liger-kernel 0.4.0__py3-none-any.whl → 0.4.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/__init__.py +0 -0
- liger_kernel/chunked_loss/dpo_loss.py +57 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +206 -0
- liger_kernel/chunked_loss/orpo_loss.py +63 -0
- liger_kernel/env_report.py +2 -0
- liger_kernel/ops/cross_entropy.py +143 -30
- liger_kernel/ops/fused_linear_cross_entropy.py +20 -2
- liger_kernel/ops/group_norm.py +322 -0
- liger_kernel/ops/rms_norm.py +27 -6
- liger_kernel/transformers/cross_entropy.py +44 -12
- liger_kernel/transformers/functional.py +34 -1
- liger_kernel/transformers/fused_linear_cross_entropy.py +31 -4
- liger_kernel/transformers/group_norm.py +56 -0
- liger_kernel/transformers/model/gemma2.py +277 -0
- liger_kernel/transformers/model/qwen2_vl.py +43 -17
- liger_kernel/transformers/monkey_patch.py +106 -64
- liger_kernel/transformers/rms_norm.py +11 -3
- {liger_kernel-0.4.0.dist-info → liger_kernel-0.4.2.dist-info}/METADATA +18 -82
- {liger_kernel-0.4.0.dist-info → liger_kernel-0.4.2.dist-info}/RECORD +23 -16
- {liger_kernel-0.4.0.dist-info → liger_kernel-0.4.2.dist-info}/WHEEL +1 -1
- {liger_kernel-0.4.0.dist-info → liger_kernel-0.4.2.dist-info}/LICENSE +0 -0
- {liger_kernel-0.4.0.dist-info → liger_kernel-0.4.2.dist-info}/NOTICE +0 -0
- {liger_kernel-0.4.0.dist-info → liger_kernel-0.4.2.dist-info}/top_level.txt +0 -0
|
@@ -8,12 +8,17 @@ from packaging import version
|
|
|
8
8
|
from transformers import PreTrainedModel
|
|
9
9
|
|
|
10
10
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
|
11
|
+
from liger_kernel.transformers.functional import liger_cross_entropy
|
|
11
12
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP
|
|
12
13
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm
|
|
13
14
|
from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
|
|
14
15
|
from liger_kernel.transformers.model.gemma import (
|
|
15
16
|
lce_forward_deprecated as gemma_lce_forward_deprecated,
|
|
16
17
|
)
|
|
18
|
+
from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
|
|
19
|
+
from liger_kernel.transformers.model.gemma2 import (
|
|
20
|
+
lce_forward_deprecated as gemma2_lce_forward_deprected,
|
|
21
|
+
)
|
|
17
22
|
from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
|
|
18
23
|
from liger_kernel.transformers.model.llama import (
|
|
19
24
|
lce_forward_deprecated as llama_lce_forward_deprecated,
|
|
@@ -51,12 +56,15 @@ def _bind_method_to_module(module, method_name: str, new_method: Callable):
|
|
|
51
56
|
module.__dict__[method_name] = new_method.__get__(module, module.__class__)
|
|
52
57
|
|
|
53
58
|
|
|
54
|
-
def _patch_rms_norm_module(
|
|
59
|
+
def _patch_rms_norm_module(
|
|
60
|
+
module, offset=0.0, eps=1e-6, casting_mode="llama", in_place=True
|
|
61
|
+
):
|
|
55
62
|
module.offset = offset
|
|
56
63
|
module.casting_mode = casting_mode
|
|
57
64
|
module.variance_epsilon = (
|
|
58
65
|
getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
|
|
59
66
|
)
|
|
67
|
+
module.in_place = in_place
|
|
60
68
|
_bind_method_to_module(module, "forward", LigerRMSNorm.forward)
|
|
61
69
|
_bind_method_to_module(module, "extra_repr", LigerRMSNorm.extra_repr)
|
|
62
70
|
|
|
@@ -99,6 +107,7 @@ def apply_liger_kernel_to_llama(
|
|
|
99
107
|
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
100
108
|
|
|
101
109
|
from transformers.models.llama import modeling_llama
|
|
110
|
+
from transformers.models.llama.modeling_llama import LlamaModel
|
|
102
111
|
|
|
103
112
|
if rope:
|
|
104
113
|
modeling_llama.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
@@ -106,8 +115,16 @@ def apply_liger_kernel_to_llama(
|
|
|
106
115
|
modeling_llama.LlamaRMSNorm = LigerRMSNorm
|
|
107
116
|
if swiglu:
|
|
108
117
|
modeling_llama.LlamaMLP = LigerSwiGLUMLP
|
|
118
|
+
|
|
109
119
|
if cross_entropy:
|
|
110
|
-
|
|
120
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
121
|
+
from transformers.loss.loss_utils import nn
|
|
122
|
+
|
|
123
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
124
|
+
else:
|
|
125
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
126
|
+
modeling_llama.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
127
|
+
|
|
111
128
|
if fused_linear_cross_entropy:
|
|
112
129
|
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
113
130
|
modeling_llama.LlamaForCausalLM.forward = llama_lce_forward
|
|
@@ -119,15 +136,8 @@ def apply_liger_kernel_to_llama(
|
|
|
119
136
|
# The model instance already exists, so we need to additionally patch the
|
|
120
137
|
# instance variables that reference already-instantiated modules (e.g. LlamaRMSNorm or LlamaMLP)
|
|
121
138
|
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
base_model = model.model
|
|
125
|
-
elif hasattr(model, "transformer"):
|
|
126
|
-
# LlamaForQuestionAnswering uses "transformer" instead of "model"
|
|
127
|
-
base_model = model.transformer
|
|
128
|
-
else:
|
|
129
|
-
# Direct LlamaModel
|
|
130
|
-
base_model = model
|
|
139
|
+
# get the base model from the model instance
|
|
140
|
+
base_model: LlamaModel = getattr(model, model.base_model_prefix, model)
|
|
131
141
|
|
|
132
142
|
if rms_norm:
|
|
133
143
|
_patch_rms_norm_module(base_model.norm)
|
|
@@ -194,7 +204,13 @@ def apply_liger_kernel_to_mllama(
|
|
|
194
204
|
if swiglu:
|
|
195
205
|
modeling_mllama.MllamaTextMLP = LigerSwiGLUMLP
|
|
196
206
|
if cross_entropy:
|
|
197
|
-
|
|
207
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
208
|
+
from transformers.loss.loss_utils import nn
|
|
209
|
+
|
|
210
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
211
|
+
else:
|
|
212
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
213
|
+
modeling_mllama.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
198
214
|
if fused_linear_cross_entropy:
|
|
199
215
|
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
200
216
|
modeling_mllama.MllamaForCausalLM.forward = mllama_lce_forward
|
|
@@ -258,7 +274,7 @@ def apply_liger_kernel_to_mistral(
|
|
|
258
274
|
Apply Liger kernels to replace original implementation in HuggingFace Mistral models
|
|
259
275
|
|
|
260
276
|
Args:
|
|
261
|
-
rope (bool): Whether to apply Liger's rotary position embedding. Default is
|
|
277
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is False.
|
|
262
278
|
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
|
|
263
279
|
fused_linear_cross_entropy (bool):
|
|
264
280
|
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
@@ -275,6 +291,7 @@ def apply_liger_kernel_to_mistral(
|
|
|
275
291
|
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
276
292
|
|
|
277
293
|
from transformers.models.mistral import modeling_mistral
|
|
294
|
+
from transformers.models.mistral.modeling_mistral import MistralModel
|
|
278
295
|
|
|
279
296
|
if rope:
|
|
280
297
|
modeling_mistral.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
@@ -291,12 +308,8 @@ def apply_liger_kernel_to_mistral(
|
|
|
291
308
|
# The model instance already exists, so we need to additionally patch the
|
|
292
309
|
# instance variables that reference already-instantiated modules
|
|
293
310
|
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
base_model = model.model
|
|
297
|
-
else:
|
|
298
|
-
# Direct MistralModel
|
|
299
|
-
base_model = model
|
|
311
|
+
# get the base model from the model instance
|
|
312
|
+
base_model: MistralModel = getattr(model, model.base_model_prefix, model)
|
|
300
313
|
|
|
301
314
|
if rms_norm:
|
|
302
315
|
_patch_rms_norm_module(base_model.norm)
|
|
@@ -340,13 +353,21 @@ def apply_liger_kernel_to_mixtral(
|
|
|
340
353
|
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
341
354
|
|
|
342
355
|
from transformers.models.mixtral import modeling_mixtral
|
|
356
|
+
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
|
343
357
|
|
|
344
358
|
if rope:
|
|
345
359
|
modeling_mixtral.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
346
360
|
if rms_norm:
|
|
347
361
|
modeling_mixtral.MixtralRMSNorm = LigerRMSNorm
|
|
348
362
|
if cross_entropy:
|
|
349
|
-
|
|
363
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
364
|
+
from transformers.loss.loss_utils import nn
|
|
365
|
+
|
|
366
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
367
|
+
else:
|
|
368
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
369
|
+
modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
370
|
+
|
|
350
371
|
if fused_linear_cross_entropy:
|
|
351
372
|
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
352
373
|
modeling_mixtral.MixtralForCausalLM.forward = mixtral_lce_forward
|
|
@@ -360,12 +381,8 @@ def apply_liger_kernel_to_mixtral(
|
|
|
360
381
|
# The model instance already exists, so we need to additionally patch the
|
|
361
382
|
# instance variables that reference already-instantiated modules
|
|
362
383
|
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
base_model = model.model
|
|
366
|
-
else:
|
|
367
|
-
# Direct MixtralModel
|
|
368
|
-
base_model = model
|
|
384
|
+
# get the base model from the model instance
|
|
385
|
+
base_model: MixtralModel = getattr(model, model.base_model_prefix, model)
|
|
369
386
|
|
|
370
387
|
if rms_norm:
|
|
371
388
|
_patch_rms_norm_module(base_model.norm)
|
|
@@ -410,6 +427,7 @@ def apply_liger_kernel_to_gemma(
|
|
|
410
427
|
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
411
428
|
|
|
412
429
|
from transformers.models.gemma import modeling_gemma
|
|
430
|
+
from transformers.models.gemma.modeling_gemma import GemmaModel
|
|
413
431
|
|
|
414
432
|
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/gemma/modeling_gemma.py#L109
|
|
415
433
|
LigerRMSNormForGemma = partial(
|
|
@@ -424,7 +442,13 @@ def apply_liger_kernel_to_gemma(
|
|
|
424
442
|
if rms_norm:
|
|
425
443
|
modeling_gemma.GemmaRMSNorm = LigerRMSNormForGemma
|
|
426
444
|
if cross_entropy:
|
|
427
|
-
|
|
445
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
446
|
+
from transformers.loss.loss_utils import nn
|
|
447
|
+
|
|
448
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
449
|
+
else:
|
|
450
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
451
|
+
modeling_gemma.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
428
452
|
if geglu:
|
|
429
453
|
modeling_gemma.GemmaMLP = LigerGEGLUMLP
|
|
430
454
|
if fused_linear_cross_entropy:
|
|
@@ -438,12 +462,8 @@ def apply_liger_kernel_to_gemma(
|
|
|
438
462
|
# The model instance already exists, so we need to additionally patch the
|
|
439
463
|
# instance variables that reference already-instantiated modules
|
|
440
464
|
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
base_model = model.model
|
|
444
|
-
else:
|
|
445
|
-
# Direct GemmaModel
|
|
446
|
-
base_model = model
|
|
465
|
+
# get the base model from the model instance
|
|
466
|
+
base_model: GemmaModel = getattr(model, model.base_model_prefix, model)
|
|
447
467
|
|
|
448
468
|
if rms_norm:
|
|
449
469
|
_patch_rms_norm_module_for_gemma(base_model.norm)
|
|
@@ -460,7 +480,8 @@ def apply_liger_kernel_to_gemma(
|
|
|
460
480
|
|
|
461
481
|
def apply_liger_kernel_to_gemma2(
|
|
462
482
|
rope: bool = True,
|
|
463
|
-
cross_entropy: bool =
|
|
483
|
+
cross_entropy: bool = False,
|
|
484
|
+
fused_linear_cross_entropy: bool = True,
|
|
464
485
|
rms_norm: bool = True,
|
|
465
486
|
geglu: bool = True,
|
|
466
487
|
model: PreTrainedModel = None,
|
|
@@ -471,19 +492,28 @@ def apply_liger_kernel_to_gemma2(
|
|
|
471
492
|
|
|
472
493
|
Args:
|
|
473
494
|
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
474
|
-
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is
|
|
495
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
496
|
+
fused_linear_cross_entropy (bool):
|
|
497
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
498
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
499
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
475
500
|
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
476
501
|
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
|
477
502
|
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
478
503
|
loaded. Default is None.
|
|
479
504
|
"""
|
|
505
|
+
assert not (
|
|
506
|
+
cross_entropy and fused_linear_cross_entropy
|
|
507
|
+
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
508
|
+
|
|
480
509
|
from transformers.models.gemma2 import modeling_gemma2
|
|
510
|
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
|
|
481
511
|
|
|
482
512
|
LigerRMSNormForGemma2 = partial(
|
|
483
|
-
LigerRMSNorm, offset=1.0, casting_mode="gemma", init_fn="zeros"
|
|
513
|
+
LigerRMSNorm, offset=1.0, casting_mode="gemma", init_fn="zeros", in_place=False
|
|
484
514
|
)
|
|
485
515
|
_patch_rms_norm_module_for_gemma2 = partial(
|
|
486
|
-
_patch_rms_norm_module, offset=1.0, casting_mode="gemma"
|
|
516
|
+
_patch_rms_norm_module, offset=1.0, casting_mode="gemma", in_place=False
|
|
487
517
|
)
|
|
488
518
|
|
|
489
519
|
if rope:
|
|
@@ -492,7 +522,19 @@ def apply_liger_kernel_to_gemma2(
|
|
|
492
522
|
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/gemma/modeling_gemma.py#L109
|
|
493
523
|
modeling_gemma2.Gemma2RMSNorm = LigerRMSNormForGemma2
|
|
494
524
|
if cross_entropy:
|
|
495
|
-
|
|
525
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
526
|
+
from transformers.loss.loss_utils import nn
|
|
527
|
+
|
|
528
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
529
|
+
else:
|
|
530
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
531
|
+
modeling_gemma2.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
532
|
+
if fused_linear_cross_entropy:
|
|
533
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
534
|
+
modeling_gemma2.Gemma2ForCausalLM.forward = gemma2_lce_forward
|
|
535
|
+
else:
|
|
536
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
537
|
+
modeling_gemma2.Gemma2ForCausalLM.forward = gemma2_lce_forward_deprected
|
|
496
538
|
if geglu:
|
|
497
539
|
modeling_gemma2.Gemma2MLP = LigerGEGLUMLP
|
|
498
540
|
|
|
@@ -500,12 +542,8 @@ def apply_liger_kernel_to_gemma2(
|
|
|
500
542
|
# The model instance already exists, so we need to additionally patch the
|
|
501
543
|
# instance variables that reference already-instantiated modules
|
|
502
544
|
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
base_model = model.model
|
|
506
|
-
else:
|
|
507
|
-
# Direct Gemma2Model
|
|
508
|
-
base_model = model
|
|
545
|
+
# get the base model from the model instance
|
|
546
|
+
base_model: Gemma2Model = getattr(model, model.base_model_prefix, model)
|
|
509
547
|
|
|
510
548
|
if rms_norm:
|
|
511
549
|
_patch_rms_norm_module_for_gemma2(base_model.norm)
|
|
@@ -556,13 +594,21 @@ def apply_liger_kernel_to_qwen2(
|
|
|
556
594
|
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
557
595
|
|
|
558
596
|
from transformers.models.qwen2 import modeling_qwen2
|
|
597
|
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model
|
|
559
598
|
|
|
560
599
|
if rope:
|
|
561
600
|
modeling_qwen2.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
562
601
|
if rms_norm:
|
|
563
602
|
modeling_qwen2.Qwen2RMSNorm = LigerRMSNorm
|
|
603
|
+
|
|
564
604
|
if cross_entropy:
|
|
565
|
-
|
|
605
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
606
|
+
from transformers.loss.loss_utils import nn
|
|
607
|
+
|
|
608
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
609
|
+
else:
|
|
610
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
611
|
+
modeling_qwen2.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
566
612
|
|
|
567
613
|
# import pdb; pdb.set_trace()
|
|
568
614
|
if fused_linear_cross_entropy:
|
|
@@ -580,12 +626,8 @@ def apply_liger_kernel_to_qwen2(
|
|
|
580
626
|
# The model instance already exists, so we need to additionally patch the
|
|
581
627
|
# instance variables that reference already-instantiated modules
|
|
582
628
|
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
base_model = model.model
|
|
586
|
-
else:
|
|
587
|
-
# Direct Qwen2Model
|
|
588
|
-
base_model = model
|
|
629
|
+
# get the base model from the model instance
|
|
630
|
+
base_model: Qwen2Model = getattr(model, model.base_model_prefix, model)
|
|
589
631
|
|
|
590
632
|
if rms_norm:
|
|
591
633
|
_patch_rms_norm_module(base_model.norm)
|
|
@@ -630,6 +672,7 @@ def apply_liger_kernel_to_qwen2_vl(
|
|
|
630
672
|
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
631
673
|
|
|
632
674
|
from transformers.models.qwen2_vl import modeling_qwen2_vl
|
|
675
|
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLModel
|
|
633
676
|
|
|
634
677
|
from liger_kernel.transformers.model.qwen2_vl import (
|
|
635
678
|
lce_forward as qwen2_vl_lce_forward,
|
|
@@ -653,12 +696,8 @@ def apply_liger_kernel_to_qwen2_vl(
|
|
|
653
696
|
# The model instance already exists, so we need to additionally patch the
|
|
654
697
|
# instance variables that reference already-instantiated modules
|
|
655
698
|
|
|
656
|
-
|
|
657
|
-
|
|
658
|
-
base_model = model.model
|
|
659
|
-
else:
|
|
660
|
-
# Direct Qwen2VLModel
|
|
661
|
-
base_model = model
|
|
699
|
+
# get the base model from the model instance
|
|
700
|
+
base_model: Qwen2VLModel = getattr(model, model.base_model_prefix, model)
|
|
662
701
|
|
|
663
702
|
if hasattr(model, "visual"):
|
|
664
703
|
# Patch Qwen2VisionTransformerPretrainedModel
|
|
@@ -707,6 +746,7 @@ def apply_liger_kernel_to_phi3(
|
|
|
707
746
|
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
708
747
|
|
|
709
748
|
from transformers.models.phi3 import modeling_phi3
|
|
749
|
+
from transformers.models.phi3.modeling_phi3 import Phi3Model
|
|
710
750
|
|
|
711
751
|
if rope:
|
|
712
752
|
modeling_phi3.apply_rotary_pos_emb = liger_rotary_pos_emb # Same as Gemma
|
|
@@ -715,7 +755,13 @@ def apply_liger_kernel_to_phi3(
|
|
|
715
755
|
if swiglu:
|
|
716
756
|
modeling_phi3.Phi3MLP = LigerPhi3SwiGLUMLP
|
|
717
757
|
if cross_entropy:
|
|
718
|
-
|
|
758
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
759
|
+
from transformers.loss.loss_utils import nn
|
|
760
|
+
|
|
761
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
762
|
+
else:
|
|
763
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
764
|
+
modeling_phi3.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
719
765
|
if fused_linear_cross_entropy:
|
|
720
766
|
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
721
767
|
modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
|
|
@@ -727,12 +773,8 @@ def apply_liger_kernel_to_phi3(
|
|
|
727
773
|
# The model instance already exists, so we need to additionally patch the
|
|
728
774
|
# instance variables that reference already-instantiated modules
|
|
729
775
|
|
|
730
|
-
|
|
731
|
-
|
|
732
|
-
base_model = model.model
|
|
733
|
-
else:
|
|
734
|
-
# Direct Phi3Model
|
|
735
|
-
base_model = model
|
|
776
|
+
# get the base model from the model instance
|
|
777
|
+
base_model: Phi3Model = getattr(model, model.base_model_prefix, model)
|
|
736
778
|
|
|
737
779
|
if rms_norm:
|
|
738
780
|
_patch_rms_norm_module(base_model.norm)
|
|
@@ -6,7 +6,13 @@ from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
|
6
6
|
|
|
7
7
|
class LigerRMSNorm(nn.Module):
|
|
8
8
|
def __init__(
|
|
9
|
-
self,
|
|
9
|
+
self,
|
|
10
|
+
hidden_size,
|
|
11
|
+
eps=1e-6,
|
|
12
|
+
offset=0.0,
|
|
13
|
+
casting_mode="llama",
|
|
14
|
+
init_fn="ones",
|
|
15
|
+
in_place=True,
|
|
10
16
|
):
|
|
11
17
|
super().__init__()
|
|
12
18
|
assert init_fn in [
|
|
@@ -16,10 +22,11 @@ class LigerRMSNorm(nn.Module):
|
|
|
16
22
|
self.weight = nn.Parameter(
|
|
17
23
|
torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size)
|
|
18
24
|
)
|
|
19
|
-
self.variance_epsilon, self.offset, self.casting_mode = (
|
|
25
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (
|
|
20
26
|
eps,
|
|
21
27
|
offset,
|
|
22
28
|
casting_mode,
|
|
29
|
+
in_place,
|
|
23
30
|
)
|
|
24
31
|
|
|
25
32
|
def forward(self, hidden_states):
|
|
@@ -29,7 +36,8 @@ class LigerRMSNorm(nn.Module):
|
|
|
29
36
|
self.variance_epsilon,
|
|
30
37
|
self.offset,
|
|
31
38
|
self.casting_mode,
|
|
39
|
+
self.in_place,
|
|
32
40
|
)
|
|
33
41
|
|
|
34
42
|
def extra_repr(self):
|
|
35
|
-
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}"
|
|
43
|
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.2
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -99,7 +99,8 @@ Requires-Dist: transformers~=4.0; extra == "transformers"
|
|
|
99
99
|
|
|
100
100
|
<details>
|
|
101
101
|
<summary>Latest News 🔥</summary>
|
|
102
|
-
|
|
102
|
+
|
|
103
|
+
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision!
|
|
103
104
|
- [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989
|
|
104
105
|
- [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks!
|
|
105
106
|
- [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel)
|
|
@@ -127,18 +128,12 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
127
128
|
|
|
128
129
|
## Examples
|
|
129
130
|
|
|
130
|
-
### Basic
|
|
131
|
-
|
|
132
|
-
| **Example** | **Description** | **Lightning Studio** |
|
|
133
|
-
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
134
|
-
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA |
|
|
135
|
-
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA |
|
|
136
131
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
| **
|
|
140
|
-
|
|
141
|
-
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP |
|
|
132
|
+
| **Use Case** | **Description** |
|
|
133
|
+
|------------------------------------------------|---------------------------------------------------------------------------------------------------|
|
|
134
|
+
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP |
|
|
135
|
+
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 |
|
|
136
|
+
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | |
|
|
142
137
|
|
|
143
138
|
## Key Features
|
|
144
139
|
|
|
@@ -149,13 +144,6 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
149
144
|
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
|
|
150
145
|
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift)
|
|
151
146
|
|
|
152
|
-
## Target Audiences
|
|
153
|
-
|
|
154
|
-
- **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
|
|
155
|
-
- **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
|
|
156
|
-
- **Curious Novices**: Eager to learn how to write reliable Triton kernels to enhance training efficiency.
|
|
157
|
-
|
|
158
|
-
|
|
159
147
|
## Installation
|
|
160
148
|
|
|
161
149
|
### Dependencies
|
|
@@ -261,23 +249,6 @@ loss = loss_fn(model.weight, input, target)
|
|
|
261
249
|
loss.backward()
|
|
262
250
|
```
|
|
263
251
|
|
|
264
|
-
|
|
265
|
-
## Structure
|
|
266
|
-
|
|
267
|
-
### Source Code
|
|
268
|
-
|
|
269
|
-
- `ops/`: Core Triton operations.
|
|
270
|
-
- `transformers/`: PyTorch `nn.Module` implementations built on Triton operations, compliant with the `transformers` API.
|
|
271
|
-
|
|
272
|
-
### Tests
|
|
273
|
-
|
|
274
|
-
- `transformers/`: Correctness tests for the Triton-based layers.
|
|
275
|
-
- `convergence/`: Patches Hugging Face models with all kernels, runs multiple iterations, and compares weights, logits, and loss layer-by-layer.
|
|
276
|
-
|
|
277
|
-
### Benchmark
|
|
278
|
-
|
|
279
|
-
- `benchmark/`: Execution time and memory benchmarks compared to Hugging Face layers.
|
|
280
|
-
|
|
281
252
|
## APIs
|
|
282
253
|
|
|
283
254
|
### AutoModel
|
|
@@ -296,7 +267,7 @@ loss.backward()
|
|
|
296
267
|
| Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
297
268
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
298
269
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
299
|
-
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss |
|
|
270
|
+
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
300
271
|
| Qwen2 & Qwen2.5 | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
301
272
|
| Qwen2-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
302
273
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -320,6 +291,7 @@ loss.backward()
|
|
|
320
291
|
|
|
321
292
|
- **RMSNorm**: [RMSNorm](https://arxiv.org/pdf/1910.07467), which normalizes activations using their root mean square, is implemented by fusing the normalization and scaling steps into a single Triton kernel, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
322
293
|
- **LayerNorm**: [LayerNorm](https://arxiv.org/pdf/1607.06450), which centers and normalizes activations across the feature dimension, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and achieves ~2X speedup.
|
|
294
|
+
- **GroupNorm**: [GroupNorm](https://arxiv.org/pdf/1803.08494), which normalizes activations across the group dimension for a given sample. Channels are grouped in K groups over which the normalization is performed, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and can achieve up to ~2X speedup as the number of channels/groups increases.
|
|
323
295
|
- **RoPE**: [Rotary Positional Embedding](https://arxiv.org/pdf/2104.09864) is implemented by fusing the query and key embedding rotary into a single kernel with inplace replacement, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
324
296
|
- **SwiGLU**: [Swish Gated Linear Units](https://arxiv.org/pdf/2002.05202), given by
|
|
325
297
|
$$\text{SwiGLU}(x)=\text{Swish}_{\beta}(xW+b)\otimes(xV+c)$$
|
|
@@ -332,7 +304,7 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
332
304
|
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
333
305
|
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
|
334
306
|
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
|
335
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the
|
|
307
|
+
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
|
336
308
|
|
|
337
309
|
|
|
338
310
|
### Experimental Kernels
|
|
@@ -345,54 +317,17 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
345
317
|
- **Embedding**: [Embedding](https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html) is implemented by fusing embedding lookup and output operations. It achieves a peak speedup of ~1.5x in the forward pass and an overall speedup of ~1.1x.
|
|
346
318
|
- **Matmul int2xint8**: is implemented by using the cache tiled matrix multiplication and by fusing the matmul with the unpacking process which achieves a considerable speed up and performs on par with @torch.compile
|
|
347
319
|
<!-- TODO: be more specific about batch size -->
|
|
348
|
-
> **Note:**
|
|
349
|
-
> Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder.
|
|
350
320
|
|
|
351
|
-
## Contributing
|
|
321
|
+
## Contributing, Acknowledgements, and License
|
|
352
322
|
|
|
353
|
-
[
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
### Design
|
|
359
|
-
|
|
360
|
-
- [@claire_yishan](https://twitter.com/claire_yishan) for the LOGO design
|
|
361
|
-
- [Wave Snippets](https://www.wavesnippets.com/) for generating the animated code snippets
|
|
362
|
-
|
|
363
|
-
### Code
|
|
364
|
-
|
|
365
|
-
We referenced or used the following projects:
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
| # | Project | Description | Location | License |
|
|
370
|
-
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|
|
371
|
-
| 1 | [Unsloth](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43) | `calculate_settings` to determine block size and warp; We reuse it for Norm and MLP | [Liger Kernel Utils](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/utils.py#L23) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
|
|
372
|
-
| 2 | [Unsloth](https://github.com/unslothai/unsloth/blob/976d11a10d54383aeb7a692c69e01151a20bfd72/unsloth/kernels/rms_layernorm.py#L48) | We modified and added dW calculation on top of Unsloth implementation | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
|
|
373
|
-
| 3 | [Triton tutorial](https://triton-lang.org/main/index.html) | We modified on top of triton tutorials | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [MIT](https://github.com/triton-lang/triton/blob/main/LICENSE) |
|
|
374
|
-
| 4 | [tiny shakespeare dataset](https://huggingface.co/datasets/karpathy/tiny_shakespeare) | We use tiny shakespeare dataset to conduct convergence test on mini model | [Liger Kernel Convergence](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | N/A |
|
|
375
|
-
| 5 | [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) | We use the idea of gradient-in-forward and chunking | [Liger Kernel Linear Cross Entropy](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py) | [MIT](https://github.com/mgmalek/efficient_cross_entropy/blob/main/LICENSE) |
|
|
376
|
-
| 6 | [Flash attn](https://github.com/Dao-AILab/flash-attention) | We take many optimization ideas from the work, such as tiling and recomputation | | [BSD](https://github.com/Dao-AILab/flash-attention/blob/main/LICENSE) |
|
|
377
|
-
| 7 | [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | We reference the design of automodel | [Liger Kernel Auto Model](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/auto_model.py) | [MIT](https://github.com/casper-hansen/AutoAWQ/blob/main/LICENSE) |
|
|
378
|
-
| 8 | [llm.c](https://github.com/karpathy/llm.c) | We reference the design of end-to-end testing | [Liger Kernel Convergence Tests](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | [MIT](https://github.com/karpathy/llm.c/blob/master/LICENSE) |
|
|
379
|
-
|
|
380
|
-
Many thanks to the contributors to these projects for their invaluable work that helped make Liger possible.
|
|
381
|
-
|
|
382
|
-
## License
|
|
383
|
-
|
|
384
|
-
This project is licensed under the [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE) License (see `LICENSE` for details).
|
|
385
|
-
It also includes components from projects licensed under:
|
|
386
|
-
|
|
387
|
-
- Apache License 2.0 (see `LICENSE-APACHE-2.0` for details).
|
|
388
|
-
- MIT License (see `LICENSE-MIT-AutoAWQ` for details).
|
|
389
|
-
- MIT License (see `LICENSE-MIT-Efficient Cross Entropy` for details).
|
|
390
|
-
- MIT License (see `LICENSE-MIT-llmc` for details).
|
|
391
|
-
- MIT License (see `LICENSE-MIT-triton` for details).
|
|
323
|
+
- [Contributing Guidelines](https://github.com/linkedin/Liger-Kernel/blob/main/docs/CONTRIBUTING.md)
|
|
324
|
+
- [Acknowledgements](https://github.com/linkedin/Liger-Kernel/blob/main/docs/Acknowledgement.md)
|
|
325
|
+
- [License Information](https://github.com/linkedin/Liger-Kernel/blob/main/docs/License.md)
|
|
392
326
|
|
|
393
327
|
## Contact
|
|
394
328
|
|
|
395
|
-
- For
|
|
329
|
+
- For issues, create a Github ticket in this repository
|
|
330
|
+
- For open discussion, join [our discord channel](https://discord.gg/gpumode)
|
|
396
331
|
- For formal collaboration, send an email to byhsu@linkedin.com
|
|
397
332
|
|
|
398
333
|
## Cite this work
|
|
@@ -425,3 +360,4 @@ Biblatex entry:
|
|
|
425
360
|
↑ Back to Top ↑
|
|
426
361
|
</a>
|
|
427
362
|
</p>
|
|
363
|
+
|