liger-kernel 0.5.3__py3-none-any.whl → 0.5.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cpo_loss.py +51 -11
  3. liger_kernel/chunked_loss/dpo_loss.py +30 -4
  4. liger_kernel/chunked_loss/fused_linear_distillation.py +3 -3
  5. liger_kernel/chunked_loss/fused_linear_preference.py +2 -2
  6. liger_kernel/chunked_loss/fused_linear_rlhf.py +240 -0
  7. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +112 -17
  8. liger_kernel/chunked_loss/grpo_loss.py +194 -0
  9. liger_kernel/chunked_loss/jsd_loss.py +31 -6
  10. liger_kernel/chunked_loss/kto_loss.py +53 -15
  11. liger_kernel/chunked_loss/orpo_loss.py +37 -5
  12. liger_kernel/chunked_loss/simpo_loss.py +47 -11
  13. liger_kernel/ops/cross_entropy.py +7 -3
  14. liger_kernel/ops/fused_linear_cross_entropy.py +3 -3
  15. liger_kernel/ops/fused_linear_jsd.py +3 -3
  16. liger_kernel/ops/jsd.py +3 -3
  17. liger_kernel/ops/layer_norm.py +20 -7
  18. liger_kernel/ops/tvd.py +207 -0
  19. liger_kernel/ops/utils.py +1 -2
  20. liger_kernel/transformers/__init__.py +4 -0
  21. liger_kernel/transformers/cross_entropy.py +3 -3
  22. liger_kernel/transformers/functional.py +17 -0
  23. liger_kernel/transformers/fused_linear_cross_entropy.py +3 -3
  24. liger_kernel/transformers/group_norm.py +6 -6
  25. liger_kernel/transformers/model/olmo2.py +124 -0
  26. liger_kernel/transformers/model/qwen2_5_vl.py +205 -0
  27. liger_kernel/transformers/monkey_patch.py +239 -27
  28. liger_kernel/transformers/tvd.py +13 -0
  29. liger_kernel/utils.py +48 -1
  30. {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.5.dist-info}/METADATA +19 -4
  31. {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.5.dist-info}/RECORD +35 -29
  32. {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.5.dist-info}/WHEEL +1 -1
  33. {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.5.dist-info}/LICENSE +0 -0
  34. {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.5.dist-info}/NOTICE +0 -0
  35. {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.5.dist-info}/top_level.txt +0 -0
liger_kernel/ops/utils.py CHANGED
@@ -49,8 +49,7 @@ def calculate_settings(n):
49
49
  BLOCK_SIZE = triton.next_power_of_2(n)
50
50
  if BLOCK_SIZE > MAX_FUSED_SIZE:
51
51
  raise RuntimeError(
52
- f"Cannot launch Triton kernel since n = {n} exceeds "
53
- f"the recommended Triton blocksize = {MAX_FUSED_SIZE}."
52
+ f"Cannot launch Triton kernel since n = {n} exceeds the recommended Triton blocksize = {MAX_FUSED_SIZE}."
54
53
  )
55
54
 
56
55
  num_warps = 4
@@ -9,15 +9,19 @@ from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa:
9
9
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
10
10
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
11
11
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
12
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
12
13
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
13
14
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
14
15
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
15
16
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
17
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
16
18
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
17
19
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
20
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
18
21
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
19
22
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
20
23
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
21
24
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
22
25
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
23
26
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
27
+ from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
@@ -17,9 +17,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
17
17
  return_z_loss: bool = False,
18
18
  ):
19
19
  super().__init__()
20
- assert (label_smoothing >= 0) and (
21
- label_smoothing <= 1
22
- ), f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
20
+ assert (label_smoothing >= 0) and (label_smoothing <= 1), (
21
+ f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
22
+ )
23
23
  assert reduction in {
24
24
  "mean",
25
25
  "sum",
@@ -12,6 +12,7 @@ from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
12
12
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
13
13
  from liger_kernel.ops.rope import LigerRopeFunction
14
14
  from liger_kernel.ops.swiglu import LigerSiLUMulFunction
15
+ from liger_kernel.ops.tvd import LigerTVDLossFunction
15
16
 
16
17
 
17
18
  # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
@@ -157,6 +158,22 @@ def liger_kl_div(
157
158
  )
158
159
 
159
160
 
161
+ def liger_tvd(
162
+ input,
163
+ target,
164
+ shift_labels=None,
165
+ reduction: str = "mean",
166
+ ignore_index: int = -100,
167
+ ):
168
+ return LigerTVDLossFunction.apply(
169
+ input,
170
+ target,
171
+ shift_labels,
172
+ reduction,
173
+ ignore_index,
174
+ )
175
+
176
+
160
177
  def liger_layer_norm(X, W, B, eps):
161
178
  return LigerLayerNormFunction.apply(X, W, B, eps)
162
179
 
@@ -17,9 +17,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
17
17
  return_z_loss: bool = False,
18
18
  ):
19
19
  super().__init__()
20
- assert (label_smoothing >= 0) and (
21
- label_smoothing <= 1
22
- ), f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
20
+ assert (label_smoothing >= 0) and (label_smoothing <= 1), (
21
+ f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
22
+ )
23
23
  assert reduction in {
24
24
  "mean",
25
25
  "sum",
@@ -21,9 +21,9 @@ class LigerGroupNorm(nn.Module):
21
21
  "zeros",
22
22
  ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
23
23
 
24
- assert (
25
- num_channels % num_groups == 0
26
- ), f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
24
+ assert num_channels % num_groups == 0, (
25
+ f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
26
+ )
27
27
  self.num_channels = num_channels
28
28
  self.num_groups = num_groups
29
29
  self.eps = eps
@@ -34,9 +34,9 @@ class LigerGroupNorm(nn.Module):
34
34
  def forward(self, hidden_states):
35
35
  # hidden_states: (batch_size, num_channels, *)
36
36
  assert hidden_states.dim() >= 3, f"Input must have atleast 3 dimensions, got {hidden_states.dim()}"
37
- assert (
38
- hidden_states.size(1) == self.num_channels
39
- ), f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
37
+ assert hidden_states.size(1) == self.num_channels, (
38
+ f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
39
+ )
40
40
  return LigerGroupNormFunction.apply(
41
41
  hidden_states,
42
42
  self.weight,
@@ -0,0 +1,124 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import CausalLMOutputWithPast
9
+ from transformers.models.olmo2.modeling_olmo2 import _CONFIG_FOR_DOC
10
+ from transformers.models.olmo2.modeling_olmo2 import OLMO2_INPUTS_DOCSTRING
11
+ from transformers.utils import add_start_docstrings_to_model_forward
12
+ from transformers.utils import replace_return_docstrings
13
+
14
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
15
+
16
+
17
+ @add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
18
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
19
+ def lce_forward(
20
+ self,
21
+ input_ids: torch.LongTensor = None,
22
+ attention_mask: Optional[torch.Tensor] = None,
23
+ position_ids: Optional[torch.LongTensor] = None,
24
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
25
+ inputs_embeds: Optional[torch.FloatTensor] = None,
26
+ labels: Optional[torch.LongTensor] = None,
27
+ use_cache: Optional[bool] = None,
28
+ output_attentions: Optional[bool] = None,
29
+ output_hidden_states: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ cache_position: Optional[torch.LongTensor] = None,
32
+ num_logits_to_keep: int = 0,
33
+ **loss_kwargs,
34
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
35
+ r"""
36
+ Args:
37
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
38
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
39
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
40
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
41
+
42
+ num_logits_to_keep (`int`, *optional*):
43
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
44
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
45
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from transformers import AutoTokenizer, Olmo2ForCausalLM
53
+
54
+ >>> model = Olmo2ForCausalLM.from_pretrained("allenai/Olmo2-1B-hf")
55
+ >>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo2-1B-hf")
56
+
57
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
58
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
59
+
60
+ >>> # Generate
61
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
62
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
63
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
64
+ ```
65
+ """
66
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
67
+ output_hidden_states = (
68
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
69
+ )
70
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
+
72
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
73
+ outputs = self.model(
74
+ input_ids=input_ids,
75
+ attention_mask=attention_mask,
76
+ position_ids=position_ids,
77
+ past_key_values=past_key_values,
78
+ inputs_embeds=inputs_embeds,
79
+ use_cache=use_cache,
80
+ output_attentions=output_attentions,
81
+ output_hidden_states=output_hidden_states,
82
+ return_dict=return_dict,
83
+ cache_position=cache_position,
84
+ )
85
+
86
+ hidden_states = outputs[0]
87
+
88
+ logits = None
89
+ loss = None
90
+ # if in training mode, don't materialize logits
91
+ if self.training and (labels is not None):
92
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
93
+
94
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
95
+ shift_labels = labels[..., 1:].contiguous()
96
+
97
+ # flatten tokens
98
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
99
+ shift_labels = shift_labels.view(-1)
100
+
101
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
102
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
103
+
104
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
105
+ if reduction == "sum":
106
+ loss /= loss_kwargs["num_items_in_batch"]
107
+
108
+ else: # if in inference mode materialize logits
109
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
110
+ if labels is not None:
111
+ loss = self.loss_function(
112
+ logits=logits,
113
+ labels=labels,
114
+ vocab_size=self.config.vocab_size,
115
+ **loss_kwargs,
116
+ )
117
+
118
+ return CausalLMOutputWithPast(
119
+ loss=loss,
120
+ logits=logits,
121
+ past_key_values=outputs.past_key_values,
122
+ hidden_states=outputs.hidden_states,
123
+ attentions=outputs.attentions,
124
+ )
@@ -0,0 +1,205 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from torch.nn import CrossEntropyLoss
9
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import _CONFIG_FOR_DOC
10
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import QWEN2_5_VL_INPUTS_DOCSTRING
11
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLCausalLMOutputWithPast
12
+ from transformers.utils import add_start_docstrings_to_model_forward
13
+ from transformers.utils import replace_return_docstrings
14
+
15
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
16
+
17
+
18
+ @add_start_docstrings_to_model_forward(QWEN2_5_VL_INPUTS_DOCSTRING)
19
+ @replace_return_docstrings(output_type=Qwen2_5_VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
20
+ def lce_forward(
21
+ self,
22
+ input_ids: torch.LongTensor = None,
23
+ attention_mask: Optional[torch.Tensor] = None,
24
+ position_ids: Optional[torch.LongTensor] = None,
25
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
26
+ inputs_embeds: Optional[torch.FloatTensor] = None,
27
+ labels: Optional[torch.LongTensor] = None,
28
+ use_cache: Optional[bool] = None,
29
+ output_attentions: Optional[bool] = None,
30
+ output_hidden_states: Optional[bool] = None,
31
+ return_dict: Optional[bool] = None,
32
+ pixel_values: Optional[torch.Tensor] = None,
33
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
34
+ image_grid_thw: Optional[torch.LongTensor] = None,
35
+ video_grid_thw: Optional[torch.LongTensor] = None,
36
+ rope_deltas: Optional[torch.LongTensor] = None,
37
+ cache_position: Optional[torch.LongTensor] = None,
38
+ second_per_grid_ts: Optional[torch.Tensor] = None,
39
+ ) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
40
+ r"""
41
+ Copy paste Qwen2_5_VL's forward but replace torch cross entropy with liger fused linear cross entropy
42
+ Args:
43
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
44
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
45
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
46
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
47
+
48
+ Returns:
49
+
50
+ Example:
51
+
52
+ ```python
53
+ >>> from PIL import Image
54
+ >>> import requests
55
+ >>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
56
+
57
+ >>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
58
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
59
+
60
+ >>> messages = [
61
+ {
62
+ "role": "user",
63
+ "content": [
64
+ {"type": "image"},
65
+ {"type": "text", "text": "What is shown in this image?"},
66
+ ],
67
+ },
68
+ ]
69
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
70
+ >>> image = Image.open(requests.get(url, stream=True).raw)
71
+
72
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
73
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
74
+
75
+ >>> # Generate
76
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
77
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
78
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
79
+ ```"""
80
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
81
+ output_hidden_states = (
82
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
83
+ )
84
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
85
+
86
+ if inputs_embeds is None:
87
+ inputs_embeds = self.model.embed_tokens(input_ids)
88
+ if pixel_values is not None:
89
+ pixel_values = pixel_values.type(self.visual.dtype)
90
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
91
+ n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
92
+ n_image_features = image_embeds.shape[0]
93
+ if n_image_tokens != n_image_features:
94
+ raise ValueError(
95
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
96
+ )
97
+
98
+ mask = input_ids == self.config.image_token_id
99
+ mask_unsqueezed = mask.unsqueeze(-1)
100
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
101
+ image_mask = mask_expanded.to(inputs_embeds.device)
102
+
103
+ image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
104
+ inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
105
+
106
+ if pixel_values_videos is not None:
107
+ pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
108
+ video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
109
+ n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
110
+ n_video_features = video_embeds.shape[0]
111
+ if n_video_tokens != n_video_features:
112
+ raise ValueError(
113
+ f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
114
+ )
115
+
116
+ mask = input_ids == self.config.video_token_id
117
+ mask_unsqueezed = mask.unsqueeze(-1)
118
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
119
+ video_mask = mask_expanded.to(inputs_embeds.device)
120
+
121
+ video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
122
+ inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
123
+
124
+ if attention_mask is not None:
125
+ attention_mask = attention_mask.to(inputs_embeds.device)
126
+
127
+ # if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
128
+ if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
129
+ # calculate RoPE index once per generation in the pre-fill stage only
130
+ if (cache_position is not None and cache_position[0] == 0) or self.rope_deltas is None:
131
+ position_ids, rope_deltas = self.get_rope_index(
132
+ input_ids,
133
+ image_grid_thw,
134
+ video_grid_thw,
135
+ second_per_grid_ts,
136
+ attention_mask,
137
+ )
138
+ self.rope_deltas = rope_deltas
139
+ # then use the prev pre-calculated rope-deltas to get the correct position ids
140
+ else:
141
+ batch_size, seq_length, _ = inputs_embeds.shape
142
+ delta = (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) if cache_position is not None else 0
143
+ position_ids = torch.arange(seq_length, device=inputs_embeds.device)
144
+ position_ids = position_ids.view(1, -1).expand(batch_size, -1)
145
+ if cache_position is not None: # otherwise `deltas` is an int `0`
146
+ delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
147
+ position_ids = position_ids.add(delta)
148
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
149
+
150
+ outputs = self.model(
151
+ input_ids=None,
152
+ position_ids=position_ids,
153
+ attention_mask=attention_mask,
154
+ past_key_values=past_key_values,
155
+ inputs_embeds=inputs_embeds,
156
+ use_cache=use_cache,
157
+ output_attentions=output_attentions,
158
+ output_hidden_states=output_hidden_states,
159
+ return_dict=return_dict,
160
+ cache_position=cache_position,
161
+ )
162
+
163
+ hidden_states = outputs[0]
164
+
165
+ loss = None
166
+ logits = None
167
+
168
+ if self.training and (labels is not None):
169
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
170
+ shift_labels = labels[..., 1:].contiguous()
171
+
172
+ # Flatten tokens
173
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
174
+ shift_labels = shift_labels.view(-1)
175
+
176
+ lce = LigerFusedLinearCrossEntropyLoss()
177
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
178
+ else:
179
+ logits = self.lm_head(hidden_states)
180
+ if labels is not None:
181
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
182
+ logits = logits.float()
183
+ # Shift so that tokens < n predict n
184
+ shift_logits = logits[..., :-1, :].contiguous()
185
+ shift_labels = labels[..., 1:].contiguous()
186
+ # Flatten the tokens
187
+ loss_fct = CrossEntropyLoss()
188
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
189
+ shift_labels = shift_labels.view(-1)
190
+ # Enable model parallelism
191
+ shift_labels = shift_labels.to(shift_logits.device)
192
+ loss = loss_fct(shift_logits, shift_labels)
193
+
194
+ if not return_dict:
195
+ output = (logits,) + outputs[1:]
196
+ return (loss,) + output if loss is not None else output
197
+
198
+ return Qwen2_5_VLCausalLMOutputWithPast(
199
+ loss=loss,
200
+ logits=logits,
201
+ past_key_values=outputs.past_key_values,
202
+ hidden_states=outputs.hidden_states,
203
+ attentions=outputs.attentions,
204
+ rope_deltas=rope_deltas,
205
+ )