liger-kernel 0.5.4__py3-none-any.whl → 0.5.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. liger_kernel/chunked_loss/cpo_loss.py +51 -11
  2. liger_kernel/chunked_loss/dpo_loss.py +30 -4
  3. liger_kernel/chunked_loss/functional.py +2 -0
  4. liger_kernel/chunked_loss/fused_linear_distillation.py +20 -5
  5. liger_kernel/chunked_loss/fused_linear_ppo.py +331 -0
  6. liger_kernel/chunked_loss/fused_linear_preference.py +2 -2
  7. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +112 -17
  8. liger_kernel/chunked_loss/grpo_loss.py +137 -61
  9. liger_kernel/chunked_loss/jsd_loss.py +43 -13
  10. liger_kernel/chunked_loss/kto_loss.py +50 -12
  11. liger_kernel/chunked_loss/orpo_loss.py +37 -5
  12. liger_kernel/chunked_loss/simpo_loss.py +47 -11
  13. liger_kernel/ops/cross_entropy.py +7 -2
  14. liger_kernel/ops/dyt.py +225 -0
  15. liger_kernel/ops/fused_linear_jsd.py +2 -1
  16. liger_kernel/ops/jsd.py +30 -11
  17. liger_kernel/ops/kl_div.py +2 -2
  18. liger_kernel/transformers/__init__.py +4 -0
  19. liger_kernel/transformers/dyt.py +20 -0
  20. liger_kernel/transformers/functional.py +5 -0
  21. liger_kernel/transformers/model/gemma.py +8 -16
  22. liger_kernel/transformers/model/gemma2.py +7 -16
  23. liger_kernel/transformers/model/llama.py +8 -15
  24. liger_kernel/transformers/model/llava.py +369 -0
  25. liger_kernel/transformers/model/loss_utils.py +57 -0
  26. liger_kernel/transformers/model/mistral.py +9 -10
  27. liger_kernel/transformers/model/mixtral.py +8 -15
  28. liger_kernel/transformers/model/mllama.py +8 -15
  29. liger_kernel/transformers/model/olmo2.py +8 -16
  30. liger_kernel/transformers/model/paligemma.py +397 -0
  31. liger_kernel/transformers/model/phi3.py +8 -15
  32. liger_kernel/transformers/model/qwen2.py +8 -15
  33. liger_kernel/transformers/model/qwen2_5_vl.py +204 -0
  34. liger_kernel/transformers/model/qwen2_vl.py +9 -10
  35. liger_kernel/transformers/monkey_patch.py +286 -12
  36. liger_kernel/utils.py +1 -3
  37. {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.6.dist-info}/METADATA +11 -7
  38. liger_kernel-0.5.6.dist-info/RECORD +80 -0
  39. {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.6.dist-info}/WHEEL +1 -1
  40. liger_kernel/chunked_loss/fused_linear_rlhf.py +0 -213
  41. liger_kernel-0.5.4.dist-info/RECORD +0 -74
  42. {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.6.dist-info/licenses}/LICENSE +0 -0
  43. {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.6.dist-info/licenses}/NOTICE +0 -0
  44. {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.6.dist-info}/top_level.txt +0 -0
@@ -16,13 +16,13 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
16
16
 
17
17
  @staticmethod
18
18
  def forward(
19
+ cls,
19
20
  ctx,
20
21
  _input,
21
22
  weight,
22
23
  target,
23
24
  preference_labels,
24
25
  bias=None,
25
- loss_fn=None,
26
26
  chunk_size=1,
27
27
  ignore_index=-100,
28
28
  compiled=True,
@@ -30,6 +30,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
30
30
  ref_input=None,
31
31
  ref_weight=None,
32
32
  ref_bias=None,
33
+ average_log_prob=False,
33
34
  **loss_kwargs,
34
35
  ):
35
36
  """
@@ -59,6 +60,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
59
60
  Shape: (batch_size,).
60
61
  ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
61
62
  ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
63
+ average_log_prob (bool): Whether to average the log probability per non-masked token.
62
64
  loss_kwargs (dict): Other possible arguments that a loss function might need
63
65
  """
64
66
  # TODO: Tune CHUNK_SIZE to fully utilize the GPU
@@ -72,14 +74,22 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
72
74
  # Loss to be accumulated
73
75
  loss_acc = torch.zeros((), device=_input.device)
74
76
 
77
+ # Metrics to be recorded
78
+ chosen_logps_sum = torch.zeros((), device=_input.device)
79
+ rejected_logps_sum = torch.zeros((), device=_input.device)
80
+ chosen_logits_sum = torch.zeros((), device=_input.device)
81
+ rejected_logits_sum = torch.zeros((), device=_input.device)
82
+ aggregated_aux_outputs = []
83
+
75
84
  compute_loss = partial(
76
85
  LigerFusedLinearUnpairedPreferenceBase._compute_loss,
77
- preference_loss_fn=loss_fn,
86
+ preference_loss_fn=cls.preference_loss_fn,
78
87
  full_target=target,
79
88
  ignore_index=ignore_index,
80
89
  use_ref_model=use_ref_model,
81
90
  ref_weight=ref_weight,
82
91
  ref_bias=ref_bias,
92
+ average_log_prob=average_log_prob,
83
93
  **loss_kwargs,
84
94
  )
85
95
 
@@ -88,7 +98,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
88
98
  Fused forward and backward pass for a chunk of input and target.
89
99
  """
90
100
  argnums = (0, 1, 4) if bias is not None else (0, 1)
91
- return torch.func.grad_and_value(compute_loss, argnums=argnums, has_aux=False)(
101
+ return torch.func.grad_and_value(compute_loss, argnums=argnums, has_aux=True)(
92
102
  input_chunk,
93
103
  weight,
94
104
  target_chunk,
@@ -103,9 +113,19 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
103
113
  preference_labels_chunk=None,
104
114
  ref_input_chunk=None,
105
115
  ):
106
- (chunk_grad_input, chunk_grad_weight, *chunk_grad_bias), (chunk_loss) = fused_fwd_bwd(
107
- input_chunk, target_chunk, preference_labels_chunk, ref_input_chunk
108
- )
116
+ (
117
+ (chunk_grad_input, chunk_grad_weight, *chunk_grad_bias),
118
+ (
119
+ chunk_loss,
120
+ (
121
+ chunk_chosen_logps_sum,
122
+ chunk_rejected_logps_sum,
123
+ chunk_chosen_logits_sum,
124
+ chunk_rejected_logits_sum,
125
+ *aux_outputs,
126
+ ),
127
+ ),
128
+ ) = fused_fwd_bwd(input_chunk, target_chunk, preference_labels_chunk, ref_input_chunk)
109
129
  if bias is not None:
110
130
  grad_bias.add_(chunk_grad_bias[0]) # accumulate bias gradient
111
131
 
@@ -116,6 +136,23 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
116
136
  # Accumulate loss
117
137
  loss_acc.add_(chunk_loss)
118
138
 
139
+ # Accumulate metrics
140
+ chosen_logps_sum.add_(chunk_chosen_logps_sum)
141
+ rejected_logps_sum.add_(chunk_rejected_logps_sum)
142
+ chosen_logits_sum.add_(chunk_chosen_logits_sum)
143
+ rejected_logits_sum.add_(chunk_rejected_logits_sum)
144
+
145
+ # aux_outputs
146
+ # Initialize storage for aux_outputs
147
+ if len(aggregated_aux_outputs) == 0:
148
+ for aux in aux_outputs:
149
+ aggregated_aux_outputs.append(torch.zeros((), device=aux.device))
150
+
151
+ # Process each aux_output
152
+ for i, aux in enumerate(aux_outputs):
153
+ if aux.ndim == 0:
154
+ aggregated_aux_outputs[i].add_(aux)
155
+
119
156
  if compiled:
120
157
  fused_fwd_bwd = torch.compile(fused_fwd_bwd)
121
158
 
@@ -151,12 +188,25 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
151
188
  # accumulate loss, gradients, and metrics
152
189
  accumulate_chunk(input_chunk, target_chunk, preference_labels_chunk, ref_input_chunk)
153
190
 
191
+ # Aggregate aux outputs lists into tensors
192
+ for i, aux in enumerate(aggregated_aux_outputs):
193
+ if isinstance(aux, list):
194
+ aggregated_aux_outputs[i] = torch.cat(aux, dim=0)
195
+
154
196
  ctx.save_for_backward(
155
197
  torch.cat(grad_inputs, dim=0),
156
198
  grad_weight,
157
199
  grad_bias,
158
200
  )
159
- return loss_acc
201
+
202
+ return_vars = (
203
+ chosen_logps_sum,
204
+ rejected_logps_sum,
205
+ chosen_logits_sum,
206
+ rejected_logits_sum,
207
+ )
208
+
209
+ return loss_acc, (*return_vars, *aggregated_aux_outputs)
160
210
 
161
211
  @staticmethod
162
212
  def backward(ctx, *grad_output):
@@ -173,21 +223,37 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
173
223
  input_chunk,
174
224
  weight,
175
225
  target_chunk,
226
+ preference_labels_chunk,
176
227
  bias=None,
177
228
  ignore_index=-100,
229
+ average_log_prob=False,
178
230
  ):
179
231
  logits_chunk = input_chunk @ weight.t()
180
232
  if bias is not None:
181
233
  logits_chunk = logits_chunk + bias
182
234
  log_probs_chunk = F.log_softmax(logits_chunk.float(), dim=-1)
183
-
184
235
  loss_mask_chunk = target_chunk != ignore_index
185
236
  label_chunk = torch.where(loss_mask_chunk, target_chunk, 0)
186
237
 
187
238
  per_token_logps_chunk = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(-1)
188
- average_log_prob_chunk = (per_token_logps_chunk * loss_mask_chunk).sum(-1) / loss_mask_chunk.sum(-1)
189
-
190
- return average_log_prob_chunk
239
+ if average_log_prob:
240
+ log_probs = (per_token_logps_chunk * loss_mask_chunk).sum(-1) / loss_mask_chunk.sum(-1)
241
+ else:
242
+ log_probs = (per_token_logps_chunk * loss_mask_chunk).sum(-1)
243
+
244
+ chosen_logps_sum = (log_probs * preference_labels_chunk.unsqueeze(1)).sum()
245
+ rejected_logps_sum = (log_probs * (~preference_labels_chunk).unsqueeze(1)).sum()
246
+
247
+ chosen_logits_sum = (logits_chunk * preference_labels_chunk.unsqueeze(1)).sum()
248
+ rejected_logits_sum = (logits_chunk * (~preference_labels_chunk).unsqueeze(1)).sum()
249
+
250
+ return (
251
+ log_probs,
252
+ chosen_logps_sum,
253
+ rejected_logps_sum,
254
+ chosen_logits_sum,
255
+ rejected_logits_sum,
256
+ )
191
257
 
192
258
  @staticmethod
193
259
  def _compute_loss(
@@ -203,6 +269,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
203
269
  ref_input_chunk=None,
204
270
  ref_weight=None,
205
271
  ref_bias=None,
272
+ average_log_prob=False,
206
273
  **loss_kwargs,
207
274
  ):
208
275
  """
@@ -218,29 +285,57 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
218
285
  use_ref_model (bool): Whether to use a reference model for the alignment loss.
219
286
  ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
220
287
  ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
288
+ average_log_prob (bool): Whether to average the log probability per non-masked token.
221
289
  loss_kwargs (dict): Additional arguments for the loss function.
222
290
  """
223
- average_log_prob_chunk = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
291
+ (
292
+ log_prob_chunk,
293
+ chosen_logps_sum,
294
+ rejected_logps_sum,
295
+ chosen_logits_sum,
296
+ rejected_logits_sum,
297
+ ) = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
224
298
  input_chunk,
225
299
  weight,
226
300
  target_chunk,
301
+ preference_labels_chunk,
227
302
  bias=bias,
228
303
  ignore_index=ignore_index,
304
+ average_log_prob=average_log_prob,
229
305
  )
230
306
 
231
307
  if use_ref_model:
232
308
  with torch.no_grad():
233
- ref_average_log_prob_chunk = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
309
+ (
310
+ ref_log_prob_chunk,
311
+ _,
312
+ _,
313
+ _,
314
+ _,
315
+ ) = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
234
316
  ref_input_chunk,
235
317
  ref_weight,
236
318
  target_chunk,
319
+ preference_labels_chunk,
237
320
  ref_bias,
238
321
  ignore_index=ignore_index,
322
+ average_log_prob=average_log_prob,
239
323
  )
240
- loss_kwargs["ref_average_log_prob_chunk"] = ref_average_log_prob_chunk
324
+ loss_kwargs["ref_log_prob_chunk"] = ref_log_prob_chunk
241
325
 
242
- preference_loss_chunk = preference_loss_fn(
243
- average_log_prob_chunk, preference_labels_chunk, full_target, **loss_kwargs
326
+ preference_loss_outputs = preference_loss_fn(
327
+ log_prob_chunk, preference_labels_chunk, full_target, **loss_kwargs
328
+ )
329
+ if isinstance(preference_loss_outputs, tuple):
330
+ preference_loss_chunk, *aux_outputs = preference_loss_outputs
331
+ else:
332
+ preference_loss_chunk, aux_outputs = preference_loss_outputs, []
333
+
334
+ return_vars = (
335
+ chosen_logps_sum,
336
+ rejected_logps_sum,
337
+ chosen_logits_sum,
338
+ rejected_logits_sum,
244
339
  )
245
340
 
246
- return preference_loss_chunk
341
+ return preference_loss_chunk, (*return_vars, *aux_outputs)
@@ -1,99 +1,143 @@
1
1
  import torch
2
2
 
3
- from liger_kernel.chunked_loss.fused_linear_rlhf import LigerFusedLinearRLHFBase
3
+ from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
4
4
 
5
5
 
6
- class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
6
+ def k3_loss_fn(log_p, log_q):
7
+ # computes k3 estimate of KL[q, p]
8
+ # ref: http://joschu.net/blog/kl-approx.html
9
+ return torch.exp(log_p - log_q) - (log_p - log_q) - 1.0
10
+
11
+
12
+ def clip_coef_fn(coef, epsilon_low, epsilon_high):
13
+ return torch.clamp(coef, 1 - epsilon_low, 1 + epsilon_high)
14
+
15
+
16
+ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
7
17
  @staticmethod
8
- def rlhf_loss_fn(
18
+ def ppo_loss_fn(
9
19
  log_probs,
20
+ selected_token_ids,
10
21
  attention_mask,
11
- rewards,
12
- ref_log_probs=None,
13
- beta=0.1,
22
+ advantages,
23
+ full_attention_mask,
24
+ ref_per_token_logps=None, # shape: [chunk_size, seq_len]
25
+ old_per_token_logps=None,
26
+ ref_log_probs=None, # used when ref_per_token_logps is None (shape: [chunk_size, seq_len, vocab_size])
27
+ epsilon_low=0.2,
28
+ epsilon_high=0.2,
29
+ beta=0.04,
14
30
  **kwargs,
15
31
  ):
16
32
  """GRPO Loss Function matching GRPOTrainer implementation."""
17
- # Get chosen token probabilities
18
- chosen_tokens = log_probs.argmax(dim=-1) # (batch_size, seq_len)
19
- chosen_token_logprobs = log_probs.gather(dim=-1, index=chosen_tokens.unsqueeze(-1)).squeeze(
33
+ per_token_logps = log_probs.gather(dim=-1, index=selected_token_ids.unsqueeze(-1)).squeeze(
20
34
  -1
21
35
  ) # (batch_size, seq_len)
22
36
 
23
37
  # Get reference model probabilities
24
- if ref_log_probs is not None:
25
- with torch.no_grad():
26
- ref_token_logprobs = ref_log_probs.gather(dim=-1, index=chosen_tokens.unsqueeze(-1)).squeeze(-1)
27
- else:
28
- ref_token_logprobs = chosen_token_logprobs.detach()
29
-
30
- # Compute advantages per batch entry in a grouped fashion
31
- mean_grouped_rewards = rewards.mean() # [batch_size,]
32
- std_grouped_rewards = rewards.std() # [batch_size,]
33
-
34
- # Calculate advantages using the same epsilon as in GRPOTrainer
35
- eps = 1e-4
36
- advantages = (rewards - mean_grouped_rewards) / (std_grouped_rewards + eps)
38
+ if ref_per_token_logps is None:
39
+ if ref_log_probs is not None:
40
+ with torch.no_grad():
41
+ ref_per_token_logps = ref_log_probs.gather(dim=-1, index=selected_token_ids.unsqueeze(-1)).squeeze(
42
+ -1
43
+ )
44
+ else:
45
+ ref_per_token_logps = per_token_logps.detach()
37
46
 
38
47
  # Compute policy gradient loss with importance sampling ratio
39
- ratio = torch.exp(chosen_token_logprobs - chosen_token_logprobs.detach())
40
- policy_loss = -ratio * advantages.unsqueeze(1)
41
-
42
- # Compute KL penalty
43
- kl_div = (
44
- torch.exp(ref_token_logprobs - chosen_token_logprobs) - (ref_token_logprobs - chosen_token_logprobs) - 1.0
45
- )
46
-
47
- # Combine losses
48
- per_token_loss = policy_loss + beta * kl_div
49
-
50
- # Apply masking and normalize
51
- masked_loss = per_token_loss * attention_mask
52
- seq_lengths = attention_mask.sum()
53
- seq_lengths = torch.clamp(seq_lengths, min=1.0)
54
- loss = masked_loss.sum() / seq_lengths
48
+ old_per_token_logps = old_per_token_logps if old_per_token_logps is not None else per_token_logps.detach()
49
+ coef_1 = torch.exp(per_token_logps - old_per_token_logps)
50
+ coef_2 = clip_coef_fn(coef_1, epsilon_low, epsilon_high)
51
+ per_token_loss1 = coef_1 * advantages.unsqueeze(1)
52
+ per_token_loss2 = coef_2 * advantages.unsqueeze(1)
53
+ per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
54
+ if beta != 0.0:
55
+ # Compute KL penalty (approximates KL[per_token_logps, ref_per_token_logps])
56
+ kl_div = k3_loss_fn(ref_per_token_logps, per_token_logps)
57
+ # Combine losses
58
+ per_token_loss = per_token_loss + beta * kl_div
59
+
60
+ # Note: We normalize by the number of tokens in the batch (using full_attention_mask),
61
+ # which is consistent with the DAPO loss implementation (https://arxiv.org/html/2503.14476v1)
62
+ # and TRL GRPO implementation
63
+ # (https://github.com/huggingface/trl/blob/e751a16df56e70190fb94bed4a2035eec3303777/trl/trainer/grpo_trainer.py#L966)
64
+ loss = (per_token_loss * attention_mask).sum() / torch.clamp(full_attention_mask.sum(), min=1.0)
55
65
 
56
66
  # Calculate metrics
57
- metrics = (
58
- chosen_token_logprobs.mean(), # mean log prob
59
- chosen_token_logprobs.std(), # std log prob
60
- log_probs.mean(), # mean all log probs
61
- ((kl_div * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)).mean(), # mean KL div
67
+ metrics = []
68
+ if beta != 0.0:
69
+ metrics.append(((kl_div * attention_mask).sum() / torch.clamp(full_attention_mask.sum(), min=1.0)))
70
+ is_clipped = ((coef_1 < 1 - epsilon_low) & (advantages.unsqueeze(1) < 0)) | (
71
+ (coef_1 > 1 + epsilon_high) & (advantages.unsqueeze(1) > 0)
62
72
  )
63
-
73
+ metrics.append((is_clipped * attention_mask).sum() / torch.clamp(full_attention_mask.sum(), min=1.0))
64
74
  return loss, metrics
65
75
 
66
- @staticmethod
76
+ @classmethod
67
77
  def forward(
78
+ cls,
68
79
  ctx,
69
80
  _input,
70
81
  weight,
82
+ selected_token_ids,
71
83
  attention_mask,
72
- rewards,
84
+ advantages,
73
85
  bias=None,
86
+ ref_per_token_logps=None,
87
+ old_per_token_logps=None,
74
88
  ref_input=None,
75
89
  ref_weight=None,
76
90
  ref_bias=None,
77
- beta=0.1,
91
+ beta=0.04,
92
+ epsilon_low=0.2,
93
+ epsilon_high=0.2,
94
+ temperature=1.0,
78
95
  compiled=True,
79
96
  use_ref_model=True,
80
- num_generations=1,
97
+ chunk_size=1,
81
98
  ):
82
- return LigerFusedLinearRLHFBase.forward(
99
+ """
100
+ Fused linear layer with GRPO loss.
101
+ Args:
102
+ _input (torch.Tensor): Input tensor. Shape: (batch_size * seq_len, hidden_size)
103
+ weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size)
104
+ selected_token_ids (torch.Tensor): Selected token ids tensor. Shape: (batch_size, seq_len)
105
+ attention_mask (torch.Tensor): Attention mask tensor. Shape: (batch_size, seq_len)
106
+ advantages (torch.Tensor): Advantages tensor. Shape: (batch_size,)
107
+ bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,)
108
+ ref_per_token_logps: Reference model log probs per token tensor. Shape:(batch_size, seq_len)
109
+ ref_input (torch.Tensor, optional): Reference model input tensor. Shape: (batch_size * seq_len, hidden_size)
110
+ ref_weight (torch.Tensor, optional): Reference model weight tensor. Shape: (vocab_size, hidden_size)
111
+ ref_bias (torch.Tensor, optional): Reference model bias tensor. Shape: (vocab_size,)
112
+ beta (float): Weight for the KL penalty
113
+ temperature (float): Temperature for the logits
114
+ compiled (bool): Whether to use torch compile
115
+ use_ref_model (bool): Whether to use a reference model
116
+ chunk_size (int): Size of chunks for processing.
117
+ Returns:
118
+ torch.Tensor: Computed loss
119
+ """
120
+ return super().forward(
121
+ cls=cls,
83
122
  ctx=ctx,
84
123
  _input=_input,
85
124
  weight=weight,
125
+ selected_token_ids=selected_token_ids,
86
126
  attention_mask=attention_mask,
87
- loss_fn=LigerFusedLinearGRPOFunction.rlhf_loss_fn,
88
- rewards=rewards,
127
+ advantages=advantages,
89
128
  bias=bias,
129
+ ref_per_token_logps=ref_per_token_logps,
130
+ old_per_token_logps=old_per_token_logps,
90
131
  ref_input=ref_input,
91
132
  ref_weight=ref_weight,
92
133
  ref_bias=ref_bias,
93
134
  beta=beta,
135
+ epsilon_low=epsilon_low,
136
+ epsilon_high=epsilon_high,
137
+ temperature=temperature,
94
138
  compiled=compiled,
95
139
  use_ref_model=use_ref_model,
96
- num_generations=num_generations,
140
+ chunk_size=chunk_size,
97
141
  )
98
142
 
99
143
  @staticmethod
@@ -104,16 +148,23 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
104
148
  grad_output: Gradient of the loss (scalar)
105
149
  grad_metrics: Gradients of the metrics (not used in backward computation)
106
150
  """
107
- grads = LigerFusedLinearRLHFBase.backward(ctx, grad_output)
151
+ grads = LigerFusedLinearPPOBase.backward(ctx, grad_output)
108
152
  return (
109
- *grads[:5], # grad_input, grad_weight, grad_attention_mask, grad_rewards, grad_bias
153
+ *grads[
154
+ :6
155
+ ], # grad_input, grad_weight, grad_selected_token_ids, grad_attention_mask, grad_advantages, grad_bias
156
+ None, # grad_ref_per_token_logps
157
+ None, # grad_old_per_token_logps
110
158
  None, # grad_ref_input
111
159
  None, # grad_ref_weight
112
160
  None, # grad_ref_bias
113
161
  None, # grad_beta
162
+ None, # grad_epsilon_low
163
+ None, # grad_epsilon_high
164
+ None, # grad_temperature
114
165
  None, # grad_compiled
115
166
  None, # grad_use_ref_model
116
- None, # grad_num_generations
167
+ None, # grad_chunk_size
117
168
  )
118
169
 
119
170
 
@@ -122,24 +173,43 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
122
173
 
123
174
  def __init__(
124
175
  self,
125
- beta: float = 0.1,
176
+ beta: float = 0.04,
126
177
  compiled: bool = True,
127
178
  use_ref_model: bool = True,
128
- num_generations: int = 1,
179
+ chunk_size: int = 1,
180
+ epsilon_low: float = 0.2,
181
+ epsilon_high: float = 0.2,
182
+ temperature: float = 1.0,
129
183
  ):
184
+ """
185
+ Args:
186
+ beta (float): Weight for the KL penalty.
187
+ compiled (bool): Whether to use torch compile.
188
+ use_ref_model (bool): Whether to use a reference model.
189
+ chunk_size (int): Size of chunks for processing.
190
+ epsilon_low (float): Lower bound for the importance sampling ratio.
191
+ epsilon_high (float): Upper bound for the importance sampling ratio.
192
+ temperature (float): Temperature for the logits.
193
+ """
130
194
  super().__init__()
131
195
  self.beta = beta
132
196
  self.compiled = compiled
133
197
  self.use_ref_model = use_ref_model
134
- self.num_generations = num_generations
198
+ self.chunk_size = chunk_size
199
+ self.epsilon_low = epsilon_low
200
+ self.epsilon_high = epsilon_high
201
+ self.temperature = temperature
135
202
 
136
203
  def forward(
137
204
  self,
138
205
  _input,
139
206
  lin_weight,
207
+ selected_token_ids,
140
208
  attention_mask,
141
- rewards,
209
+ advantages,
142
210
  bias=None,
211
+ ref_per_token_logps=None,
212
+ old_per_token_logps=None,
143
213
  ref_input=None,
144
214
  ref_weight=None,
145
215
  ref_bias=None,
@@ -147,14 +217,20 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
147
217
  return LigerFusedLinearGRPOFunction.apply(
148
218
  _input,
149
219
  lin_weight,
220
+ selected_token_ids,
150
221
  attention_mask,
151
- rewards,
222
+ advantages,
152
223
  bias,
224
+ ref_per_token_logps,
225
+ old_per_token_logps,
153
226
  ref_input,
154
227
  ref_weight,
155
228
  ref_bias,
156
229
  self.beta,
230
+ self.epsilon_low,
231
+ self.epsilon_high,
232
+ self.temperature,
157
233
  self.compiled,
158
234
  self.use_ref_model,
159
- self.num_generations,
235
+ self.chunk_size,
160
236
  )
@@ -19,31 +19,40 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
19
19
  student_log_probs = F.log_softmax(student_logits, dim=-1)
20
20
  teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)
21
21
 
22
- # Compute probabilities (only required for mean calculation)
23
- mean_probs = beta * student_log_probs.exp() + (1 - beta) * teacher_log_probs.exp()
24
- log_mean_probs = mean_probs.log()
22
+ if beta == 0:
23
+ jsd_loss = F.kl_div(student_log_probs, teacher_log_probs, reduction="sum", log_target=True)
24
+ elif beta == 1:
25
+ jsd_loss = F.kl_div(teacher_log_probs, student_log_probs, reduction="sum", log_target=True)
26
+ else:
27
+ # Compute probabilities (only required for mean calculation)
28
+ mean_probs = (1 - beta) * student_log_probs.exp() + beta * teacher_log_probs.exp()
29
+ log_mean_probs = mean_probs.log()
25
30
 
26
- student_kl = F.kl_div(log_mean_probs, student_log_probs, reduction="sum", log_target=True)
27
- teacher_kl = F.kl_div(log_mean_probs, teacher_log_probs, reduction="sum", log_target=True)
31
+ student_kl = F.kl_div(log_mean_probs, student_log_probs, reduction="sum", log_target=True)
32
+ teacher_kl = F.kl_div(log_mean_probs, teacher_log_probs, reduction="sum", log_target=True)
28
33
 
29
- # JSD is the weighted average of the KL divergences
30
- jsd_loss = beta * teacher_kl + (1 - beta) * student_kl
34
+ # JSD is the weighted average of the KL divergences
35
+ jsd_loss = beta * teacher_kl + (1 - beta) * student_kl
31
36
  return jsd_loss
32
37
 
33
- @staticmethod
38
+ @classmethod
34
39
  def forward(
40
+ cls,
35
41
  ctx,
36
42
  student_input: torch.Tensor,
37
43
  student_weight: torch.Tensor,
38
44
  teacher_input: torch.Tensor,
39
45
  teacher_weight: torch.Tensor,
40
46
  true_labels: torch.LongTensor,
47
+ student_bias: torch.Tensor,
48
+ teacher_bias: torch.Tensor,
41
49
  weight_hard_loss: float = 0.5,
42
50
  weight_soft_loss: float = 0.5,
43
51
  beta: float = 0.5,
44
52
  ignore_index: int = -100,
45
53
  temperature: float = 1.0,
46
54
  compiled: bool = True,
55
+ chunk_size: int = 1024,
47
56
  ):
48
57
  """
49
58
  Fused linear layer with JSD distillation loss.
@@ -59,18 +68,21 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
59
68
  ignore_index (int): Index to ignore in loss computation
60
69
  temperature (float): Temperature for softening/sharpening distributions
61
70
  compiled (bool): Whether to use torch compile
71
+ chunk_size (int): Size of chunks for processing.
62
72
  Returns:
63
73
  torch.Tensor: Computed loss
64
74
  """
65
- return LigerFusedLinearDistillationBase.forward(
75
+ return super().forward(
76
+ cls=cls,
66
77
  ctx=ctx,
67
78
  student_input=student_input,
68
79
  student_weight=student_weight,
69
80
  teacher_input=teacher_input,
70
81
  teacher_weight=teacher_weight,
71
82
  target=true_labels,
72
- loss_fn=LigerFusedLinearJSDFunction.distillation_loss_fn,
73
- chunk_size=1,
83
+ student_bias=student_bias,
84
+ teacher_bias=teacher_bias,
85
+ chunk_size=chunk_size,
74
86
  weight_hard_loss=weight_hard_loss,
75
87
  weight_soft_loss=weight_soft_loss,
76
88
  beta=beta,
@@ -81,9 +93,19 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
81
93
 
82
94
  @staticmethod
83
95
  def backward(ctx, grad_output):
84
- grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output)[:4]
96
+ grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output)[:6]
85
97
 
86
- return (*grads, None, None, None, None, None, None, None)
98
+ return (
99
+ *grads,
100
+ None, # teacher_bias
101
+ None, # weight_hard_loss
102
+ None, # weight_soft_loss
103
+ None, # beta
104
+ None, # ignore_index
105
+ None, # temperature
106
+ None, # compiled
107
+ None, # chunk_size
108
+ )
87
109
 
88
110
 
89
111
  class LigerFusedLinearJSDLoss(torch.nn.Module):
@@ -99,6 +121,7 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
99
121
  ignore_index: int = -100,
100
122
  temperature: float = 1.0,
101
123
  compiled: bool = True,
124
+ chunk_size: int = 1024,
102
125
  ):
103
126
  """
104
127
  Args:
@@ -108,6 +131,7 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
108
131
  temperature (float): Temperature for softening distributions
109
132
  compiled (bool): Whether to use torch compile
110
133
  beta (float): Coefficient beta of generalized JSD in the interval [0, 1]. Default: `0.5`.
134
+ chunk_size (int): Size of chunks for processing.
111
135
  """
112
136
  super().__init__()
113
137
  assert temperature != 0, "Temperature cannot be 0."
@@ -117,6 +141,7 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
117
141
  self.temperature = temperature
118
142
  self.compiled = compiled
119
143
  self.beta = beta
144
+ self.chunk_size = chunk_size
120
145
 
121
146
  def forward(
122
147
  self,
@@ -125,6 +150,8 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
125
150
  teacher_input: torch.Tensor,
126
151
  teacher_weight: torch.Tensor,
127
152
  true_labels: torch.LongTensor,
153
+ student_bias: torch.Tensor,
154
+ teacher_bias: torch.Tensor,
128
155
  ) -> torch.Tensor:
129
156
  """
130
157
  Compute the JSD distillation loss.
@@ -145,10 +172,13 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
145
172
  teacher_input,
146
173
  teacher_weight,
147
174
  true_labels,
175
+ student_bias,
176
+ teacher_bias,
148
177
  self.weight_hard_loss,
149
178
  self.weight_soft_loss,
150
179
  self.beta,
151
180
  self.ignore_index,
152
181
  self.temperature,
153
182
  self.compiled,
183
+ self.chunk_size,
154
184
  )