liger-kernel 0.5.3__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/fused_linear_rlhf.py +213 -0
- liger_kernel/chunked_loss/grpo_loss.py +160 -0
- liger_kernel/chunked_loss/kto_loss.py +9 -9
- liger_kernel/ops/cross_entropy.py +3 -3
- liger_kernel/ops/fused_linear_cross_entropy.py +3 -3
- liger_kernel/ops/fused_linear_jsd.py +3 -3
- liger_kernel/ops/jsd.py +3 -3
- liger_kernel/ops/layer_norm.py +20 -7
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +1 -2
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/cross_entropy.py +3 -3
- liger_kernel/transformers/functional.py +17 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +3 -3
- liger_kernel/transformers/group_norm.py +6 -6
- liger_kernel/transformers/model/olmo2.py +124 -0
- liger_kernel/transformers/monkey_patch.py +171 -27
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/utils.py +49 -0
- {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.4.dist-info}/METADATA +17 -3
- {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.4.dist-info}/RECORD +26 -21
- {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.4.dist-info}/LICENSE +0 -0
- {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.4.dist-info}/NOTICE +0 -0
- {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.4.dist-info}/WHEEL +0 -0
- {liger_kernel-0.5.3.dist-info → liger_kernel-0.5.4.dist-info}/top_level.txt +0 -0
liger_kernel/ops/tvd.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
from typing import Literal
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import triton
|
|
6
|
+
import triton.language as tl
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
9
|
+
|
|
10
|
+
MAX_FUSED_SIZE = 65536 // 4
|
|
11
|
+
|
|
12
|
+
REDUCTION_LITERAL = Literal["none", "sum", "mean", "batchmean"]
|
|
13
|
+
|
|
14
|
+
_REDUCTION_MODE_NONE = tl.constexpr(0)
|
|
15
|
+
_REDUCTION_MODE_SUM = tl.constexpr(1)
|
|
16
|
+
_REDUCTION_MODE_MEAN = tl.constexpr(2)
|
|
17
|
+
_REDUCTION_MODE_BATCHMEAN = tl.constexpr(3)
|
|
18
|
+
|
|
19
|
+
_str_to_reduction_mode = {
|
|
20
|
+
"none": _REDUCTION_MODE_NONE.value,
|
|
21
|
+
"sum": _REDUCTION_MODE_SUM.value,
|
|
22
|
+
"mean": _REDUCTION_MODE_MEAN.value,
|
|
23
|
+
"batchmean": _REDUCTION_MODE_BATCHMEAN.value,
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def get_num_warps(BLOCK_SIZE):
|
|
28
|
+
num_warps = 4
|
|
29
|
+
if BLOCK_SIZE >= 32768:
|
|
30
|
+
num_warps = 32
|
|
31
|
+
elif BLOCK_SIZE >= 8192:
|
|
32
|
+
num_warps = 16
|
|
33
|
+
elif BLOCK_SIZE >= 2048:
|
|
34
|
+
num_warps = 8
|
|
35
|
+
|
|
36
|
+
return num_warps
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
@triton.jit
|
|
40
|
+
def _tv_distance_kernel(
|
|
41
|
+
p_ptr,
|
|
42
|
+
p_stride,
|
|
43
|
+
q_ptr,
|
|
44
|
+
q_stride,
|
|
45
|
+
loss_ptr,
|
|
46
|
+
loss_stride,
|
|
47
|
+
grads_ptr,
|
|
48
|
+
grads_stride,
|
|
49
|
+
label_ptr,
|
|
50
|
+
ignore_index: tl.constexpr,
|
|
51
|
+
n_cols,
|
|
52
|
+
BLOCK_SIZE: tl.constexpr,
|
|
53
|
+
HAS_LABEL: tl.constexpr,
|
|
54
|
+
reduction: tl.constexpr = _REDUCTION_MODE_BATCHMEAN,
|
|
55
|
+
):
|
|
56
|
+
pid = tl.program_id(0).to(tl.int64)
|
|
57
|
+
p_ptr += pid * p_stride
|
|
58
|
+
q_ptr += pid * q_stride
|
|
59
|
+
loss_ptr += pid * loss_stride
|
|
60
|
+
grads_ptr += pid * grads_stride
|
|
61
|
+
label_ptr += pid
|
|
62
|
+
|
|
63
|
+
base_offsets = tl.arange(0, BLOCK_SIZE)
|
|
64
|
+
|
|
65
|
+
if HAS_LABEL:
|
|
66
|
+
label = tl.load(label_ptr)
|
|
67
|
+
if label == ignore_index:
|
|
68
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
69
|
+
offsets = i + base_offsets
|
|
70
|
+
mask = offsets < n_cols
|
|
71
|
+
tl.store(grads_ptr + offsets, 0.0, mask=mask)
|
|
72
|
+
if reduction == _REDUCTION_MODE_NONE:
|
|
73
|
+
tl.store(loss_ptr + offsets, 0.0, mask=mask)
|
|
74
|
+
return
|
|
75
|
+
|
|
76
|
+
loss_sum = 0.0
|
|
77
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
78
|
+
offsets = i + base_offsets
|
|
79
|
+
mask = offsets < n_cols
|
|
80
|
+
|
|
81
|
+
p = tl.load(p_ptr + offsets, mask=mask, other=0.0)
|
|
82
|
+
q = tl.load(q_ptr + offsets, mask=mask, other=0.0)
|
|
83
|
+
|
|
84
|
+
# TVD(P || Q) = 0.5 * |P - Q|
|
|
85
|
+
tv_loss = 0.5 * tl.abs(p - q)
|
|
86
|
+
|
|
87
|
+
grad_res = tl.where(p > q, 0.5, -0.5)
|
|
88
|
+
|
|
89
|
+
tl.store(grads_ptr + offsets, grad_res, mask=mask)
|
|
90
|
+
|
|
91
|
+
if reduction == _REDUCTION_MODE_NONE:
|
|
92
|
+
tl.store(loss_ptr + offsets, tv_loss, mask=mask)
|
|
93
|
+
else:
|
|
94
|
+
loss_sum += tl.sum(tv_loss, axis=0)
|
|
95
|
+
|
|
96
|
+
if reduction != _REDUCTION_MODE_NONE:
|
|
97
|
+
tl.store(loss_ptr, loss_sum)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def tv_distance_forward_triton(p, q, shift_labels, reduction, ignore_index, has_label):
|
|
101
|
+
BT, V = p.shape
|
|
102
|
+
|
|
103
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
|
104
|
+
num_warps = get_num_warps(BLOCK_SIZE)
|
|
105
|
+
|
|
106
|
+
grid = (BT,)
|
|
107
|
+
|
|
108
|
+
reduction = _str_to_reduction_mode[reduction]
|
|
109
|
+
|
|
110
|
+
out_size = (BT, V) if reduction == _REDUCTION_MODE_NONE.value else (BT,)
|
|
111
|
+
output_tensor = torch.zeros(out_size, device=p.device, dtype=torch.float32)
|
|
112
|
+
grads = torch.empty_like(p)
|
|
113
|
+
|
|
114
|
+
n_non_ignore = (shift_labels != ignore_index).sum().item() if has_label else BT
|
|
115
|
+
|
|
116
|
+
_tv_distance_kernel[grid](
|
|
117
|
+
p,
|
|
118
|
+
p.stride(0),
|
|
119
|
+
q,
|
|
120
|
+
q.stride(0),
|
|
121
|
+
output_tensor,
|
|
122
|
+
output_tensor.stride(0),
|
|
123
|
+
grads,
|
|
124
|
+
grads.stride(0),
|
|
125
|
+
shift_labels if has_label else torch.empty(1, device=p.device),
|
|
126
|
+
ignore_index,
|
|
127
|
+
V,
|
|
128
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
129
|
+
HAS_LABEL=has_label,
|
|
130
|
+
num_warps=num_warps,
|
|
131
|
+
reduction=reduction,
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
if reduction == _REDUCTION_MODE_BATCHMEAN.value:
|
|
135
|
+
return output_tensor.sum() / n_non_ignore, grads / n_non_ignore
|
|
136
|
+
elif reduction == _REDUCTION_MODE_SUM.value:
|
|
137
|
+
return output_tensor.sum(dim=0), grads
|
|
138
|
+
elif reduction == _REDUCTION_MODE_MEAN.value:
|
|
139
|
+
return output_tensor.sum() / (n_non_ignore * V), grads / (n_non_ignore * V)
|
|
140
|
+
else:
|
|
141
|
+
return output_tensor, grads
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
def tvd_backward_triton(grad_output, grads):
|
|
145
|
+
# If cross entropy is the last layer, grad_output is 1.0. Skip the mul then.
|
|
146
|
+
if torch.equal(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
147
|
+
return grads
|
|
148
|
+
|
|
149
|
+
return grads * grad_output
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class LigerTVDLossFunction(torch.autograd.Function):
|
|
153
|
+
"""
|
|
154
|
+
Class implementing the forward and backward pass for the Total Variation Distance Loss using Triton.
|
|
155
|
+
"""
|
|
156
|
+
|
|
157
|
+
@staticmethod
|
|
158
|
+
@ensure_contiguous
|
|
159
|
+
def forward(
|
|
160
|
+
ctx,
|
|
161
|
+
p: torch.Tensor,
|
|
162
|
+
q: torch.Tensor,
|
|
163
|
+
shift_labels: Optional[torch.Tensor] = None,
|
|
164
|
+
reduction: REDUCTION_LITERAL = "batchmean",
|
|
165
|
+
ignore_index: int = -100,
|
|
166
|
+
) -> torch.Tensor:
|
|
167
|
+
"""A forward pass for the Total Variation Distance Loss.
|
|
168
|
+
|
|
169
|
+
Args:
|
|
170
|
+
ctx: Torch autograd context
|
|
171
|
+
p (torch.Tensor): A tensor of shape (BT, V) containing the first distribution.
|
|
172
|
+
q (torch.Tensor): A tensor of shape (BT, V) containing the second distribution.
|
|
173
|
+
shift_labels (Optional[torch.Tensor]): A tensor of shape (BT,) containing the labels.
|
|
174
|
+
reduction (REDUCTION_LITERAL, optional): The reduction method to be applied. Defaults to "batchmean".
|
|
175
|
+
ignore_index (int, optional): The index to ignore during loss calculation. Defaults to -100.
|
|
176
|
+
|
|
177
|
+
Returns:
|
|
178
|
+
torch.Tensor: The computed Total Variation Distance Loss.
|
|
179
|
+
"""
|
|
180
|
+
has_label = False
|
|
181
|
+
if shift_labels is not None:
|
|
182
|
+
assert shift_labels.shape == (p.shape[0],), (
|
|
183
|
+
f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
|
|
184
|
+
)
|
|
185
|
+
shift_labels = shift_labels.contiguous()
|
|
186
|
+
has_label = True
|
|
187
|
+
|
|
188
|
+
loss, grads = tv_distance_forward_triton(p, q, shift_labels, reduction, ignore_index, has_label)
|
|
189
|
+
ctx.save_for_backward(grads)
|
|
190
|
+
return loss
|
|
191
|
+
|
|
192
|
+
@staticmethod
|
|
193
|
+
@ensure_contiguous
|
|
194
|
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
|
195
|
+
"""A backward pass for the Total Variation Distance Loss.
|
|
196
|
+
|
|
197
|
+
Args:
|
|
198
|
+
ctx: Torch autograd context
|
|
199
|
+
grad_output (torch.Tensor): The gradient of the loss with respect to the output.
|
|
200
|
+
|
|
201
|
+
Returns:
|
|
202
|
+
tuple[torch.Tensor, None, None, None, None]: The gradient of the loss with respect to the inputs.
|
|
203
|
+
"""
|
|
204
|
+
(grads,) = ctx.saved_tensors
|
|
205
|
+
grads = tvd_backward_triton(grad_output, grads)
|
|
206
|
+
|
|
207
|
+
return grads, None, None, None, None
|
liger_kernel/ops/utils.py
CHANGED
|
@@ -49,8 +49,7 @@ def calculate_settings(n):
|
|
|
49
49
|
BLOCK_SIZE = triton.next_power_of_2(n)
|
|
50
50
|
if BLOCK_SIZE > MAX_FUSED_SIZE:
|
|
51
51
|
raise RuntimeError(
|
|
52
|
-
f"Cannot launch Triton kernel since n = {n} exceeds "
|
|
53
|
-
f"the recommended Triton blocksize = {MAX_FUSED_SIZE}."
|
|
52
|
+
f"Cannot launch Triton kernel since n = {n} exceeds the recommended Triton blocksize = {MAX_FUSED_SIZE}."
|
|
54
53
|
)
|
|
55
54
|
|
|
56
55
|
num_warps = 4
|
|
@@ -9,10 +9,12 @@ from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa:
|
|
|
9
9
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
10
10
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
11
11
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
12
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
12
13
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
13
14
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
14
15
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
15
16
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
16
18
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
17
19
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
18
20
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
@@ -21,3 +23,4 @@ from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
|
21
23
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
22
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
23
25
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
26
|
+
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
@@ -17,9 +17,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
17
17
|
return_z_loss: bool = False,
|
|
18
18
|
):
|
|
19
19
|
super().__init__()
|
|
20
|
-
assert (label_smoothing >= 0) and (
|
|
21
|
-
label_smoothing
|
|
22
|
-
)
|
|
20
|
+
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
21
|
+
f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
|
|
22
|
+
)
|
|
23
23
|
assert reduction in {
|
|
24
24
|
"mean",
|
|
25
25
|
"sum",
|
|
@@ -12,6 +12,7 @@ from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
|
|
|
12
12
|
from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
13
13
|
from liger_kernel.ops.rope import LigerRopeFunction
|
|
14
14
|
from liger_kernel.ops.swiglu import LigerSiLUMulFunction
|
|
15
|
+
from liger_kernel.ops.tvd import LigerTVDLossFunction
|
|
15
16
|
|
|
16
17
|
|
|
17
18
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
@@ -157,6 +158,22 @@ def liger_kl_div(
|
|
|
157
158
|
)
|
|
158
159
|
|
|
159
160
|
|
|
161
|
+
def liger_tvd(
|
|
162
|
+
input,
|
|
163
|
+
target,
|
|
164
|
+
shift_labels=None,
|
|
165
|
+
reduction: str = "mean",
|
|
166
|
+
ignore_index: int = -100,
|
|
167
|
+
):
|
|
168
|
+
return LigerTVDLossFunction.apply(
|
|
169
|
+
input,
|
|
170
|
+
target,
|
|
171
|
+
shift_labels,
|
|
172
|
+
reduction,
|
|
173
|
+
ignore_index,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
|
|
160
177
|
def liger_layer_norm(X, W, B, eps):
|
|
161
178
|
return LigerLayerNormFunction.apply(X, W, B, eps)
|
|
162
179
|
|
|
@@ -17,9 +17,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
17
17
|
return_z_loss: bool = False,
|
|
18
18
|
):
|
|
19
19
|
super().__init__()
|
|
20
|
-
assert (label_smoothing >= 0) and (
|
|
21
|
-
label_smoothing
|
|
22
|
-
)
|
|
20
|
+
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
21
|
+
f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
|
|
22
|
+
)
|
|
23
23
|
assert reduction in {
|
|
24
24
|
"mean",
|
|
25
25
|
"sum",
|
|
@@ -21,9 +21,9 @@ class LigerGroupNorm(nn.Module):
|
|
|
21
21
|
"zeros",
|
|
22
22
|
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
23
23
|
|
|
24
|
-
assert (
|
|
25
|
-
num_channels
|
|
26
|
-
)
|
|
24
|
+
assert num_channels % num_groups == 0, (
|
|
25
|
+
f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
|
|
26
|
+
)
|
|
27
27
|
self.num_channels = num_channels
|
|
28
28
|
self.num_groups = num_groups
|
|
29
29
|
self.eps = eps
|
|
@@ -34,9 +34,9 @@ class LigerGroupNorm(nn.Module):
|
|
|
34
34
|
def forward(self, hidden_states):
|
|
35
35
|
# hidden_states: (batch_size, num_channels, *)
|
|
36
36
|
assert hidden_states.dim() >= 3, f"Input must have atleast 3 dimensions, got {hidden_states.dim()}"
|
|
37
|
-
assert (
|
|
38
|
-
hidden_states.size(1)
|
|
39
|
-
)
|
|
37
|
+
assert hidden_states.size(1) == self.num_channels, (
|
|
38
|
+
f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
|
|
39
|
+
)
|
|
40
40
|
return LigerGroupNormFunction.apply(
|
|
41
41
|
hidden_states,
|
|
42
42
|
self.weight,
|
|
@@ -0,0 +1,124 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
|
+
from transformers.models.olmo2.modeling_olmo2 import _CONFIG_FOR_DOC
|
|
10
|
+
from transformers.models.olmo2.modeling_olmo2 import OLMO2_INPUTS_DOCSTRING
|
|
11
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
|
12
|
+
from transformers.utils import replace_return_docstrings
|
|
13
|
+
|
|
14
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
|
|
18
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
19
|
+
def lce_forward(
|
|
20
|
+
self,
|
|
21
|
+
input_ids: torch.LongTensor = None,
|
|
22
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
23
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
24
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
25
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
26
|
+
labels: Optional[torch.LongTensor] = None,
|
|
27
|
+
use_cache: Optional[bool] = None,
|
|
28
|
+
output_attentions: Optional[bool] = None,
|
|
29
|
+
output_hidden_states: Optional[bool] = None,
|
|
30
|
+
return_dict: Optional[bool] = None,
|
|
31
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
32
|
+
num_logits_to_keep: int = 0,
|
|
33
|
+
**loss_kwargs,
|
|
34
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
35
|
+
r"""
|
|
36
|
+
Args:
|
|
37
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
38
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
39
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
40
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
41
|
+
|
|
42
|
+
num_logits_to_keep (`int`, *optional*):
|
|
43
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
44
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
45
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
|
|
49
|
+
Example:
|
|
50
|
+
|
|
51
|
+
```python
|
|
52
|
+
>>> from transformers import AutoTokenizer, Olmo2ForCausalLM
|
|
53
|
+
|
|
54
|
+
>>> model = Olmo2ForCausalLM.from_pretrained("allenai/Olmo2-1B-hf")
|
|
55
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo2-1B-hf")
|
|
56
|
+
|
|
57
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
58
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
59
|
+
|
|
60
|
+
>>> # Generate
|
|
61
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
62
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
63
|
+
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
|
64
|
+
```
|
|
65
|
+
"""
|
|
66
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
67
|
+
output_hidden_states = (
|
|
68
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
69
|
+
)
|
|
70
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
71
|
+
|
|
72
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
73
|
+
outputs = self.model(
|
|
74
|
+
input_ids=input_ids,
|
|
75
|
+
attention_mask=attention_mask,
|
|
76
|
+
position_ids=position_ids,
|
|
77
|
+
past_key_values=past_key_values,
|
|
78
|
+
inputs_embeds=inputs_embeds,
|
|
79
|
+
use_cache=use_cache,
|
|
80
|
+
output_attentions=output_attentions,
|
|
81
|
+
output_hidden_states=output_hidden_states,
|
|
82
|
+
return_dict=return_dict,
|
|
83
|
+
cache_position=cache_position,
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
hidden_states = outputs[0]
|
|
87
|
+
|
|
88
|
+
logits = None
|
|
89
|
+
loss = None
|
|
90
|
+
# if in training mode, don't materialize logits
|
|
91
|
+
if self.training and (labels is not None):
|
|
92
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
93
|
+
|
|
94
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
95
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
96
|
+
|
|
97
|
+
# flatten tokens
|
|
98
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
99
|
+
shift_labels = shift_labels.view(-1)
|
|
100
|
+
|
|
101
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
102
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
103
|
+
|
|
104
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
105
|
+
if reduction == "sum":
|
|
106
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
107
|
+
|
|
108
|
+
else: # if in inference mode materialize logits
|
|
109
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
110
|
+
if labels is not None:
|
|
111
|
+
loss = self.loss_function(
|
|
112
|
+
logits=logits,
|
|
113
|
+
labels=labels,
|
|
114
|
+
vocab_size=self.config.vocab_size,
|
|
115
|
+
**loss_kwargs,
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
return CausalLMOutputWithPast(
|
|
119
|
+
loss=loss,
|
|
120
|
+
logits=logits,
|
|
121
|
+
past_key_values=outputs.past_key_values,
|
|
122
|
+
hidden_states=outputs.hidden_states,
|
|
123
|
+
attentions=outputs.attentions,
|
|
124
|
+
)
|