0.9, mask=None):
51
+ assert logits.is_contiguous()
52
+ B, L_ADD_1, N = logits.shape
53
+ L = L_ADD_1 - 1
54
+ input_ids = input_ids[:, -L:]
55
+ if mask is not None:
56
+ mask = mask[:, -L:]
57
+ log_p = torch.zeros(B, L, dtype=torch.float32, device=logits.device)
58
+ kwargs = {"BLOCK_N": 2048, "num_stages": 4, "num_warps": 1}
59
+ _selective_log_softmax_kernel[(B, L)](
60
+ logits, input_ids, log_p, mask, temperature, input_ids.stride(0), L, N, **kwargs
61
+ )
62
+ return log_p
63
+
64
+
65
+ # @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
66
+ # for BLOCK_N in [2048, 4096, 8192]
67
+ # for ns in [1, 2, 4]
68
+ # for nw in [1, 2, 4, 8, 16]],
69
+ # key=['N'])
70
+ @triton.jit
71
+ def _grpo_loss_fwd_kernel(
72
+ LOGITS,
73
+ OLD_LOGP,
74
+ REF_LOGP,
75
+ INPUT_IDS,
76
+ COMPLETION_MASK,
77
+ ADVANTAGES,
78
+ LOSS,
79
+ LSE,
80
+ KL,
81
+ IS_CLIPPED,
82
+ TEMPERATURE,
83
+ BETA: tl.constexpr,
84
+ EPS_LOW,
85
+ EPS_HIGH,
86
+ L: tl.constexpr,
87
+ N: tl.constexpr,
88
+ BLOCK_N: tl.constexpr = 4096,
89
+ ):
90
+ off_b = tl.program_id(0).cast(tl.int64)
91
+ off_l = tl.program_id(1).cast(tl.int64)
92
+
93
+ if COMPLETION_MASK is not None:
94
+ COMPLETION_MASK += off_b * L + off_l
95
+ not_skip = tl.load(COMPLETION_MASK)
96
+ if not_skip == 0:
97
+ return
98
+
99
+ LOGITS += off_b * (L + 1) * N + off_l * N
100
+ INPUT_IDS += off_b * L + off_l
101
+ ADVANTAGES += off_b
102
+ LOSS += off_b * L + off_l
103
+ LSE += off_b * L + off_l
104
+ IS_CLIPPED += off_b * L + off_l
105
+
106
+ m_i = float("-inf")
107
+ l_i = 0.0
108
+ for start in range(0, N, BLOCK_N):
109
+ cols = start + tl.arange(0, BLOCK_N)
110
+ logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
111
+ new_m_i = tl.maximum(m_i, tl.max(logits))
112
+ alpha = tl.exp(m_i - new_m_i)
113
+ l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
114
+ m_i = new_m_i
115
+ lse = m_i + tl.log(l_i)
116
+
117
+ idx = tl.load(INPUT_IDS)
118
+ x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
119
+ logp = x - lse
120
+ if OLD_LOGP is None:
121
+ old_logp = logp
122
+ else:
123
+ OLD_LOGP += off_b * L + off_l
124
+ old_logp = tl.load(OLD_LOGP).to(tl.float32)
125
+ coef_1 = tl.exp(logp - old_logp)
126
+ coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
127
+ advantage = tl.load(ADVANTAGES).to(tl.float32)
128
+ per_token_loss1 = coef_1 * advantage
129
+ per_token_loss2 = coef_2 * advantage
130
+ per_token_loss = -tl.minimum(per_token_loss1, per_token_loss2)
131
+ is_clipped = per_token_loss1 < per_token_loss2
132
+
133
+ if BETA != 0.0:
134
+ REF_LOGP += off_b * L + off_l
135
+ KL += off_b * L + off_l
136
+ ref_logp = tl.load(REF_LOGP).to(tl.float32)
137
+ kl = tl.exp(ref_logp - logp) - (ref_logp - logp) - 1
138
+ per_token_loss += BETA * kl
139
+ tl.store(KL, kl)
140
+
141
+ tl.store(LOSS, per_token_loss)
142
+ tl.store(LSE, lse)
143
+ tl.store(IS_CLIPPED, is_clipped)
144
+
145
+
146
+ # @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
147
+ # for BLOCK_N in [2048, 4096, 8192]
148
+ # for ns in [1, 2, 4]
149
+ # for nw in [1, 2, 4, 8, 16]],
150
+ # key=['N'])
151
+ @triton.jit
152
+ def _grpo_loss_bwd_kernel(
153
+ DLOSS,
154
+ DLOGITS,
155
+ LOGITS,
156
+ OLD_LOGP,
157
+ REF_LOGP,
158
+ INPUT_IDS,
159
+ ADVANTAGES,
160
+ COMPLETION_MASK,
161
+ LSE,
162
+ TEMPERATURE,
163
+ BETA: tl.constexpr,
164
+ EPS_LOW,
165
+ EPS_HIGH,
166
+ loss_stride0,
167
+ loss_stride1,
168
+ L: tl.constexpr,
169
+ N: tl.constexpr,
170
+ BLOCK_N: tl.constexpr = 4096,
171
+ ):
172
+ off_b = tl.program_id(0).cast(tl.int64)
173
+ off_l = tl.program_id(1).cast(tl.int64)
174
+
175
+ DLOGITS += off_b * (L + 1) * N + off_l * N
176
+ if COMPLETION_MASK is not None:
177
+ COMPLETION_MASK += off_b * L + off_l
178
+ not_skip = tl.load(COMPLETION_MASK)
179
+ if not_skip == 0:
180
+ for start in range(0, N, BLOCK_N):
181
+ cols = tl.arange(0, BLOCK_N) + start
182
+ tl.store(DLOGITS + cols, 0.0, mask=cols < N)
183
+ return
184
+
185
+ LOGITS += off_b * (L + 1) * N + off_l * N
186
+ DLOSS += off_b * loss_stride0 + off_l * loss_stride1
187
+ INPUT_IDS += off_b * L + off_l
188
+ ADVANTAGES += off_b
189
+ LSE += off_b * L + off_l
190
+
191
+ dloss = tl.load(DLOSS).to(tl.float32)
192
+ lse = tl.load(LSE).to(tl.float32)
193
+
194
+ idx = tl.load(INPUT_IDS)
195
+ x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
196
+ logp = x - lse
197
+ if OLD_LOGP is None:
198
+ old_logp = logp
199
+ else:
200
+ OLD_LOGP += off_b * L + off_l
201
+ old_logp = tl.load(OLD_LOGP).to(tl.float32)
202
+ coef_1 = tl.exp(logp - old_logp)
203
+ coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
204
+ advantage = tl.load(ADVANTAGES).to(tl.float32)
205
+ per_token_loss1 = coef_1 * advantage
206
+ per_token_loss2 = coef_2 * advantage
207
+ mask = per_token_loss2 >= per_token_loss1
208
+
209
+ dlogp = -per_token_loss1 * mask
210
+ if BETA != 0.0:
211
+ REF_LOGP += off_b * L + off_l
212
+ ref_logp = tl.load(REF_LOGP).to(tl.float32)
213
+ dlogp += BETA * (1 - tl.exp(ref_logp - logp))
214
+
215
+ dlogp = dlogp * dloss / TEMPERATURE
216
+ tl.debug_barrier()
217
+ for start_n in tl.range(0, N, BLOCK_N):
218
+ cols = start_n + tl.arange(0, BLOCK_N)
219
+ logits = tl.load(LOGITS + cols, mask=cols < N, other=-float("inf")).to(tl.float32) / TEMPERATURE
220
+ probs = tl.exp(logits - lse)
221
+ dlogits = tl.where(cols == idx, 1 - probs, -probs) * dlogp
222
+ tl.store(DLOGITS + cols, dlogits, mask=cols < N)
223
+
224
+
225
+ class GrpoLossFunction(torch.autograd.Function):
226
+ @staticmethod
227
+ def forward(
228
+ ctx,
229
+ logits,
230
+ old_logp,
231
+ ref_logp,
232
+ completion_ids,
233
+ advantages,
234
+ completion_mask,
235
+ temperature,
236
+ beta,
237
+ eps_low,
238
+ eps_high,
239
+ inplace,
240
+ ):
241
+ assert logits.is_contiguous() and completion_ids.is_contiguous()
242
+ assert old_logp is None or old_logp.is_contiguous()
243
+ assert (ref_logp is not None and ref_logp.is_contiguous()) if beta != 0.0 else True
244
+
245
+ B, L_ADD_1, N = logits.shape
246
+ L = L_ADD_1 - 1
247
+
248
+ if completion_mask is not None:
249
+ assert completion_mask.is_contiguous()
250
+
251
+ loss = torch.zeros(B, L, device=logits.device, dtype=torch.float32)
252
+ lse = torch.zeros_like(loss)
253
+ is_clipped = torch.zeros_like(loss)
254
+ kl = torch.zeros_like(loss) if beta != 0.0 else None
255
+ kwargs = {"BLOCK_N": 2048, "num_stages": 2, "num_warps": 1}
256
+ _grpo_loss_fwd_kernel[(B, L)](
257
+ logits,
258
+ old_logp,
259
+ ref_logp,
260
+ completion_ids,
261
+ completion_mask,
262
+ advantages,
263
+ loss,
264
+ lse,
265
+ kl,
266
+ is_clipped,
267
+ temperature,
268
+ beta,
269
+ eps_low,
270
+ eps_high,
271
+ L,
272
+ N,
273
+ **kwargs,
274
+ )
275
+ ctx.save_for_backward(logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse)
276
+ ctx.infos = (temperature, beta, eps_low, eps_high, inplace)
277
+ # return loss
278
+ return loss, kl, is_clipped
279
+
280
+ @staticmethod
281
+ def backward(ctx, *args):
282
+ dloss = args[0]
283
+ # print(dloss.shape)
284
+ logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse = ctx.saved_tensors
285
+ temperature, beta, eps_low, eps_high, inplace = ctx.infos
286
+ B, L_ADD_1, N = logits.shape
287
+ L = L_ADD_1 - 1
288
+ dlogits = logits.data if inplace else torch.empty_like(logits)
289
+ kwargs = {"BLOCK_N": 4096, "num_stages": 1, "num_warps": 16}
290
+ _grpo_loss_bwd_kernel[(B, L)](
291
+ dloss,
292
+ dlogits,
293
+ logits,
294
+ old_logp,
295
+ ref_logp,
296
+ completion_ids,
297
+ advantages,
298
+ completion_mask,
299
+ lse,
300
+ temperature,
301
+ beta,
302
+ eps_low,
303
+ eps_high,
304
+ *dloss.stride(),
305
+ L,
306
+ N,
307
+ **kwargs,
308
+ )
309
+ dlogits[:, -1, :] = 0
310
+ return dlogits, None, None, None, None, None, None, None, None, None, None
@@ -0,0 +1,167 @@
1
+ import torch
2
+ import triton
3
+ import triton.language as tl
4
+
5
+ from liger_kernel.ops.utils import calculate_settings
6
+ from liger_kernel.ops.utils import ensure_contiguous
7
+
8
+
9
+ @triton.jit
10
+ def _sparsemax_forward_kernel(
11
+ x_ptr,
12
+ x_stride_row,
13
+ sorted_x_ptr,
14
+ sorted_x_stride_row,
15
+ o_ptr,
16
+ o_stride_row,
17
+ n_cols,
18
+ BLOCK_SIZE: tl.constexpr,
19
+ num_warps: tl.constexpr,
20
+ ):
21
+ pid_row = tl.program_id(0)
22
+ ptr_x_data_row = x_ptr + pid_row * x_stride_row
23
+ ptr_sorted_x_data_row = sorted_x_ptr + pid_row * sorted_x_stride_row
24
+ ptr_output_row = o_ptr + pid_row * o_stride_row
25
+
26
+ offs = tl.arange(0, BLOCK_SIZE)
27
+ mask = offs < n_cols
28
+
29
+ z_sorted_block = tl.load(
30
+ ptr_sorted_x_data_row + offs,
31
+ mask=mask,
32
+ other=-float("inf"),
33
+ cache_modifier=".ca",
34
+ ).to(tl.float32)
35
+
36
+ z_valid = tl.where(mask, z_sorted_block, 0.0)
37
+ cssv = tl.cumsum(z_valid, 0)
38
+
39
+ r = (offs + 1).to(tl.float32)
40
+ safe_r = tl.where(mask, r, 1.0)
41
+
42
+ t_vec = (cssv - 1.0) / safe_r
43
+
44
+ support = (z_sorted_block > t_vec) & mask
45
+
46
+ k_int = tl.sum(support.to(tl.int32), 0)
47
+ k_clamped_int = tl.maximum(k_int, 1)
48
+ k = k_clamped_int.to(tl.float32)
49
+
50
+ s = tl.sum(tl.where(support, z_sorted_block, 0.0), 0)
51
+
52
+ tau = (s - 1.0) / k
53
+
54
+ x_block = tl.load(
55
+ ptr_x_data_row + offs,
56
+ mask=mask,
57
+ other=0.0,
58
+ cache_modifier=".ca",
59
+ ).to(tl.float32)
60
+
61
+ y = tl.maximum(x_block - tau, 0.0)
62
+
63
+ tl.store(
64
+ ptr_output_row + offs,
65
+ y.to(ptr_output_row.dtype.element_ty),
66
+ mask=mask,
67
+ cache_modifier=".cs",
68
+ )
69
+
70
+
71
+ @triton.jit
72
+ def _sparsemax_backward_kernel(
73
+ o_ptr, go_ptr, gi_ptr, stride, n_cols, BLOCK_SIZE: tl.constexpr, num_warps: tl.constexpr
74
+ ):
75
+ row = tl.program_id(0)
76
+ o_row = o_ptr + row * stride
77
+ go_row = go_ptr + row * stride
78
+ gi_row = gi_ptr + row * stride
79
+
80
+ offs = tl.arange(0, BLOCK_SIZE)
81
+
82
+ supp_cnt = tl.zeros((), tl.float32)
83
+ go_sum = tl.zeros((), tl.float32)
84
+
85
+ for i in tl.range(0, tl.cdiv(n_cols, BLOCK_SIZE)):
86
+ offs_iter = i * BLOCK_SIZE + offs
87
+ mask_iter = offs_iter < n_cols
88
+ o_val = tl.load(o_row + offs_iter, mask=mask_iter, other=0.0, cache_modifier=".ca").to(tl.float32)
89
+ go_val = tl.load(go_row + offs_iter, mask=mask_iter, other=0.0).to(tl.float32)
90
+ supp = o_val > 0.0
91
+ go_sum += tl.sum(tl.where(supp, go_val, 0.0))
92
+ supp_cnt += tl.sum(supp.to(tl.float32))
93
+
94
+ for i in tl.range(0, tl.cdiv(n_cols, BLOCK_SIZE)):
95
+ offs_iter = i * BLOCK_SIZE + offs
96
+ mask_iter = offs_iter < n_cols
97
+ o_val = tl.load(o_row + offs_iter, mask=mask_iter, other=0.0, cache_modifier=".ca").to(tl.float32)
98
+ go_val = tl.load(go_row + offs_iter, mask=mask_iter, other=0.0).to(tl.float32)
99
+ supp = o_val > 0.0
100
+ gi_val = tl.where(
101
+ supp,
102
+ go_val - tl.cast(go_sum / tl.maximum(supp_cnt, 1e-6), gi_row.dtype.element_ty).to(tl.float32),
103
+ 0.0,
104
+ )
105
+ tl.store(gi_row + offs_iter, gi_val.to(gi_row.dtype.element_ty), mask=mask_iter, cache_modifier=".wb")
106
+
107
+
108
+ class LigerSparsemaxFunction(torch.autograd.Function):
109
+ @staticmethod
110
+ @ensure_contiguous
111
+ def forward(ctx, x: torch.Tensor, dim: int):
112
+ if dim < 0:
113
+ dim += x.dim()
114
+ ctx.dim = dim
115
+
116
+ x_sw = x.transpose(dim, -1).contiguous()
117
+ n_cols = x_sw.size(-1)
118
+ n_rows = x_sw.numel() // n_cols
119
+ x_flat = x_sw.view(n_rows, n_cols)
120
+
121
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
122
+ out_flat = torch.empty_like(x_flat)
123
+ grid = (n_rows,)
124
+
125
+ x_sorted_flat = torch.sort(x_flat.float(), dim=-1, descending=True).values
126
+
127
+ _sparsemax_forward_kernel[grid](
128
+ x_flat,
129
+ x_flat.stride(0),
130
+ x_sorted_flat,
131
+ x_sorted_flat.stride(0),
132
+ out_flat,
133
+ out_flat.stride(0),
134
+ n_cols,
135
+ BLOCK_SIZE=BLOCK_SIZE,
136
+ num_warps=num_warps,
137
+ )
138
+
139
+ ctx.save_for_backward(out_flat)
140
+ return out_flat.view_as(x_sw).transpose(dim, -1)
141
+
142
+ @staticmethod
143
+ @ensure_contiguous
144
+ def backward(ctx, grad_out: torch.Tensor):
145
+ (out_flat,) = ctx.saved_tensors
146
+ dim = ctx.dim
147
+
148
+ go_sw = grad_out.transpose(dim, -1).contiguous()
149
+ n_cols = go_sw.size(-1)
150
+ n_rows = go_sw.numel() // n_cols
151
+ go_flat = go_sw.view(n_rows, n_cols)
152
+
153
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
154
+ gi_flat = torch.empty_like(go_flat)
155
+ grid = (n_rows,)
156
+
157
+ _sparsemax_backward_kernel[grid](
158
+ out_flat,
159
+ go_flat,
160
+ gi_flat,
161
+ out_flat.stride(0),
162
+ n_cols,
163
+ BLOCK_SIZE=BLOCK_SIZE,
164
+ num_warps=num_warps,
165
+ )
166
+
167
+ return gi_flat.view_as(go_sw).transpose(dim, -1), None
@@ -14,6 +14,7 @@ from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
14
14
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
15
15
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
16
16
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
17
+ from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
17
18
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
18
19
  from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
19
20
 
@@ -26,6 +27,7 @@ if TYPE_CHECKING:
26
27
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
27
28
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
28
29
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
30
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
29
31
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
30
32
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
31
33
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
@@ -38,6 +40,8 @@ if TYPE_CHECKING:
38
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
39
41
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
40
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
43
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
44
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
41
45
 
42
46
 
43
47
  # Check if 'transformers' is installed
@@ -79,6 +83,7 @@ def __getattr__(name: str):
79
83
  "apply_liger_kernel_to_gemma2",
80
84
  "apply_liger_kernel_to_gemma3",
81
85
  "apply_liger_kernel_to_gemma3_text",
86
+ "apply_liger_kernel_to_glm4",
82
87
  "apply_liger_kernel_to_granite",
83
88
  "apply_liger_kernel_to_llama",
84
89
  "apply_liger_kernel_to_llava",
@@ -91,6 +96,8 @@ def __getattr__(name: str):
91
96
  "apply_liger_kernel_to_qwen2",
92
97
  "apply_liger_kernel_to_qwen2_5_vl",
93
98
  "apply_liger_kernel_to_qwen2_vl",
99
+ "apply_liger_kernel_to_qwen3",
100
+ "apply_liger_kernel_to_qwen3_moe",
94
101
  }
95
102
 
96
103
  if name in monkey_patch_symbols:
@@ -114,6 +121,7 @@ __all__ = [
114
121
  "liger_rotary_pos_emb",
115
122
  "LigerBlockSparseTop2MLP",
116
123
  "LigerPhi3SwiGLUMLP",
124
+ "LigerQwen3MoeSwiGLUMLP",
117
125
  "LigerSwiGLUMLP",
118
126
  "LigerTVDLoss",
119
127
  ]
@@ -129,6 +137,7 @@ if _TRANSFORMERS_AVAILABLE:
129
137
  "apply_liger_kernel_to_gemma2",
130
138
  "apply_liger_kernel_to_gemma3",
131
139
  "apply_liger_kernel_to_gemma3_text",
140
+ "apply_liger_kernel_to_glm4",
132
141
  "apply_liger_kernel_to_granite",
133
142
  "apply_liger_kernel_to_llama",
134
143
  "apply_liger_kernel_to_llava",
@@ -141,5 +150,7 @@ if _TRANSFORMERS_AVAILABLE:
141
150
  "apply_liger_kernel_to_qwen2",
142
151
  "apply_liger_kernel_to_qwen2_5_vl",
143
152
  "apply_liger_kernel_to_qwen2_vl",
153
+ "apply_liger_kernel_to_qwen3",
154
+ "apply_liger_kernel_to_qwen3_moe",
144
155
  ]
145
156
  )
@@ -5,16 +5,18 @@ from liger_kernel.ops.dyt import LigerDyTFunction
5
5
 
6
6
 
7
7
  class LigerDyT(nn.Module):
8
- def __init__(self, hidden_size, init_alpha=0.5):
8
+ def __init__(self, hidden_size, beta=True, init_alpha=0.5):
9
9
  super().__init__()
10
10
  self.hidden_size = hidden_size
11
11
  self.init_alpha = init_alpha
12
12
  self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
13
13
  self.gamma = nn.Parameter(torch.ones(hidden_size))
14
- self.beta = nn.Parameter(torch.zeros(hidden_size))
14
+ self.beta = None
15
+ if beta:
16
+ self.beta = nn.Parameter(torch.zeros(hidden_size))
15
17
 
16
18
  def forward(self, x):
17
19
  return LigerDyTFunction.apply(x, self.alpha, self.gamma, self.beta)
18
20
 
19
21
  def extra_repr(self):
20
- return f"{self.hidden_size}, init_alpha={self.init_alpha}"
22
+ return f"{self.hidden_size}, init_alpha={self.init_alpha}, beta={self.beta}"
@@ -0,0 +1,55 @@
1
+ from typing import Any
2
+ from typing import Callable
3
+
4
+ from torch.distributed.fsdp import FullyShardedDataParallel
5
+
6
+
7
+ class _FSDPForwardRedirection:
8
+ """
9
+ Modified based on
10
+ https://github.com/Lightning-AI/pytorch-lightning/blob/d3f9c83d6efa4f1def36aa6c199600946cdb9117/src/lightning/pytorch/strategies/strategy.py#L601-L648
11
+ Redirect a method call through FullyShardedDataParallel.forward so that the FSDP module's root pre-forward and
12
+ post-forward can be properly executed around the method call.
13
+ This is needed in cases where we call a submodule of a FSDP module. For instance, when we want to call only
14
+ the `LlamaModel` part out of a FSDP-wrapped `LlamaForCausalLM` to get the hidden states without involving
15
+ GPU-memory-heavy `lm_head` and cross entropy computation, doing this directly (i.e. `model.model.forward()`)
16
+ will not work because the first `nn.Embedding` layer is not independently wrapped as a FSDP module (because of
17
+ the transformer-based wrapping policy), and not calling it through FSDP root module forward will not all-gather
18
+ its parameter, thus resulting in "RuntimeError: 'weight' must be 2-D" error. Similarly, if we want to call just
19
+ the `lm_head` part of a model, we need this trick too to properly get its params all-gathered.
20
+ """
21
+
22
+ def __call__(
23
+ self,
24
+ wrapper_module: FullyShardedDataParallel,
25
+ method: Callable,
26
+ *args: Any,
27
+ **kwargs: Any,
28
+ ):
29
+ """Reroutes a method call through the `wrapper_module`'s `forward` method.
30
+ Args:
31
+ wrapper_module: The module that has `original_module` wrapped.
32
+ original_module: The module that was wrapped inside `wrapper_module`.
33
+ method_name: The name of the method that should be called on the `original_module` after inputs get
34
+ redirected through the `wrapper_module`'s `forward` method.
35
+ *args: The positional arguments to the method `method_name`. They will get passed to a patched
36
+ `forward` method instead.
37
+ **kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched
38
+ `forward` method instead.
39
+ """
40
+ assert isinstance(wrapper_module, FullyShardedDataParallel)
41
+ original_module = wrapper_module._fsdp_wrapped_module
42
+ original_forward = original_module.forward
43
+
44
+ def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any:
45
+ # Unpatch ourselves immediately before calling the method `method_name`
46
+ # because itself may want to call the real `forward`
47
+ original_module.forward = original_forward # type: ignore[method-assign]
48
+ # Call the actual method e.g. `.training_step(...)`
49
+ out = method(*_args, **_kwargs)
50
+ return out
51
+
52
+ # Patch the original_module's forward so we can redirect the arguments back to the real method
53
+ original_module.forward = wrapped_forward # type: ignore[method-assign]
54
+ wrapper_output = wrapper_module(*args, **kwargs)
55
+ return wrapper_output
@@ -12,6 +12,7 @@ from liger_kernel.ops.layer_norm import LigerLayerNormFunction
12
12
  from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
13
13
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
14
14
  from liger_kernel.ops.rope import LigerRopeFunction
15
+ from liger_kernel.ops.sparsemax import LigerSparsemaxFunction
15
16
  from liger_kernel.ops.swiglu import LigerSiLUMulFunction
16
17
  from liger_kernel.ops.tvd import LigerTVDLossFunction
17
18
 
@@ -159,6 +160,13 @@ def liger_kl_div(
159
160
  )
160
161
 
161
162
 
163
+ def liger_sparsemax(
164
+ input,
165
+ dim: int = -1,
166
+ ):
167
+ return LigerSparsemaxFunction.apply(input, dim)
168
+
169
+
162
170
  def liger_tvd(
163
171
  input,
164
172
  target,
@@ -23,8 +23,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
23
23
  assert reduction in {
24
24
  "mean",
25
25
  "sum",
26
- "none",
27
- }, f"reduction must be one of 'mean', 'sum', or 'none'. Got: {reduction}"
26
+ }, f"reduction must be 'mean' or 'sum'. Got: {reduction}"
28
27
  assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
29
28
  self.ce_weight = ce_weight
30
29
  self.ignore_index = ignore_index