liger-kernel 0.0.1__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -20,9 +20,12 @@ def _rms_norm_forward(
20
20
  BLOCK_SIZE: tl.constexpr,
21
21
  ):
22
22
  """
23
+ y_i = (x_i / (RMS)) * wi, RMS = sqrt(sum(x_i^2) / N)
24
+
23
25
  Reference:
24
26
  1. https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
25
27
  2. https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/rms_layernorm.py#L22
28
+ 3. https://arxiv.org/pdf/1910.07467
26
29
  """
27
30
 
28
31
  row_idx = tl.program_id(0)
@@ -36,16 +39,17 @@ def _rms_norm_forward(
36
39
  X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
37
40
  W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
38
41
 
39
- row_var = tl.sum(X_row * X_row, axis=0) / n_cols
40
- inv_var = tl.math.rsqrt(row_var + eps)
42
+ mean_square = tl.sum(X_row * X_row, axis=0) / n_cols
43
+ inv_rms = tl.math.rsqrt(mean_square + eps)
41
44
 
42
- # trick: row_var is tiny compared to X_row because it just has one per row we can save 4 ops (*, sum, /, rqrt) if we cache it
43
- tl.store(r_ptr, inv_var)
45
+ # We can save time by caching rms with minimal memory overhead
46
+ # because rms is much smaller compared to X_row, as rms is for each row.
47
+ # However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
48
+ tl.store(r_ptr, inv_rms)
44
49
 
45
- normed = X_row * inv_var
50
+ Y_row = X_row * inv_rms * W_row
46
51
 
47
- output = normed * W_row
48
- tl.store(Y_ptr + col_offsets, output, mask=mask)
52
+ tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
49
53
 
50
54
 
51
55
  @triton.jit
@@ -65,9 +69,10 @@ def _rms_norm_backward(
65
69
  BLOCK_SIZE: tl.constexpr,
66
70
  ):
67
71
  """
68
- dx = (1 / var(x)) * (dy * w - (1/N) * (dy * w) dot x) * x
69
- dw = sum(dy * (x / var(x)))
72
+ dx = (1 / RMS) * [dy * w - (1 / N) * (1 / RMS^2) * ((dy * w) dot x) * x]. * means element-wise multiplication, whileas dot means dot product
73
+ dw = sum(dy * (x / RMS)). summation over BxT dimension
70
74
  """
75
+
71
76
  row_idx = tl.program_id(0)
72
77
  col_offsets = tl.arange(0, BLOCK_SIZE)
73
78
  mask = col_offsets < n_cols
@@ -81,26 +86,33 @@ def _rms_norm_backward(
81
86
  X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
82
87
  W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
83
88
 
84
- # Get saved row variance
85
- inv_var = tl.load(r_ptr)
86
-
87
- normed = X_row * inv_var
89
+ # Get cached rms
90
+ inv_rms_row = tl.load(r_ptr)
88
91
 
89
- dY_W = dY_row * W_row
90
- dY_normed = dY_row * normed
91
-
92
- rowsum_dY_normed = tl.sum(dY_W * normed, axis=0)
93
- output = inv_var / n_cols * (n_cols * dY_W - normed * rowsum_dY_normed)
94
- tl.store(dY_ptr + col_offsets, output, mask=mask)
92
+ dX_row = (inv_rms_row) * (
93
+ dY_row * W_row
94
+ - (1 / n_cols)
95
+ * inv_rms_row
96
+ * inv_rms_row
97
+ * tl.sum(dY_row * W_row * X_row, axis=0)
98
+ * X_row
99
+ )
100
+ tl.store(dY_ptr + col_offsets, dX_row, mask=mask)
95
101
 
96
102
  # calculate the gradient of W
97
- tl.store(dW_ptr + col_offsets, dY_normed, mask=mask)
103
+ dW_row = dY_row * X_row * inv_rms_row
104
+ tl.store(dW_ptr + col_offsets, dW_row, mask=mask)
98
105
 
99
106
 
100
107
  class LigerRMSNormFunction(torch.autograd.Function):
101
108
  @staticmethod
102
109
  @ensure_contiguous
103
110
  def forward(ctx, X, W, eps):
111
+ """
112
+ X: (B, T, H) or (BxT, H)
113
+ W: (H,)
114
+ """
115
+
104
116
  shape = X.shape
105
117
  dim = shape[-1]
106
118
  X = X.view(-1, dim)
@@ -108,6 +120,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
108
120
  BLOCK_SIZE, num_warps = calculate_settings(n_cols)
109
121
 
110
122
  Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
123
+ # r is to cache (1/rms) for each row
111
124
  r = torch.empty(n_rows, dtype=X.dtype, device=X.device)
112
125
 
113
126
  # Check constraints.
@@ -139,6 +152,10 @@ class LigerRMSNormFunction(torch.autograd.Function):
139
152
  @staticmethod
140
153
  @ensure_contiguous
141
154
  def backward(ctx, dY):
155
+ """
156
+ Y: (B, T, H) or (BxT, H)
157
+ """
158
+
142
159
  shape = dY.shape
143
160
  dim = shape[-1]
144
161
  dY = dY.view(-1, dim)
@@ -146,6 +163,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
146
163
  n_rows, n_cols = dY.shape
147
164
  dW = torch.zeros_like(X)
148
165
 
166
+ # Here we use dY to store the value of dX to save memory
149
167
  _rms_norm_backward[(n_rows,)](
150
168
  dY,
151
169
  dY.stride(0),
@@ -12,43 +12,43 @@ def silu(x):
12
12
 
13
13
  @triton.jit
14
14
  def _swiglu_forward_kernel(
15
- a, b, c, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
15
+ a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
16
16
  ):
17
17
  program_id = tl.program_id(0)
18
18
 
19
19
  # locate start index
20
- a += program_id * stride
21
- b += program_id * stride
22
- c += program_id * stride
20
+ a_ptr += program_id * stride
21
+ b_ptr += program_id * stride
22
+ c_ptr += program_id * stride
23
23
 
24
24
  col_offsets = tl.arange(0, BLOCK_SIZE)
25
25
  mask = col_offsets < n_cols
26
26
 
27
27
  # sigmoid requires type float32
28
- a_row = tl.load(a + col_offsets, mask=mask, other=0).to(tl.float32)
29
- b_row = tl.load(b + col_offsets, mask=mask, other=0)
28
+ a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
29
+ b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
30
30
  c_row = silu(a_row) * b_row
31
- tl.store(c + col_offsets, c_row, mask=mask)
31
+ tl.store(c_ptr + col_offsets, c_row, mask=mask)
32
32
 
33
33
 
34
34
  @triton.jit
35
35
  def _swiglu_backward_kernel(
36
- dc, a, b, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
36
+ dc_ptr, a_ptr, b_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
37
37
  ):
38
38
  program_id = tl.program_id(0)
39
39
 
40
40
  # locate start index
41
- dc += program_id * stride
42
- a += program_id * stride
43
- b += program_id * stride
41
+ dc_ptr += program_id * stride
42
+ a_ptr += program_id * stride
43
+ b_ptr += program_id * stride
44
44
 
45
45
  col_offsets = tl.arange(0, BLOCK_SIZE)
46
46
  mask = col_offsets < n_cols
47
47
 
48
- dc_row = tl.load(dc + col_offsets, mask=mask, other=0)
48
+ dc_row = tl.load(dc_ptr + col_offsets, mask=mask, other=0)
49
49
  # sigmoid requires type float32
50
- a_row = tl.load(a + col_offsets, mask=mask, other=0).to(tl.float32)
51
- b_row = tl.load(b + col_offsets, mask=mask, other=0)
50
+ a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
51
+ b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
52
52
 
53
53
  # recomputation to save memory
54
54
  sig_a = tl.sigmoid(a_row)
@@ -56,8 +56,8 @@ def _swiglu_backward_kernel(
56
56
  db_row = dc_row * silu_a
57
57
  da_row = dc_row * (silu_a * (1 - sig_a) + sig_a) * b_row
58
58
 
59
- tl.store(a + col_offsets, da_row, mask=mask)
60
- tl.store(b + col_offsets, db_row, mask=mask)
59
+ tl.store(a_ptr + col_offsets, da_row, mask=mask)
60
+ tl.store(b_ptr + col_offsets, db_row, mask=mask)
61
61
 
62
62
 
63
63
  class LigerSiLUMulFunction(torch.autograd.Function):
@@ -1,4 +1,5 @@
1
1
  from liger_kernel.transformers.monkey_patch import ( # noqa: F401
2
+ apply_liger_kernel_to_gemma,
2
3
  apply_liger_kernel_to_llama,
3
4
  apply_liger_kernel_to_mistral,
4
5
  apply_liger_kernel_to_mixtral,
@@ -1,4 +1,5 @@
1
1
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
2
+ from liger_kernel.transformers.geglu import LigerGEGLUMLP
2
3
  from liger_kernel.transformers.model.llama import lce_forward
3
4
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
4
5
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
@@ -98,3 +99,32 @@ def apply_liger_kernel_to_mixtral(
98
99
  modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
99
100
  if swiglu:
100
101
  modeling_mixtral.MixtralBlockSparseTop2MLP = LigerBlockSparseTop2MLP
102
+
103
+
104
+ def apply_liger_kernel_to_gemma(
105
+ rope: bool = True,
106
+ cross_entropy: bool = True,
107
+ rms_norm: bool = True,
108
+ geglu: bool = True,
109
+ ) -> None:
110
+ """
111
+ Apply Liger kernels to replace original implementation in HuggingFace Gemma2 models
112
+ to make GPU go burrr.
113
+
114
+ Args:
115
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
116
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
117
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
118
+ geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
119
+ """
120
+ # TODO(yundai424): add convergence test for gemma
121
+ from transformers.models.gemma import modeling_gemma
122
+
123
+ if rope:
124
+ modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
125
+ if rms_norm:
126
+ modeling_gemma.GemmaRMSNorm = LigerRMSNorm
127
+ if cross_entropy:
128
+ modeling_gemma.CrossEntropyLoss = LigerCrossEntropyLoss
129
+ if geglu:
130
+ modeling_gemma.GemmaMLP = LigerGEGLUMLP
@@ -0,0 +1,45 @@
1
+ import logging
2
+
3
+ from liger_kernel.transformers.monkey_patch import (
4
+ apply_liger_kernel_to_gemma,
5
+ apply_liger_kernel_to_llama,
6
+ apply_liger_kernel_to_mistral,
7
+ apply_liger_kernel_to_mixtral,
8
+ )
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+ # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
13
+ MODEL_TYPE_TO_APPLY_LIGER_FN = {
14
+ "gemma": apply_liger_kernel_to_gemma,
15
+ "llama": apply_liger_kernel_to_llama,
16
+ "mistral": apply_liger_kernel_to_mistral,
17
+ "mixtral": apply_liger_kernel_to_mixtral,
18
+ }
19
+
20
+
21
+ def _apply_liger_kernel(model_type: str = "", **kwargs) -> None:
22
+ """
23
+ Applies Liger kernels based on the specified model type. The custom
24
+ kernels for the specified model type will be applied with the provided
25
+ keyword arguments, otherwise the default configuration will be used.
26
+
27
+ Args:
28
+ - model_type: the model types as defined in transformers/models/auto/modeling_auto.py
29
+ and specified in the model's config.json
30
+ - kwargs: keyword arguments that are passed to the corresponding apply_liger_kernel_to_* function.
31
+ """
32
+
33
+ if not model_type:
34
+ logger.info("Model type was not provided. No Liger kernels will be applied.")
35
+ return
36
+
37
+ if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
38
+ logger.info(
39
+ f"There are currently no Liger kernels supported for model type: {model_type}."
40
+ )
41
+ return
42
+
43
+ logger.info(f"Applying Liger kernels for model type: {model_type}.")
44
+ # Apply the default combination of liger kernels available for the model
45
+ MODEL_TYPE_TO_APPLY_LIGER_FN[model_type](**kwargs)
@@ -1,12 +1,10 @@
1
1
  import os
2
2
  import random
3
3
 
4
- from overrides import override
5
4
  from triton.runtime.cache import FileCacheManager
6
5
 
7
6
 
8
7
  class LigerTritonFileCacheManager(FileCacheManager):
9
- @override
10
8
  def put(self, data, filename, binary=True) -> str:
11
9
  if not self.cache_dir:
12
10
  raise RuntimeError("Could not create or locate cache dir")
@@ -0,0 +1,245 @@
1
+ Metadata-Version: 2.1
2
+ Name: liger-kernel
3
+ Version: 0.1.1
4
+ Summary: Efficient Triton kernels for LLM Training
5
+ Home-page: https://github.com/linkedin/Liger-Kernel
6
+ License: BSD-2-Clause
7
+ Keywords: triton,kernels,LLM training,deep learning,Hugging Face,PyTorch,GPU optimization
8
+ Classifier: Development Status :: 4 - Beta
9
+ Classifier: Intended Audience :: Developers
10
+ Classifier: Intended Audience :: Science/Research
11
+ Classifier: Intended Audience :: Education
12
+ Classifier: License :: OSI Approved :: BSD License
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.8
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Topic :: Software Development :: Libraries
18
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
19
+ Description-Content-Type: text/markdown
20
+ License-File: LICENSE
21
+ License-File: NOTICE
22
+ Requires-Dist: torch>=2.1.2
23
+ Requires-Dist: triton>=2.3.0
24
+ Requires-Dist: transformers>=4.40.1
25
+ Provides-Extra: dev
26
+ Requires-Dist: matplotlib>=3.7.2; extra == "dev"
27
+ Requires-Dist: flake8>=4.0.1.1; extra == "dev"
28
+ Requires-Dist: black>=24.4.2; extra == "dev"
29
+ Requires-Dist: isort>=5.13.2; extra == "dev"
30
+ Requires-Dist: pre-commit>=3.7.1; extra == "dev"
31
+ Requires-Dist: torch-tb-profiler>=0.4.1; extra == "dev"
32
+
33
+ # Liger Kernel: Efficient Triton Kernels for LLM Training
34
+
35
+ [![Downloads](https://static.pepy.tech/badge/liger-kernel)](https://pepy.tech/project/liger-kernel) [![PyPI version](https://badge.fury.io/py/liger-kernel.svg)](https://badge.fury.io/py/liger-kernel) [![PyPI version](https://badge.fury.io/py/liger-kernel-nightly.svg)](https://badge.fury.io/py/liger-kernel-nightly)
36
+
37
+
38
+ [Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Structure](#structure) | [Contributing](#contributing)
39
+
40
+ **Liger (Linkedin GPU Efficient Runtime) Kernel** is a collection of Triton kernels designed specifically for LLM training. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. The kernel works out of the box with [Flash Attention](https://github.com/Dao-AILab/flash-attention), [PyTorch FSDP](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [Microsoft DeepSpeed](https://github.com/microsoft/DeepSpeed). We welcome contributions from the community to gather the best kernels for LLM training.
41
+
42
+ ## Supercharge Your Model with Liger Kernel
43
+
44
+
45
+ ![Banner](https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/banner.GIF)
46
+
47
+ With one line of code, Liger Kernel can increase throughput by more than 20% and reduce memory usage by 60%, thereby enabling longer context lengths, larger batch sizes, and massive vocabularies.
48
+
49
+
50
+ | Speed Up | Memory Reduction |
51
+ |--------------------------|-------------------------|
52
+ | ![Speed up](https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/e2e-tps.png) | ![Memory](https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/e2e-memory.png) |
53
+
54
+ > **Note:**
55
+ > - Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Data Type = `bf16`, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
56
+ > - Hugging Face models start to OOM at a 4K context length, whereas Hugging Face + Liger Kernel scales up to 16K.
57
+
58
+ ## Examples
59
+
60
+ ### Basic
61
+
62
+ | **Example** | **Description** | **Lightning Studio** |
63
+ |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
64
+ | [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA |
65
+ | [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA |
66
+
67
+ ### Advanced
68
+
69
+ | **Example** | **Description** | **Lightning Studio** |
70
+ |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
71
+ | [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | TBA |
72
+
73
+ ## Key Features
74
+
75
+ - **Ease of use:** Simply patch your Hugging Face model with one line of code, or compose your own model using our Liger Kernel modules.
76
+ - **Time and memory efficient:** In the same spirit as Flash-Attn, but for layers like **RMSNorm**, **RoPE**, **SwiGLU**, and **CrossEntropy**! Increases multi-GPU training throughput by 20% and reduces memory usage by 60% with **kernel fusion**, **in-place replacement**, and **chunking** techniques.
77
+ - **Exact:** Computation is exact—no approximations! Both forward and backward passes are implemented with rigorous unit tests and undergo convergence testing against training runs without Liger Kernel to ensure accuracy.
78
+ - **Lightweight:** Liger Kernel has minimal dependencies, requiring only Torch and Triton—no extra libraries needed! Say goodbye to dependency headaches!
79
+ - **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
80
+
81
+ ## Target Audiences
82
+
83
+ - **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
84
+ - **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
85
+ - **Curious Novices**: Eager to learn how to write reliable Triton kernels to enhance training efficiency.
86
+
87
+
88
+ ## Installation
89
+
90
+ ### Dependencies
91
+
92
+ - `torch >= 2.1.2`
93
+ - `triton >= 2.3.0`
94
+ - `transformers >= 4.40.1`
95
+
96
+ To install the stable version:
97
+
98
+ ```bash
99
+ $ pip install liger-kernel
100
+ ```
101
+
102
+ To install the nightly version:
103
+
104
+ ```bash
105
+ $ pip install liger-kernel-nightly
106
+ ```
107
+
108
+ ## Getting Started
109
+
110
+ ### 1. Patch Existing Hugging Face Models
111
+
112
+ Using the [patching APIs](#patching), you can swap Hugging Face models with optimized Liger Kernels.
113
+
114
+ ```python
115
+ import transformers
116
+ from liger_kernel.transformers import apply_liger_kernel_to_llama
117
+
118
+ model = transformers.AutoModelForCausalLM.from_pretrained("<some llama model>")
119
+
120
+ # Adding this line automatically monkey-patches the model with the optimized Liger kernels
121
+ apply_liger_kernel_to_llama()
122
+ ```
123
+
124
+ ### 2. Compose Your Own Model
125
+
126
+ You can take individual [kernels](#kernels) to compose your models.
127
+
128
+ ```python
129
+ from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
130
+ import torch.nn as nn
131
+ import torch
132
+
133
+ model = nn.Linear(128, 256).cuda()
134
+
135
+ # fuses linear + cross entropy layers together and performs chunk-by-chunk computation to reduce memory
136
+ loss_fn = LigerFusedLinearCrossEntropyLoss()
137
+
138
+ input = torch.randn(4, 128, requires_grad=True, device="cuda")
139
+ target = torch.randint(256, (4, ), device="cuda")
140
+
141
+ loss = loss_fn(model.weight, input, target)
142
+ loss.backward()
143
+ ```
144
+
145
+
146
+ ## Structure
147
+
148
+ ### Source Code
149
+
150
+ - `ops/`: Core Triton operations.
151
+ - `transformers/`: PyTorch `nn.Module` implementations built on Triton operations, compliant with the `transformers` API.
152
+
153
+ ### Tests
154
+
155
+ - `transformers/`: Correctness tests for the Triton-based layers.
156
+ - `convergence/`: Patches Hugging Face models with all kernels, runs multiple iterations, and compares weights, logits, and loss layer-by-layer.
157
+
158
+ ### Benchmark
159
+
160
+ - `benchmark/`: Execution time and memory benchmarks compared to Hugging Face layers.
161
+
162
+ ## APIs
163
+
164
+ ### Patching
165
+
166
+ | **Model** | **API** | **Supported Operations** |
167
+ |-------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
168
+ | LLaMA (2 & 3) | `liger_kernel.transformers.apply_liger_kernel_to_llama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
169
+ | Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
170
+ | Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
171
+ | Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss |
172
+
173
+ ### Kernels
174
+
175
+ | **Kernel** | **API** |
176
+ |---------------------------------|-------------------------------------------------------------|
177
+ | RMSNorm | `liger_kernel.transformers.LigerRMSNorm` |
178
+ | RoPE | `liger_kernel.transformers.liger_rotary_pos_emb` |
179
+ | SwiGLU | `liger_kernel.transformers.LigerSwiGLUMLP` |
180
+ | GeGLU | `liger_kernel.transformers.LigerGEGLUMLP` |
181
+ | CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
182
+ | FusedLinearCrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
183
+
184
+ - **RMSNorm**: [RMSNorm](https://arxiv.org/pdf/1910.07467), which normalizes activations using their root mean square, is implemented by fusing the normalization and scaling steps into a single Triton kernel, and achieves ~3X speedup with ~3X peak memory reduction.
185
+ - **RoPE**: [Rotary Positional Embedding](https://arxiv.org/pdf/2104.09864) is implemented by fusing the query and key embedding rotary into a single kernel with inplace replacement, and achieves ~3X speedup with ~3X peak memory reduction.
186
+ - **SwiGLU**: [Swish Gated Linear Units](https://arxiv.org/pdf/2002.05202), given by
187
+ $$\text{SwiGLU}(x)=\text{Swish}_{\beta}(xW+b)\otimes(xV+c)$$
188
+ , is implemented by fusing the elementwise multiplication (denoted by $\otimes$) into a single kernel with inplace replacement, and achieves parity speed with ~1.5X peak memory reduction.
189
+ - **GeGLU**: [GELU Gated Linear Units](https://arxiv.org/pdf/2002.05202), given by
190
+ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
191
+ , is implemented by fusing the elementwise multiplication into a single kernel with inplace replacement, and achieves parity speed with ~1.5X peak memory reduction. Note that the [tanh approximation form of GELU](https://pytorch.org/docs/stable/generated/torch.nn.GELU.html) is used.
192
+ - **CrossEntropy**: [Cross entropy loss](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html) is implemented by computing both the loss and gradient in the forward pass with inplace replacement of input to reduce the peak memory by avoiding simultaneous materialization of both input logits and gradient. It achieves >2X speedup and >4X memory reduction for common vocab sizes (e.g., 32K, 128K, etc.).
193
+ <!-- TODO: verify vocab sizes are accurate -->
194
+ - **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
195
+
196
+
197
+ <!-- TODO: be more specific about batch size -->
198
+ > **Note:**
199
+ > Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder.
200
+
201
+ ## Note on ML Compiler
202
+
203
+ ### 1. Torch Compile
204
+
205
+ Since Liger Kernel is 100% Triton-based, it works seamlessly with [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html). In the following example, Liger Kernel can further optimize the model on top of Torch Compile, reducing the memory by more than half.
206
+
207
+ | Configuration | Throughput (tokens/sec) | Memory Reserved (GB) |
208
+ |--------------------------------|----------------------------|-------------------------|
209
+ | Torch Compile | 3780 | 66.4 |
210
+ | Torch Compile + Liger Kernel | 3702 | 31.0 |
211
+
212
+ > **Note:**
213
+ > 1. Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Seq Len = 4096, Data Type = `bf16`, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
214
+ > 2. Tested on torch `2.5.0.dev20240731+cu118`
215
+
216
+ ### 2. Lightning Thunder
217
+
218
+ *WIP*
219
+
220
+ ## Contributing
221
+
222
+ [CONTRIBUTING GUIDE](https://github.com/linkedin/Liger-Kernel/blob/main/CONTRIBUTING.md)
223
+
224
+ ## Acknowledgement
225
+
226
+ - [flash-attn](https://github.com/Dao-AILab/flash-attention) and [Unsloth](https://github.com/unslothai/unsloth) for inspiration in Triton kernels for training
227
+ - [tiny shakespeare dataset](https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt) by Andrej Karpathy for convergence testing
228
+ - [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) for lm_head + cross entropy inspiration
229
+
230
+
231
+ ## License
232
+
233
+ [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE)
234
+
235
+ ## Cite this work
236
+
237
+ Biblatex entry:
238
+ ```bib
239
+ @software{liger2024,
240
+ title = {Liger-Kernel: Efficient Triton Kernels for LLM Training},
241
+ author = {Hsu, Pin-Lun and Dai, Yun and Kothapalli, Vignesh and Song, Qingquan and Tang, Shao and Zhu, Siyu},
242
+ url = {https://github.com/linkedin/Liger-Kernel},
243
+ year = {2024}
244
+ }
245
+ ```
@@ -2,25 +2,26 @@ liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
2
2
  liger_kernel/ops/cross_entropy.py,sha256=YTHKVyPW748EWtbWJeKdIe9S1dEq6i90_PbBuCD-9s0,9178
3
3
  liger_kernel/ops/fused_linear_cross_entropy.py,sha256=58MmDhLJGR5b8ixztkhR707yp0VY28oBRASFVwGbeV8,7346
4
4
  liger_kernel/ops/geglu.py,sha256=5tGinryOOYRpGtKwJ4B1ertwtzd81xdjevD3Ha7H1AY,3849
5
- liger_kernel/ops/rms_norm.py,sha256=Tyz5Ea7U8dNtNUpuRmT6qsV7PmDe0FuUFjaEPTsFu1E,4303
5
+ liger_kernel/ops/rms_norm.py,sha256=AQ1jaCXUlrBazqAPg-Cpf2K5OsO4byDKcdfWsGy9-zI,4848
6
6
  liger_kernel/ops/rope.py,sha256=fYBct8gDQfKPZdMWlzkZZ8kBzh6nQ7DIpDsc7lZwM8c,8584
7
- liger_kernel/ops/swiglu.py,sha256=__QsfYxKyZHtRScm31zL3sAOVEblQFqKj2ll8I4Odqg,2835
7
+ liger_kernel/ops/swiglu.py,sha256=MRbSIXsBLqlFr9ZdtuFqSjLJJ-716URmQIhxQ57GGEw,2915
8
8
  liger_kernel/ops/utils.py,sha256=vsFIywd8LQlVPRA3RPZOm5HyN8c0cS4NFEEnwjNw-MI,1427
9
- liger_kernel/transformers/__init__.py,sha256=7rOw9yZ8kNXO483Colx-EUq8GcTCvCZxrxF-S7pmkkU,172
9
+ liger_kernel/transformers/__init__.py,sha256=nVvk0h7er3fdgubQF8Z8KjA3ew-q5oJHyJRg5cKmBoc,205
10
10
  liger_kernel/transformers/cross_entropy.py,sha256=G-L4EaUYVc25NKZ2jrlaG-d5YUvDqJdUlawPN7K1d1g,389
11
11
  liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=h0AW9ubFGfz4DBwgh2CLW8rpKo9PvxYpB6AUzjx-1b0,501
12
12
  liger_kernel/transformers/geglu.py,sha256=FrLBHZRdI68jw9RR6MSTE59-xCzueOwSRp9jL8y-j98,896
13
- liger_kernel/transformers/monkey_patch.py,sha256=9CilRC9pBBbQ8R1_4HLsZq2xfmxVC4xGx345vfejX6I,3914
13
+ liger_kernel/transformers/monkey_patch.py,sha256=FjaRZVWm_ZMHO3NXc4IT6EpCTWJOdZKP72mZq01qbrA,5006
14
14
  liger_kernel/transformers/rms_norm.py,sha256=2LHfEctSpzuNRaoZ9uUECSFK8fZeIxIsHm9QbEHZvDQ,452
15
15
  liger_kernel/transformers/rope.py,sha256=m-ah8vZBYW8tfplTXCiAPMHJWlB1tdp_JPXJeWE-Boo,943
16
16
  liger_kernel/transformers/swiglu.py,sha256=8kt4MffEZT5vx3k0WA-GO-WPLv5kGdnu_nAwlJyMI2U,1516
17
+ liger_kernel/transformers/trainer_integration.py,sha256=gt0fF-se2XiIB6PocHBPBuD6tLCOtQRcb20WfUS2ceA,1645
17
18
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
19
  liger_kernel/transformers/model/llama.py,sha256=4mfVTMrY7T-xiJeQJe02hBVnAwNCKlvLGp49gj6TWiU,5298
19
20
  liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
20
- liger_kernel/triton/monkey_patch.py,sha256=yRNaGdyG5PrwX5ed_MQdqtqvvpVvQ7ZD2FQ_9W1q9u8,1629
21
- liger_kernel-0.0.1.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
22
- liger_kernel-0.0.1.dist-info/METADATA,sha256=2PhmP9NVtu0CsGG2_jnxCukPTMZx6vnzLpTQlJDrqq4,504
23
- liger_kernel-0.0.1.dist-info/NOTICE,sha256=BXkXY9aWvEy_7MAB57zDu1z8uMYT1i1l9B6EpHuBa8s,173
24
- liger_kernel-0.0.1.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
25
- liger_kernel-0.0.1.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
26
- liger_kernel-0.0.1.dist-info/RECORD,,
21
+ liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
22
+ liger_kernel-0.1.1.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
23
+ liger_kernel-0.1.1.dist-info/METADATA,sha256=jkp8JFT7zDNqf4-i0HQruXWhd-RGjJ8pTbCsM_K2ftI,14533
24
+ liger_kernel-0.1.1.dist-info/NOTICE,sha256=BXkXY9aWvEy_7MAB57zDu1z8uMYT1i1l9B6EpHuBa8s,173
25
+ liger_kernel-0.1.1.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
26
+ liger_kernel-0.1.1.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
27
+ liger_kernel-0.1.1.dist-info/RECORD,,
@@ -1,16 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: liger-kernel
3
- Version: 0.0.1
4
- License-File: LICENSE
5
- License-File: NOTICE
6
- Requires-Dist: torch>=2.1.2
7
- Requires-Dist: triton>=2.3.0
8
- Requires-Dist: transformers>=4.40.1
9
- Provides-Extra: dev
10
- Requires-Dist: matplotlib>=3.7.2; extra == "dev"
11
- Requires-Dist: flake8>=4.0.1.1; extra == "dev"
12
- Requires-Dist: black>=24.4.2; extra == "dev"
13
- Requires-Dist: isort>=5.13.2; extra == "dev"
14
- Requires-Dist: pre-commit>=3.7.1; extra == "dev"
15
- Requires-Dist: torch-tb-profiler>=0.4.1; extra == "dev"
16
-