liger-kernel 0.5.10__py3-none-any.whl → 0.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +127 -0
  3. liger_kernel/chunked_loss/functional.py +2 -0
  4. liger_kernel/ops/dyt.py +0 -2
  5. liger_kernel/ops/fused_add_rms_norm.py +412 -0
  6. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  7. liger_kernel/ops/geglu.py +1 -1
  8. liger_kernel/ops/layer_norm.py +126 -89
  9. liger_kernel/ops/multi_token_attention.py +207 -0
  10. liger_kernel/ops/rms_norm.py +267 -56
  11. liger_kernel/ops/rope.py +1 -1
  12. liger_kernel/ops/softmax.py +201 -0
  13. liger_kernel/ops/sparsemax.py +62 -50
  14. liger_kernel/ops/swiglu.py +1 -1
  15. liger_kernel/transformers/__init__.py +8 -0
  16. liger_kernel/transformers/functional.py +67 -0
  17. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  18. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  19. liger_kernel/transformers/model/gemma.py +25 -8
  20. liger_kernel/transformers/model/gemma2.py +27 -8
  21. liger_kernel/transformers/model/gemma3.py +63 -99
  22. liger_kernel/transformers/model/glm4.py +16 -7
  23. liger_kernel/transformers/model/llama.py +25 -7
  24. liger_kernel/transformers/model/llama4.py +108 -0
  25. liger_kernel/transformers/model/llava.py +95 -124
  26. liger_kernel/transformers/model/mistral.py +13 -8
  27. liger_kernel/transformers/model/mixtral.py +16 -7
  28. liger_kernel/transformers/model/mllama.py +16 -7
  29. liger_kernel/transformers/model/olmo2.py +16 -7
  30. liger_kernel/transformers/model/paligemma.py +8 -1
  31. liger_kernel/transformers/model/phi3.py +25 -8
  32. liger_kernel/transformers/model/qwen2.py +24 -7
  33. liger_kernel/transformers/model/qwen2_5_vl.py +41 -91
  34. liger_kernel/transformers/model/qwen2_vl.py +38 -100
  35. liger_kernel/transformers/model/qwen3.py +11 -3
  36. liger_kernel/transformers/model/qwen3_moe.py +10 -6
  37. liger_kernel/transformers/model/smollm3.py +189 -0
  38. liger_kernel/transformers/monkey_patch.py +389 -82
  39. liger_kernel/transformers/multi_token_attention.py +64 -0
  40. liger_kernel/transformers/rms_norm.py +40 -4
  41. liger_kernel/transformers/softmax.py +12 -0
  42. {liger_kernel-0.5.10.dist-info → liger_kernel-0.6.1.dist-info}/METADATA +18 -14
  43. {liger_kernel-0.5.10.dist-info → liger_kernel-0.6.1.dist-info}/RECORD +47 -37
  44. {liger_kernel-0.5.10.dist-info → liger_kernel-0.6.1.dist-info}/WHEEL +1 -1
  45. liger_kernel/transformers/gema3_rms.py +0 -8
  46. {liger_kernel-0.5.10.dist-info → liger_kernel-0.6.1.dist-info}/licenses/LICENSE +0 -0
  47. {liger_kernel-0.5.10.dist-info → liger_kernel-0.6.1.dist-info}/licenses/NOTICE +0 -0
  48. {liger_kernel-0.5.10.dist-info → liger_kernel-0.6.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,189 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Tuple
5
+ from typing import Union
6
+
7
+ import torch
8
+
9
+ from torch.distributed.fsdp import FullyShardedDataParallel
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+ from transformers.utils.deprecation import deprecate_kwarg
12
+
13
+ from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
14
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
+ from liger_kernel.utils import PEFT_AVAILABLE
16
+
17
+ if TYPE_CHECKING:
18
+ from transformers.cache_utils import Cache
19
+
20
+ if PEFT_AVAILABLE:
21
+ from peft.utils.other import ModulesToSaveWrapper
22
+
23
+
24
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
25
+ def lce_forward(
26
+ self,
27
+ input_ids: torch.LongTensor = None,
28
+ attention_mask: Optional[torch.Tensor] = None,
29
+ position_ids: Optional[torch.LongTensor] = None,
30
+ past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
31
+ inputs_embeds: Optional[torch.FloatTensor] = None,
32
+ labels: Optional[torch.LongTensor] = None,
33
+ use_cache: Optional[bool] = None,
34
+ output_attentions: Optional[bool] = None,
35
+ output_hidden_states: Optional[bool] = None,
36
+ return_dict: Optional[bool] = None,
37
+ cache_position: Optional[torch.LongTensor] = None,
38
+ logits_to_keep: Union[int, torch.Tensor] = 0,
39
+ skip_logits: Optional[bool] = None,
40
+ **kwargs,
41
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
42
+ r"""
43
+ Args:
44
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
45
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
46
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
47
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
48
+
49
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
50
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
51
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
52
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
53
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
54
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
55
+
56
+ Returns:
57
+
58
+ Example:
59
+
60
+ ```python
61
+ >>> from transformers import AutoTokenizer, Smollm3ForCausalLM
62
+
63
+ >>> model = Smollm3ForCausalLM.from_pretrained("HuggingFaceTB/SmolLM3-3B")
64
+ >>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
65
+
66
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
67
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
68
+
69
+ >>> # Generate
70
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
71
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
72
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
73
+ ```"""
74
+
75
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
76
+ output_hidden_states = (
77
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
78
+ )
79
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
80
+
81
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
82
+ outputs = self.model(
83
+ input_ids=input_ids,
84
+ attention_mask=attention_mask,
85
+ position_ids=position_ids,
86
+ past_key_values=past_key_values,
87
+ inputs_embeds=inputs_embeds,
88
+ use_cache=use_cache,
89
+ output_attentions=output_attentions,
90
+ output_hidden_states=output_hidden_states,
91
+ return_dict=return_dict,
92
+ cache_position=cache_position,
93
+ **kwargs,
94
+ )
95
+
96
+ hidden_states = outputs[0]
97
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
98
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
99
+ kept_hidden_states = hidden_states[:, slice_indices, :]
100
+
101
+ shift_labels = kwargs.pop("shift_labels", None)
102
+ logits = None
103
+ loss = None
104
+ # if in training mode, don't materialize logits
105
+ if skip_logits and labels is None and shift_labels is None:
106
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
107
+
108
+ if skip_logits is None:
109
+ # By default, if in training mode, don't materialize logits
110
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
111
+
112
+ if skip_logits:
113
+ loss = lce_maybe_trainable_lm_head(
114
+ self,
115
+ hidden_states=kept_hidden_states,
116
+ hidden_size=self.config.hidden_size,
117
+ labels=labels,
118
+ shift_labels=shift_labels,
119
+ **kwargs,
120
+ )
121
+
122
+ else:
123
+ logits = self.lm_head(kept_hidden_states)
124
+ if labels is not None:
125
+ loss = self.loss_function(
126
+ logits=logits,
127
+ labels=labels,
128
+ vocab_size=self.config.vocab_size,
129
+ **kwargs,
130
+ )
131
+
132
+ if not return_dict:
133
+ output = (logits,) + outputs[1:]
134
+ return (loss,) + output if loss is not None else output
135
+
136
+ return CausalLMOutputWithPast(
137
+ loss=loss,
138
+ logits=logits,
139
+ past_key_values=outputs.past_key_values,
140
+ hidden_states=outputs.hidden_states,
141
+ attentions=outputs.attentions,
142
+ )
143
+
144
+
145
+ def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
146
+ lm_head = self.lm_head
147
+
148
+ # Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
149
+ # i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
150
+ # from the unwrapped module.
151
+ # See https://huggingface.co/docs/peft/package_reference/lora for reference.
152
+ if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
153
+ lm_head = lm_head.modules_to_save.default
154
+
155
+ # If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
156
+ # reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
157
+ # so the module entire parameters are summoned and kept in memory during the kernel execution.
158
+ if isinstance(lm_head, FullyShardedDataParallel):
159
+ return _FSDPForwardRedirection()(
160
+ lm_head,
161
+ _liger_for_causal_lm_loss,
162
+ lm_head.module,
163
+ hidden_states,
164
+ hidden_size,
165
+ labels,
166
+ shift_labels,
167
+ **loss_kwargs,
168
+ )
169
+
170
+ # FSDP is not used so we can read the lm_head weights and call the kernel directly
171
+ return _liger_for_causal_lm_loss(
172
+ lm_head=self.lm_head,
173
+ hidden_states=hidden_states,
174
+ hidden_size=hidden_size,
175
+ labels=labels,
176
+ shift_labels=shift_labels,
177
+ **loss_kwargs,
178
+ )
179
+
180
+
181
+ def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
182
+ return LigerForCausalLMLoss(
183
+ hidden_states=hidden_states,
184
+ lm_head_weight=lm_head.weight,
185
+ labels=labels,
186
+ hidden_size=hidden_size,
187
+ shift_labels=shift_labels,
188
+ **loss_kwargs,
189
+ )