liger-kernel 0.1.0__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/env_report.py +46 -0
- liger_kernel/ops/cross_entropy.py +5 -5
- liger_kernel/ops/fused_linear_cross_entropy.py +50 -21
- liger_kernel/ops/geglu.py +6 -1
- liger_kernel/ops/rms_norm.py +142 -20
- liger_kernel/ops/rope.py +3 -3
- liger_kernel/transformers/__init__.py +6 -0
- liger_kernel/transformers/auto_model.py +33 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +2 -2
- liger_kernel/transformers/geglu.py +4 -2
- liger_kernel/transformers/model/gemma.py +138 -0
- liger_kernel/transformers/model/llama.py +1 -1
- liger_kernel/transformers/model/mistral.py +138 -0
- liger_kernel/transformers/model/phi3.py +136 -0
- liger_kernel/transformers/model/qwen2.py +135 -0
- liger_kernel/transformers/monkey_patch.py +203 -10
- liger_kernel/transformers/rms_norm.py +20 -4
- liger_kernel/transformers/swiglu.py +24 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel-0.2.0.dist-info/METADATA +307 -0
- liger_kernel-0.2.0.dist-info/RECORD +33 -0
- liger_kernel-0.1.0.dist-info/METADATA +0 -16
- liger_kernel-0.1.0.dist-info/RECORD +0 -27
- {liger_kernel-0.1.0.dist-info → liger_kernel-0.2.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.1.0.dist-info → liger_kernel-0.2.0.dist-info}/NOTICE +0 -0
- {liger_kernel-0.1.0.dist-info → liger_kernel-0.2.0.dist-info}/WHEEL +0 -0
- {liger_kernel-0.1.0.dist-info → liger_kernel-0.2.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,138 @@
|
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch.nn import CrossEntropyLoss
|
|
5
|
+
from transformers.cache_utils import Cache
|
|
6
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
7
|
+
from transformers.models.gemma.modeling_gemma import (
|
|
8
|
+
_CONFIG_FOR_DOC,
|
|
9
|
+
GEMMA_INPUTS_DOCSTRING,
|
|
10
|
+
)
|
|
11
|
+
from transformers.utils import (
|
|
12
|
+
add_start_docstrings_to_model_forward,
|
|
13
|
+
replace_return_docstrings,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
17
|
+
LigerFusedLinearCrossEntropyLoss,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
|
22
|
+
@replace_return_docstrings(
|
|
23
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
24
|
+
)
|
|
25
|
+
def lce_forward(
|
|
26
|
+
self,
|
|
27
|
+
input_ids: torch.LongTensor = None,
|
|
28
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
29
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
30
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
31
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
32
|
+
labels: Optional[torch.LongTensor] = None,
|
|
33
|
+
use_cache: Optional[bool] = None,
|
|
34
|
+
output_attentions: Optional[bool] = None,
|
|
35
|
+
output_hidden_states: Optional[bool] = None,
|
|
36
|
+
return_dict: Optional[bool] = None,
|
|
37
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
38
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
39
|
+
r"""
|
|
40
|
+
|
|
41
|
+
copy paste transformers.models.gemma.modeling_gemma causalLM with loss replaced with liger fused cross entropy
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
45
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
46
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
47
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
48
|
+
|
|
49
|
+
Returns:
|
|
50
|
+
|
|
51
|
+
Example:
|
|
52
|
+
|
|
53
|
+
```python
|
|
54
|
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
|
55
|
+
|
|
56
|
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
|
|
57
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
|
58
|
+
|
|
59
|
+
>>> prompt = "What is your favorite condiment?"
|
|
60
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
61
|
+
|
|
62
|
+
>>> # Generate
|
|
63
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
64
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
65
|
+
"What is your favorite condiment?"
|
|
66
|
+
```"""
|
|
67
|
+
output_attentions = (
|
|
68
|
+
output_attentions
|
|
69
|
+
if output_attentions is not None
|
|
70
|
+
else self.config.output_attentions
|
|
71
|
+
)
|
|
72
|
+
output_hidden_states = (
|
|
73
|
+
output_hidden_states
|
|
74
|
+
if output_hidden_states is not None
|
|
75
|
+
else self.config.output_hidden_states
|
|
76
|
+
)
|
|
77
|
+
return_dict = (
|
|
78
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
82
|
+
outputs = self.model(
|
|
83
|
+
input_ids=input_ids,
|
|
84
|
+
attention_mask=attention_mask,
|
|
85
|
+
position_ids=position_ids,
|
|
86
|
+
past_key_values=past_key_values,
|
|
87
|
+
inputs_embeds=inputs_embeds,
|
|
88
|
+
use_cache=use_cache,
|
|
89
|
+
output_attentions=output_attentions,
|
|
90
|
+
output_hidden_states=output_hidden_states,
|
|
91
|
+
return_dict=return_dict,
|
|
92
|
+
cache_position=cache_position,
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
hidden_states = outputs[0]
|
|
96
|
+
|
|
97
|
+
loss = None
|
|
98
|
+
logits = None
|
|
99
|
+
|
|
100
|
+
if self.training and (labels is not None):
|
|
101
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
102
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
103
|
+
|
|
104
|
+
# flatten
|
|
105
|
+
|
|
106
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
107
|
+
shift_labels = shift_labels.view(-1)
|
|
108
|
+
|
|
109
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
110
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
111
|
+
|
|
112
|
+
else:
|
|
113
|
+
logits = self.lm_head(hidden_states)
|
|
114
|
+
if labels is not None:
|
|
115
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
116
|
+
logits = logits.float()
|
|
117
|
+
# Shift so that tokens < n predict n
|
|
118
|
+
shift_logits = logits[..., :-1, :].contiguous()
|
|
119
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
120
|
+
# Flatten the tokens
|
|
121
|
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
122
|
+
shift_labels = shift_labels.view(-1)
|
|
123
|
+
# Ensure tensors are on the same device
|
|
124
|
+
shift_labels = shift_labels.to(shift_logits.device)
|
|
125
|
+
loss_fct = CrossEntropyLoss()
|
|
126
|
+
loss = loss_fct(shift_logits, shift_labels)
|
|
127
|
+
|
|
128
|
+
if not return_dict:
|
|
129
|
+
output = (logits,) + outputs[1:]
|
|
130
|
+
return (loss,) + output if loss is not None else output
|
|
131
|
+
|
|
132
|
+
return CausalLMOutputWithPast(
|
|
133
|
+
loss=loss,
|
|
134
|
+
logits=logits,
|
|
135
|
+
past_key_values=outputs.past_key_values,
|
|
136
|
+
hidden_states=outputs.hidden_states,
|
|
137
|
+
attentions=outputs.attentions,
|
|
138
|
+
)
|
|
@@ -0,0 +1,138 @@
|
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch.nn import CrossEntropyLoss
|
|
5
|
+
from transformers.cache_utils import Cache
|
|
6
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
7
|
+
from transformers.models.mistral.modeling_mistral import (
|
|
8
|
+
_CONFIG_FOR_DOC,
|
|
9
|
+
MISTRAL_INPUTS_DOCSTRING,
|
|
10
|
+
)
|
|
11
|
+
from transformers.utils import (
|
|
12
|
+
add_start_docstrings_to_model_forward,
|
|
13
|
+
replace_return_docstrings,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
17
|
+
LigerFusedLinearCrossEntropyLoss,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
22
|
+
@replace_return_docstrings(
|
|
23
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
24
|
+
)
|
|
25
|
+
def lce_forward(
|
|
26
|
+
self,
|
|
27
|
+
input_ids: torch.LongTensor = None,
|
|
28
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
29
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
30
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
31
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
32
|
+
labels: Optional[torch.LongTensor] = None,
|
|
33
|
+
use_cache: Optional[bool] = None,
|
|
34
|
+
output_attentions: Optional[bool] = None,
|
|
35
|
+
output_hidden_states: Optional[bool] = None,
|
|
36
|
+
return_dict: Optional[bool] = None,
|
|
37
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
38
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
39
|
+
r"""
|
|
40
|
+
Copy paste Mistral's forward but replace torch cross entropy with liger fused linear cross entropy
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
45
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
46
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
47
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
48
|
+
|
|
49
|
+
Returns:
|
|
50
|
+
|
|
51
|
+
Example:
|
|
52
|
+
|
|
53
|
+
```python
|
|
54
|
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
|
55
|
+
|
|
56
|
+
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
57
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
58
|
+
|
|
59
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
60
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
61
|
+
|
|
62
|
+
>>> # Generate
|
|
63
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
64
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
65
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
66
|
+
```"""
|
|
67
|
+
|
|
68
|
+
output_attentions = (
|
|
69
|
+
output_attentions
|
|
70
|
+
if output_attentions is not None
|
|
71
|
+
else self.config.output_attentions
|
|
72
|
+
)
|
|
73
|
+
output_hidden_states = (
|
|
74
|
+
output_hidden_states
|
|
75
|
+
if output_hidden_states is not None
|
|
76
|
+
else self.config.output_hidden_states
|
|
77
|
+
)
|
|
78
|
+
return_dict = (
|
|
79
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
83
|
+
outputs = self.model(
|
|
84
|
+
input_ids=input_ids,
|
|
85
|
+
attention_mask=attention_mask,
|
|
86
|
+
position_ids=position_ids,
|
|
87
|
+
past_key_values=past_key_values,
|
|
88
|
+
inputs_embeds=inputs_embeds,
|
|
89
|
+
use_cache=use_cache,
|
|
90
|
+
output_attentions=output_attentions,
|
|
91
|
+
output_hidden_states=output_hidden_states,
|
|
92
|
+
return_dict=return_dict,
|
|
93
|
+
cache_position=cache_position,
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
hidden_states = outputs[0]
|
|
97
|
+
|
|
98
|
+
loss = None
|
|
99
|
+
logits = None
|
|
100
|
+
|
|
101
|
+
if self.training and (labels is not None):
|
|
102
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
103
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
104
|
+
|
|
105
|
+
# flatten tokens
|
|
106
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
107
|
+
shift_labels = shift_labels.view(-1)
|
|
108
|
+
|
|
109
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
110
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
111
|
+
|
|
112
|
+
else:
|
|
113
|
+
logits = self.lm_head(hidden_states)
|
|
114
|
+
if labels is not None:
|
|
115
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
116
|
+
logits = logits.float()
|
|
117
|
+
# Shift so that tokens < n predict n
|
|
118
|
+
shift_logits = logits[..., :-1, :].contiguous()
|
|
119
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
120
|
+
# Flatten the tokens
|
|
121
|
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
122
|
+
shift_labels = shift_labels.view(-1)
|
|
123
|
+
# Ensure tensors are on the same device
|
|
124
|
+
shift_labels = shift_labels.to(shift_logits.device)
|
|
125
|
+
loss_fct = CrossEntropyLoss()
|
|
126
|
+
loss = loss_fct(shift_logits, shift_labels)
|
|
127
|
+
|
|
128
|
+
if not return_dict:
|
|
129
|
+
output = (logits,) + outputs[1:]
|
|
130
|
+
return (loss,) + output if loss is not None else output
|
|
131
|
+
|
|
132
|
+
return CausalLMOutputWithPast(
|
|
133
|
+
loss=loss,
|
|
134
|
+
logits=logits,
|
|
135
|
+
past_key_values=outputs.past_key_values,
|
|
136
|
+
hidden_states=outputs.hidden_states,
|
|
137
|
+
attentions=outputs.attentions,
|
|
138
|
+
)
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch.nn import CrossEntropyLoss
|
|
5
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
6
|
+
from transformers.models.phi3.modeling_phi3 import (
|
|
7
|
+
_CONFIG_FOR_DOC,
|
|
8
|
+
PHI3_INPUTS_DOCSTRING,
|
|
9
|
+
)
|
|
10
|
+
from transformers.utils import (
|
|
11
|
+
add_start_docstrings_to_model_forward,
|
|
12
|
+
replace_return_docstrings,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
16
|
+
LigerFusedLinearCrossEntropyLoss,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
21
|
+
@replace_return_docstrings(
|
|
22
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
23
|
+
)
|
|
24
|
+
def lce_forward(
|
|
25
|
+
self,
|
|
26
|
+
input_ids: torch.LongTensor = None,
|
|
27
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
28
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
29
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
30
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
31
|
+
labels: Optional[torch.LongTensor] = None,
|
|
32
|
+
use_cache: Optional[bool] = None,
|
|
33
|
+
output_attentions: Optional[bool] = None,
|
|
34
|
+
output_hidden_states: Optional[bool] = None,
|
|
35
|
+
return_dict: Optional[bool] = None,
|
|
36
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
37
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
38
|
+
r"""
|
|
39
|
+
Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
44
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
45
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
46
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
|
|
50
|
+
Example:
|
|
51
|
+
|
|
52
|
+
```python
|
|
53
|
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
54
|
+
|
|
55
|
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
56
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
57
|
+
|
|
58
|
+
>>> prompt = "This is an example script ."
|
|
59
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
60
|
+
|
|
61
|
+
>>> # Generate
|
|
62
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
63
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
64
|
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
|
65
|
+
```"""
|
|
66
|
+
|
|
67
|
+
output_attentions = (
|
|
68
|
+
output_attentions
|
|
69
|
+
if output_attentions is not None
|
|
70
|
+
else self.config.output_attentions
|
|
71
|
+
)
|
|
72
|
+
output_hidden_states = (
|
|
73
|
+
output_hidden_states
|
|
74
|
+
if output_hidden_states is not None
|
|
75
|
+
else self.config.output_hidden_states
|
|
76
|
+
)
|
|
77
|
+
return_dict = (
|
|
78
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
82
|
+
outputs = self.model(
|
|
83
|
+
input_ids=input_ids,
|
|
84
|
+
attention_mask=attention_mask,
|
|
85
|
+
position_ids=position_ids,
|
|
86
|
+
past_key_values=past_key_values,
|
|
87
|
+
inputs_embeds=inputs_embeds,
|
|
88
|
+
use_cache=use_cache,
|
|
89
|
+
output_attentions=output_attentions,
|
|
90
|
+
output_hidden_states=output_hidden_states,
|
|
91
|
+
return_dict=return_dict,
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
hidden_states = outputs[0]
|
|
95
|
+
|
|
96
|
+
loss = None
|
|
97
|
+
logits = None
|
|
98
|
+
|
|
99
|
+
if self.training and labels is not None:
|
|
100
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
101
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
102
|
+
|
|
103
|
+
# flatten tokens
|
|
104
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
105
|
+
shift_labels = shift_labels.view(-1)
|
|
106
|
+
|
|
107
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
108
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
109
|
+
else:
|
|
110
|
+
logits = self.lm_head(hidden_states)
|
|
111
|
+
logits = logits.float()
|
|
112
|
+
|
|
113
|
+
loss = None
|
|
114
|
+
if labels is not None:
|
|
115
|
+
# Shift so that tokens < n predict n
|
|
116
|
+
shift_logits = logits[..., :-1, :].contiguous()
|
|
117
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
118
|
+
# Flatten the tokens
|
|
119
|
+
loss_fct = CrossEntropyLoss()
|
|
120
|
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
121
|
+
shift_labels = shift_labels.view(-1)
|
|
122
|
+
# Enable model parallelism
|
|
123
|
+
shift_labels = shift_labels.to(shift_logits.device)
|
|
124
|
+
loss = loss_fct(shift_logits, shift_labels)
|
|
125
|
+
|
|
126
|
+
if not return_dict:
|
|
127
|
+
output = (logits,) + outputs[1:]
|
|
128
|
+
return (loss,) + output if loss is not None else output
|
|
129
|
+
|
|
130
|
+
return CausalLMOutputWithPast(
|
|
131
|
+
loss=loss,
|
|
132
|
+
logits=logits,
|
|
133
|
+
past_key_values=outputs.past_key_values,
|
|
134
|
+
hidden_states=outputs.hidden_states,
|
|
135
|
+
attentions=outputs.attentions,
|
|
136
|
+
)
|
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch.nn import CrossEntropyLoss
|
|
5
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
6
|
+
from transformers.models.qwen2.modeling_qwen2 import (
|
|
7
|
+
_CONFIG_FOR_DOC,
|
|
8
|
+
QWEN2_INPUTS_DOCSTRING,
|
|
9
|
+
)
|
|
10
|
+
from transformers.utils import (
|
|
11
|
+
add_start_docstrings_to_model_forward,
|
|
12
|
+
replace_return_docstrings,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
16
|
+
LigerFusedLinearCrossEntropyLoss,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
|
21
|
+
@replace_return_docstrings(
|
|
22
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
23
|
+
)
|
|
24
|
+
def lce_forward(
|
|
25
|
+
self,
|
|
26
|
+
input_ids: torch.LongTensor = None,
|
|
27
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
28
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
29
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
30
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
31
|
+
labels: Optional[torch.LongTensor] = None,
|
|
32
|
+
use_cache: Optional[bool] = None,
|
|
33
|
+
output_attentions: Optional[bool] = None,
|
|
34
|
+
output_hidden_states: Optional[bool] = None,
|
|
35
|
+
return_dict: Optional[bool] = None,
|
|
36
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
37
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
38
|
+
r"""
|
|
39
|
+
Copy paste Qwen2's forward but replace torch cross entropy with liger fused linear cross entropy
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
44
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
45
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
46
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
|
|
50
|
+
Example:
|
|
51
|
+
|
|
52
|
+
```python
|
|
53
|
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
54
|
+
|
|
55
|
+
>>> model = Qwen2ForCausalLM.from_pretrained("Qwen/Qwen2-1.5B")
|
|
56
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B")
|
|
57
|
+
|
|
58
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
59
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
60
|
+
|
|
61
|
+
>>> # Generate
|
|
62
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
63
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
64
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
65
|
+
```"""
|
|
66
|
+
output_attentions = (
|
|
67
|
+
output_attentions
|
|
68
|
+
if output_attentions is not None
|
|
69
|
+
else self.config.output_attentions
|
|
70
|
+
)
|
|
71
|
+
output_hidden_states = (
|
|
72
|
+
output_hidden_states
|
|
73
|
+
if output_hidden_states is not None
|
|
74
|
+
else self.config.output_hidden_states
|
|
75
|
+
)
|
|
76
|
+
return_dict = (
|
|
77
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
81
|
+
outputs = self.model(
|
|
82
|
+
input_ids=input_ids,
|
|
83
|
+
attention_mask=attention_mask,
|
|
84
|
+
position_ids=position_ids,
|
|
85
|
+
past_key_values=past_key_values,
|
|
86
|
+
inputs_embeds=inputs_embeds,
|
|
87
|
+
use_cache=use_cache,
|
|
88
|
+
output_attentions=output_attentions,
|
|
89
|
+
output_hidden_states=output_hidden_states,
|
|
90
|
+
return_dict=return_dict,
|
|
91
|
+
cache_position=cache_position,
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
hidden_states = outputs[0]
|
|
95
|
+
|
|
96
|
+
loss = None
|
|
97
|
+
logits = None
|
|
98
|
+
|
|
99
|
+
if self.training and (labels is not None):
|
|
100
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
101
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
102
|
+
|
|
103
|
+
# flatten tokens
|
|
104
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
105
|
+
shift_labels = shift_labels.view(-1)
|
|
106
|
+
|
|
107
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
108
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
109
|
+
|
|
110
|
+
else:
|
|
111
|
+
logits = self.lm_head(hidden_states)
|
|
112
|
+
logits = logits.float()
|
|
113
|
+
if labels is not None:
|
|
114
|
+
# Shift so that tokens < n predict n
|
|
115
|
+
shift_logits = logits[..., :-1, :].contiguous()
|
|
116
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
117
|
+
# Flatten the tokens
|
|
118
|
+
loss_fct = CrossEntropyLoss()
|
|
119
|
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
120
|
+
shift_labels = shift_labels.view(-1)
|
|
121
|
+
# Enable model parallelism
|
|
122
|
+
shift_labels = shift_labels.to(shift_logits.device)
|
|
123
|
+
loss = loss_fct(shift_logits, shift_labels)
|
|
124
|
+
|
|
125
|
+
if not return_dict:
|
|
126
|
+
output = (logits,) + outputs[1:]
|
|
127
|
+
return (loss,) + output if loss is not None else output
|
|
128
|
+
|
|
129
|
+
return CausalLMOutputWithPast(
|
|
130
|
+
loss=loss,
|
|
131
|
+
logits=logits,
|
|
132
|
+
past_key_values=outputs.past_key_values,
|
|
133
|
+
hidden_states=outputs.hidden_states,
|
|
134
|
+
attentions=outputs.attentions,
|
|
135
|
+
)
|