liger-kernel 0.5.6__py3-none-any.whl → 0.5.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/fused_linear_ppo.py +15 -0
- liger_kernel/chunked_loss/grpo_loss.py +33 -1
- liger_kernel/ops/jsd.py +2 -1
- liger_kernel/ops/kl_div.py +13 -6
- liger_kernel/ops/layer_norm.py +14 -1
- liger_kernel/ops/rms_norm.py +12 -1
- liger_kernel/transformers/__init__.py +132 -17
- liger_kernel/transformers/gema3_rms.py +8 -0
- liger_kernel/transformers/model/gemma.py +9 -4
- liger_kernel/transformers/model/gemma2.py +10 -5
- liger_kernel/transformers/model/gemma3.py +335 -0
- liger_kernel/transformers/model/llama.py +9 -4
- liger_kernel/transformers/model/loss_utils.py +17 -10
- liger_kernel/transformers/model/mistral.py +19 -15
- liger_kernel/transformers/model/mixtral.py +12 -11
- liger_kernel/transformers/model/mllama.py +9 -4
- liger_kernel/transformers/model/olmo2.py +9 -4
- liger_kernel/transformers/model/phi3.py +9 -4
- liger_kernel/transformers/model/qwen2.py +9 -4
- liger_kernel/transformers/monkey_patch.py +173 -0
- {liger_kernel-0.5.6.dist-info → liger_kernel-0.5.7.dist-info}/METADATA +3 -1
- {liger_kernel-0.5.6.dist-info → liger_kernel-0.5.7.dist-info}/RECORD +26 -24
- {liger_kernel-0.5.6.dist-info → liger_kernel-0.5.7.dist-info}/WHEEL +0 -0
- {liger_kernel-0.5.6.dist-info → liger_kernel-0.5.7.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.5.6.dist-info → liger_kernel-0.5.7.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.5.6.dist-info → liger_kernel-0.5.7.dist-info}/top_level.txt +0 -0
|
@@ -10,10 +10,12 @@ from transformers.models.olmo2.modeling_olmo2 import _CONFIG_FOR_DOC
|
|
|
10
10
|
from transformers.models.olmo2.modeling_olmo2 import OLMO2_INPUTS_DOCSTRING
|
|
11
11
|
from transformers.utils import add_start_docstrings_to_model_forward
|
|
12
12
|
from transformers.utils import replace_return_docstrings
|
|
13
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
13
14
|
|
|
14
15
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
16
|
|
|
16
17
|
|
|
18
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
17
19
|
@add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
|
|
18
20
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
19
21
|
def lce_forward(
|
|
@@ -29,7 +31,7 @@ def lce_forward(
|
|
|
29
31
|
output_hidden_states: Optional[bool] = None,
|
|
30
32
|
return_dict: Optional[bool] = None,
|
|
31
33
|
cache_position: Optional[torch.LongTensor] = None,
|
|
32
|
-
|
|
34
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
33
35
|
**loss_kwargs,
|
|
34
36
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
35
37
|
r"""
|
|
@@ -39,10 +41,12 @@ def lce_forward(
|
|
|
39
41
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
40
42
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
41
43
|
|
|
42
|
-
|
|
43
|
-
|
|
44
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
45
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
44
46
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
45
47
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
48
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
49
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
46
50
|
|
|
47
51
|
Returns:
|
|
48
52
|
|
|
@@ -98,7 +102,8 @@ def lce_forward(
|
|
|
98
102
|
)
|
|
99
103
|
|
|
100
104
|
else: # if in inference mode materialize logits
|
|
101
|
-
|
|
105
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
106
|
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
102
107
|
if labels is not None:
|
|
103
108
|
loss = self.loss_function(
|
|
104
109
|
logits=logits,
|
|
@@ -11,6 +11,7 @@ from transformers.models.phi3.modeling_phi3 import _CONFIG_FOR_DOC
|
|
|
11
11
|
from transformers.models.phi3.modeling_phi3 import PHI3_INPUTS_DOCSTRING
|
|
12
12
|
from transformers.utils import add_start_docstrings_to_model_forward
|
|
13
13
|
from transformers.utils import replace_return_docstrings
|
|
14
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
14
15
|
|
|
15
16
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
16
17
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
@@ -126,6 +127,7 @@ def lce_forward_deprecated(
|
|
|
126
127
|
)
|
|
127
128
|
|
|
128
129
|
|
|
130
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
129
131
|
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
130
132
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
131
133
|
def lce_forward(
|
|
@@ -141,7 +143,7 @@ def lce_forward(
|
|
|
141
143
|
output_hidden_states: Optional[bool] = None,
|
|
142
144
|
return_dict: Optional[bool] = None,
|
|
143
145
|
cache_position: Optional[torch.LongTensor] = None,
|
|
144
|
-
|
|
146
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
145
147
|
**loss_kwargs,
|
|
146
148
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
147
149
|
r"""
|
|
@@ -151,10 +153,12 @@ def lce_forward(
|
|
|
151
153
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
152
154
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
153
155
|
|
|
154
|
-
|
|
155
|
-
|
|
156
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
157
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
156
158
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
157
159
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
160
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
161
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
158
162
|
|
|
159
163
|
Returns:
|
|
160
164
|
|
|
@@ -223,7 +227,8 @@ def lce_forward(
|
|
|
223
227
|
)
|
|
224
228
|
|
|
225
229
|
else: # if in inference mode materialize logits
|
|
226
|
-
|
|
230
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
231
|
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
227
232
|
if labels is not None:
|
|
228
233
|
loss = self.loss_function(
|
|
229
234
|
logits=logits,
|
|
@@ -11,6 +11,7 @@ from transformers.models.qwen2.modeling_qwen2 import _CONFIG_FOR_DOC
|
|
|
11
11
|
from transformers.models.qwen2.modeling_qwen2 import QWEN2_INPUTS_DOCSTRING
|
|
12
12
|
from transformers.utils import add_start_docstrings_to_model_forward
|
|
13
13
|
from transformers.utils import replace_return_docstrings
|
|
14
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
14
15
|
|
|
15
16
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
16
17
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
@@ -125,6 +126,7 @@ def lce_forward_deprecated(
|
|
|
125
126
|
)
|
|
126
127
|
|
|
127
128
|
|
|
129
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
128
130
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
|
129
131
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
130
132
|
def lce_forward(
|
|
@@ -140,7 +142,7 @@ def lce_forward(
|
|
|
140
142
|
output_hidden_states: Optional[bool] = None,
|
|
141
143
|
return_dict: Optional[bool] = None,
|
|
142
144
|
cache_position: Optional[torch.LongTensor] = None,
|
|
143
|
-
|
|
145
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
144
146
|
**loss_kwargs,
|
|
145
147
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
146
148
|
r"""
|
|
@@ -150,10 +152,12 @@ def lce_forward(
|
|
|
150
152
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
151
153
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
152
154
|
|
|
153
|
-
|
|
154
|
-
|
|
155
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
156
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
155
157
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
156
158
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
159
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
160
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
157
161
|
|
|
158
162
|
Returns:
|
|
159
163
|
|
|
@@ -209,7 +213,8 @@ def lce_forward(
|
|
|
209
213
|
)
|
|
210
214
|
|
|
211
215
|
else: # if in inference mode materialize logits
|
|
212
|
-
|
|
216
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
217
|
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
213
218
|
if labels is not None:
|
|
214
219
|
loss = self.loss_function(
|
|
215
220
|
logits=logits,
|
|
@@ -694,6 +694,177 @@ def apply_liger_kernel_to_gemma2(
|
|
|
694
694
|
_patch_rms_norm_module_for_gemma2(decoder_layer.post_feedforward_layernorm)
|
|
695
695
|
|
|
696
696
|
|
|
697
|
+
def apply_liger_kernel_to_gemma3_text(
|
|
698
|
+
rope: bool = True,
|
|
699
|
+
cross_entropy: bool = False,
|
|
700
|
+
fused_linear_cross_entropy: bool = True,
|
|
701
|
+
rms_norm: bool = True,
|
|
702
|
+
geglu: bool = True,
|
|
703
|
+
model: PreTrainedModel = None,
|
|
704
|
+
) -> None:
|
|
705
|
+
"""
|
|
706
|
+
Apply Liger kernels to replace original implementation in HuggingFace Gemma3
|
|
707
|
+
|
|
708
|
+
Args:
|
|
709
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
710
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
711
|
+
fused_linear_cross_entropy (bool):
|
|
712
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
713
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
714
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
715
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
716
|
+
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
|
717
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
718
|
+
loaded. Default is None.
|
|
719
|
+
"""
|
|
720
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
721
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
722
|
+
)
|
|
723
|
+
|
|
724
|
+
from transformers.models.gemma3 import modeling_gemma3
|
|
725
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3DecoderLayer
|
|
726
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3ForCausalLM
|
|
727
|
+
|
|
728
|
+
from liger_kernel.transformers.gema3_rms import LigerRMSNormForGemma3
|
|
729
|
+
from liger_kernel.transformers.model.gemma3 import causal_forward
|
|
730
|
+
|
|
731
|
+
_patch_rms_norm_module_for_gemma3 = partial(
|
|
732
|
+
_patch_rms_norm_module, offset=1.0, casting_mode="gemma", in_place=False
|
|
733
|
+
)
|
|
734
|
+
|
|
735
|
+
if rope:
|
|
736
|
+
modeling_gemma3.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
737
|
+
|
|
738
|
+
if rms_norm:
|
|
739
|
+
modeling_gemma3.Gemma3RMSNorm = LigerRMSNormForGemma3
|
|
740
|
+
|
|
741
|
+
if geglu:
|
|
742
|
+
modeling_gemma3.Gemma3MLP = LigerGEGLUMLP
|
|
743
|
+
|
|
744
|
+
# Handle loss function
|
|
745
|
+
if cross_entropy:
|
|
746
|
+
from transformers.loss.loss_utils import nn
|
|
747
|
+
|
|
748
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
749
|
+
|
|
750
|
+
if fused_linear_cross_entropy:
|
|
751
|
+
modeling_gemma3.Gemma3ForCausalLM.forward = causal_forward
|
|
752
|
+
|
|
753
|
+
if model is not None:
|
|
754
|
+
# The model instance already exists, so we need to additionally patch the
|
|
755
|
+
# instance variables that reference already-instantiated modules
|
|
756
|
+
|
|
757
|
+
if isinstance(model, Gemma3ForCausalLM):
|
|
758
|
+
# get the base model from the model instance
|
|
759
|
+
base_model = model.model
|
|
760
|
+
|
|
761
|
+
if rms_norm:
|
|
762
|
+
_patch_rms_norm_module_for_gemma3(base_model.norm)
|
|
763
|
+
|
|
764
|
+
for decoder_layer in base_model.layers:
|
|
765
|
+
decoder_layer: Gemma3DecoderLayer
|
|
766
|
+
if geglu:
|
|
767
|
+
_bind_method_to_module(decoder_layer.mlp, "forward", LigerGEGLUMLP.forward)
|
|
768
|
+
if rms_norm:
|
|
769
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.input_layernorm)
|
|
770
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.post_attention_layernorm)
|
|
771
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.pre_feedforward_layernorm)
|
|
772
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.post_feedforward_layernorm)
|
|
773
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.self_attn.q_norm)
|
|
774
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.self_attn.k_norm)
|
|
775
|
+
|
|
776
|
+
else:
|
|
777
|
+
raise TypeError("The model must be Gemma3ForCausalLM.")
|
|
778
|
+
|
|
779
|
+
|
|
780
|
+
def apply_liger_kernel_to_gemma3(
|
|
781
|
+
rope: bool = True,
|
|
782
|
+
cross_entropy: bool = False,
|
|
783
|
+
fused_linear_cross_entropy: bool = True,
|
|
784
|
+
layer_norm: bool = True,
|
|
785
|
+
rms_norm: bool = True,
|
|
786
|
+
geglu: bool = True,
|
|
787
|
+
model: PreTrainedModel = None,
|
|
788
|
+
) -> None:
|
|
789
|
+
"""
|
|
790
|
+
Apply Liger kernels to replace original implementation in HuggingFace Gemma3
|
|
791
|
+
|
|
792
|
+
Args:
|
|
793
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
794
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
795
|
+
fused_linear_cross_entropy (bool):
|
|
796
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
797
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
798
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
799
|
+
layer_norm (bool): Whether to apply Liger's LayerNorm. Default is True.
|
|
800
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
801
|
+
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
|
802
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
803
|
+
loaded. Default is None.
|
|
804
|
+
"""
|
|
805
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
806
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
807
|
+
)
|
|
808
|
+
|
|
809
|
+
from transformers.models.gemma3 import modeling_gemma3
|
|
810
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3ForConditionalGeneration
|
|
811
|
+
from transformers.models.siglip import modeling_siglip
|
|
812
|
+
from transformers.models.siglip.modeling_siglip import SiglipEncoderLayer
|
|
813
|
+
from transformers.models.siglip.modeling_siglip import SiglipVisionModel
|
|
814
|
+
|
|
815
|
+
from liger_kernel.transformers.model.gemma3 import multimodal_forward
|
|
816
|
+
|
|
817
|
+
_patch_rms_norm_module_for_gemma3 = partial(
|
|
818
|
+
_patch_rms_norm_module, offset=1.0, casting_mode="gemma", in_place=False
|
|
819
|
+
)
|
|
820
|
+
|
|
821
|
+
if layer_norm:
|
|
822
|
+
modeling_siglip.nn.LayerNorm = LigerLayerNorm
|
|
823
|
+
|
|
824
|
+
apply_liger_kernel_to_gemma3_text(
|
|
825
|
+
rope=rope, cross_entropy=False, fused_linear_cross_entropy=False, rms_norm=rms_norm, geglu=geglu
|
|
826
|
+
)
|
|
827
|
+
|
|
828
|
+
if cross_entropy:
|
|
829
|
+
modeling_gemma3.nn.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
830
|
+
|
|
831
|
+
if fused_linear_cross_entropy:
|
|
832
|
+
modeling_gemma3.Gemma3ForConditionalGeneration.forward = multimodal_forward
|
|
833
|
+
|
|
834
|
+
if model is not None:
|
|
835
|
+
# The model instance already exists, so we need to additionally patch the
|
|
836
|
+
# instance variables that reference already-instantiated modules
|
|
837
|
+
|
|
838
|
+
if isinstance(model, Gemma3ForConditionalGeneration):
|
|
839
|
+
if isinstance(model.vision_tower, SiglipVisionModel):
|
|
840
|
+
vision_tower = model.vision_tower
|
|
841
|
+
|
|
842
|
+
_patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
|
|
843
|
+
|
|
844
|
+
for layer in vision_tower.vision_model.encoder.layers:
|
|
845
|
+
layer: SiglipEncoderLayer
|
|
846
|
+
if layer_norm:
|
|
847
|
+
_patch_layer_norm_module(layer.layer_norm1)
|
|
848
|
+
_patch_layer_norm_module(layer.layer_norm2)
|
|
849
|
+
else:
|
|
850
|
+
raise TypeError("The vision tower must be SiglipVisionModel")
|
|
851
|
+
|
|
852
|
+
if rms_norm:
|
|
853
|
+
_patch_rms_norm_module_for_gemma3(model.multi_modal_projector.mm_soft_emb_norm)
|
|
854
|
+
|
|
855
|
+
apply_liger_kernel_to_gemma3_text(
|
|
856
|
+
rope=rope,
|
|
857
|
+
cross_entropy=False,
|
|
858
|
+
fused_linear_cross_entropy=False,
|
|
859
|
+
rms_norm=rms_norm,
|
|
860
|
+
geglu=geglu,
|
|
861
|
+
model=model.language_model,
|
|
862
|
+
)
|
|
863
|
+
|
|
864
|
+
else:
|
|
865
|
+
raise TypeError("The model must be Gemma3ForConditionalGeneration.")
|
|
866
|
+
|
|
867
|
+
|
|
697
868
|
def apply_liger_kernel_to_paligemma(
|
|
698
869
|
rope: bool = True,
|
|
699
870
|
cross_entropy: bool = False,
|
|
@@ -1152,6 +1323,8 @@ def apply_liger_kernel_to_olmo2(
|
|
|
1152
1323
|
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
1153
1324
|
"gemma": apply_liger_kernel_to_gemma,
|
|
1154
1325
|
"gemma2": apply_liger_kernel_to_gemma2,
|
|
1326
|
+
"gemma3_text": apply_liger_kernel_to_gemma3_text,
|
|
1327
|
+
"gemma3": apply_liger_kernel_to_gemma3,
|
|
1155
1328
|
"llama": apply_liger_kernel_to_llama,
|
|
1156
1329
|
"llava": apply_liger_kernel_to_llava,
|
|
1157
1330
|
"granite": apply_liger_kernel_to_granite,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: liger_kernel
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.7
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -314,6 +314,8 @@ loss.backward()
|
|
|
314
314
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
315
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
316
316
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
|
+
| Gemma3 (Text) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3_text` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
318
|
+
| Gemma3 (Multimodal) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
319
|
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
318
320
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
319
321
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -7,10 +7,10 @@ liger_kernel/chunked_loss/cpo_loss.py,sha256=Gzz1eU4kgcbdubFVRy55e8A1Cr-r45UgNic
|
|
|
7
7
|
liger_kernel/chunked_loss/dpo_loss.py,sha256=xZwGqS04si9zXyob95SAdalC-hajZg8fWINqiqffN8k,5855
|
|
8
8
|
liger_kernel/chunked_loss/functional.py,sha256=9G3nKm-Bi7uoZRFkL8wwGMl6juDl4bSzDvTa5GHZPzg,955
|
|
9
9
|
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=ooR-qnZCyWJN935oHCSWLaKKKyaYERyhNczRGi1VOiw,11935
|
|
10
|
-
liger_kernel/chunked_loss/fused_linear_ppo.py,sha256
|
|
10
|
+
liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=AA19cpv6D8mo5RbSK5GRCcZoOSnpxV_Z1eJlAsC5eic,13434
|
|
11
11
|
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=ojB42jYPu0c4ki96Ft-hy7Sf6fh_WikG-aWNrlZzSio,18362
|
|
12
12
|
liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=RiuK3UtRwH9T6jZ36sA8Urj-TVuOLOO2syLg_JOQapY,13437
|
|
13
|
-
liger_kernel/chunked_loss/grpo_loss.py,sha256=
|
|
13
|
+
liger_kernel/chunked_loss/grpo_loss.py,sha256=eh6mErFUZsSQrgRRefuXdk-LG0gS7Rg2r-U9CtbH3eU,10834
|
|
14
14
|
liger_kernel/chunked_loss/jsd_loss.py,sha256=u2ahkuHsbhpNaKcpBCz5gCMDk9ou-P04DHji592dIBo,7067
|
|
15
15
|
liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsmSbQyqwQY,7529
|
|
16
16
|
liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
|
|
@@ -22,18 +22,18 @@ liger_kernel/ops/fused_linear_cross_entropy.py,sha256=1Y3Uk_TCSjqKgoG2eot1ptnWXJ
|
|
|
22
22
|
liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
|
|
23
23
|
liger_kernel/ops/geglu.py,sha256=axGvCIvlBzuluoAIrWTsp2iZM4BFKNInkPov8YVvH9E,4126
|
|
24
24
|
liger_kernel/ops/group_norm.py,sha256=qD4D4lSjSgVtO52EBNLC2iTseALRgPgqXE50U2woggk,10837
|
|
25
|
-
liger_kernel/ops/jsd.py,sha256=
|
|
26
|
-
liger_kernel/ops/kl_div.py,sha256=
|
|
27
|
-
liger_kernel/ops/layer_norm.py,sha256=
|
|
25
|
+
liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
|
|
26
|
+
liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
|
|
27
|
+
liger_kernel/ops/layer_norm.py,sha256=vWCyOm-F2GMAilB-ozJcFeUQQLCJoTE_uiXq-_0uYuI,8356
|
|
28
28
|
liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
|
|
29
|
-
liger_kernel/ops/rms_norm.py,sha256=
|
|
29
|
+
liger_kernel/ops/rms_norm.py,sha256=PP27OIBmV9By63i13jot9ylDowW0nuxY_JFIkaPLgL4,12078
|
|
30
30
|
liger_kernel/ops/rope.py,sha256=ofmBOkUpZZO-Q8Z5B_LOFYYLD-YT-8WnJ4vGOrDYouI,8943
|
|
31
31
|
liger_kernel/ops/swiglu.py,sha256=KmgMjaJQnbLLgZn2nEpbwHU_xpnYRweCyrLQSVvM1vA,3015
|
|
32
32
|
liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
33
33
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
|
34
34
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
|
35
35
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
|
36
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
36
|
+
liger_kernel/transformers/__init__.py,sha256=SH30Pt2ZqyQY-mmWQldg_r-5koowuymTIoU4F4e1KHk,6419
|
|
37
37
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
|
38
38
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
|
39
39
|
liger_kernel/transformers/dyt.py,sha256=QMqqc14pkE0WhpRZvapfnNAun-6C0C_tHExL2ZJuCUA,648
|
|
@@ -41,11 +41,12 @@ liger_kernel/transformers/functional.py,sha256=4h9Pdx_iINBqfv2Zod_c27qOpYXDDwbdV
|
|
|
41
41
|
liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=09Rt7FZzLH42VOcIbQ4dlQd0o3Rlb4vk6fqiOQ7WTD8,1778
|
|
42
42
|
liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
|
|
43
43
|
liger_kernel/transformers/geglu.py,sha256=mrgqzIUVd6lN7fkDKLkw5YaESDxDtFgbot430WwPVOQ,1107
|
|
44
|
+
liger_kernel/transformers/gema3_rms.py,sha256=LTmZOXe6WEnv6ZroW-kU1TE2B36-z5v8OLmKr3XEVFo,353
|
|
44
45
|
liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD2VuGJrMBz0,2173
|
|
45
46
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
|
46
47
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
|
47
48
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
|
48
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
49
|
+
liger_kernel/transformers/monkey_patch.py,sha256=QpfNU7MmVDGlBWIZ2RLTSyh0vuZ-si7H37SL-qOliUs,64393
|
|
49
50
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
|
50
51
|
liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
|
|
51
52
|
liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
|
|
@@ -54,27 +55,28 @@ liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx
|
|
|
54
55
|
liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
|
|
55
56
|
liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
|
|
56
57
|
liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
57
|
-
liger_kernel/transformers/model/gemma.py,sha256
|
|
58
|
-
liger_kernel/transformers/model/gemma2.py,sha256=
|
|
59
|
-
liger_kernel/transformers/model/
|
|
58
|
+
liger_kernel/transformers/model/gemma.py,sha256=-JoHKWjtYPpxHQa6QbCwnzX_cctRZG2ZTsaUv-dmOt4,9816
|
|
59
|
+
liger_kernel/transformers/model/gemma2.py,sha256=n4MZupFGDMvtnvkvkNhRrxXS3ZF341BVfyLjrOXp10g,10923
|
|
60
|
+
liger_kernel/transformers/model/gemma3.py,sha256=ge3JYchiKvX1G1Zp00jX2zmQK2K7ymJoZAxbb2ggslw,16102
|
|
61
|
+
liger_kernel/transformers/model/llama.py,sha256=UVXQLRW7rCU5vPab54dLNS3ER37eM446peHX00Yz6eA,10493
|
|
60
62
|
liger_kernel/transformers/model/llava.py,sha256=b0pEagjUbu2-eS9xegjyfl1DwIXLwZcNpff55ibaMbA,17601
|
|
61
|
-
liger_kernel/transformers/model/loss_utils.py,sha256=
|
|
62
|
-
liger_kernel/transformers/model/mistral.py,sha256=
|
|
63
|
-
liger_kernel/transformers/model/mixtral.py,sha256=
|
|
64
|
-
liger_kernel/transformers/model/mllama.py,sha256=
|
|
65
|
-
liger_kernel/transformers/model/olmo2.py,sha256=
|
|
63
|
+
liger_kernel/transformers/model/loss_utils.py,sha256=WWAMdiONPaXpIvxyOim_0igLrYh0yyOok5Q9_L9xvZw,1787
|
|
64
|
+
liger_kernel/transformers/model/mistral.py,sha256=RacuKcckuDK6oSraCGD0R0bm-fE0K3q-lkYaAC56C2E,5481
|
|
65
|
+
liger_kernel/transformers/model/mixtral.py,sha256=gLcqGabdv1XnuciS9b-TpkTDnGL8K32Hoq9j2vZMBRY,11502
|
|
66
|
+
liger_kernel/transformers/model/mllama.py,sha256=75mxtmMsNd_q8KlKeawj2uMP6v2KjDuUi4nsUKM5jqA,11308
|
|
67
|
+
liger_kernel/transformers/model/olmo2.py,sha256=rSzSALikEGkk0w3PLNQPrqg-ioN8TpWCXkAlg3LtCdI,5189
|
|
66
68
|
liger_kernel/transformers/model/paligemma.py,sha256=GNReT6tVZt3ON6aaa9ovg8mnu1hYocSx9OhgC7b-_28,19191
|
|
67
|
-
liger_kernel/transformers/model/phi3.py,sha256=
|
|
68
|
-
liger_kernel/transformers/model/qwen2.py,sha256=
|
|
69
|
+
liger_kernel/transformers/model/phi3.py,sha256=ebITCrmwmb4z66CbSrZl1kD6BsP52IcSAR8uwUTp9nc,10455
|
|
70
|
+
liger_kernel/transformers/model/qwen2.py,sha256=QaoTDrJv2wIuAM8QMoeWVvgNl0N5gHzIrew9QGG7kXc,9744
|
|
69
71
|
liger_kernel/transformers/model/qwen2_5_vl.py,sha256=70BnHZjx6eQWTwi3zc5SMwxTeOOA4Tbdkfy6IYRcTaM,9289
|
|
70
72
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=zo4O9fShNHYqSLrzLGqQYWSMtJI6UHaSY7zvMCYWyD8,9685
|
|
71
73
|
liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
|
|
72
74
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
|
|
73
75
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
|
74
76
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
|
75
|
-
liger_kernel-0.5.
|
|
76
|
-
liger_kernel-0.5.
|
|
77
|
-
liger_kernel-0.5.
|
|
78
|
-
liger_kernel-0.5.
|
|
79
|
-
liger_kernel-0.5.
|
|
80
|
-
liger_kernel-0.5.
|
|
77
|
+
liger_kernel-0.5.7.dist-info/licenses/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
78
|
+
liger_kernel-0.5.7.dist-info/licenses/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
79
|
+
liger_kernel-0.5.7.dist-info/METADATA,sha256=DJsNdftnn0V8KyBJyssCU0NnPtOvl3J7ldrKWs_aPRs,23340
|
|
80
|
+
liger_kernel-0.5.7.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
81
|
+
liger_kernel-0.5.7.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
82
|
+
liger_kernel-0.5.7.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|