liger-kernel 0.0.1__py3-none-any.whl → 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/rms_norm.py +38 -20
- liger_kernel/ops/swiglu.py +16 -16
- liger_kernel/transformers/__init__.py +1 -0
- liger_kernel/transformers/monkey_patch.py +30 -0
- liger_kernel/transformers/trainer_integration.py +45 -0
- liger_kernel/triton/monkey_patch.py +0 -2
- {liger_kernel-0.0.1.dist-info → liger_kernel-0.1.0.dist-info}/METADATA +1 -1
- {liger_kernel-0.0.1.dist-info → liger_kernel-0.1.0.dist-info}/RECORD +12 -11
- {liger_kernel-0.0.1.dist-info → liger_kernel-0.1.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.0.1.dist-info → liger_kernel-0.1.0.dist-info}/NOTICE +0 -0
- {liger_kernel-0.0.1.dist-info → liger_kernel-0.1.0.dist-info}/WHEEL +0 -0
- {liger_kernel-0.0.1.dist-info → liger_kernel-0.1.0.dist-info}/top_level.txt +0 -0
liger_kernel/ops/rms_norm.py
CHANGED
|
@@ -20,9 +20,12 @@ def _rms_norm_forward(
|
|
|
20
20
|
BLOCK_SIZE: tl.constexpr,
|
|
21
21
|
):
|
|
22
22
|
"""
|
|
23
|
+
y_i = (x_i / (RMS)) * wi, RMS = sqrt(sum(x_i^2) / N)
|
|
24
|
+
|
|
23
25
|
Reference:
|
|
24
26
|
1. https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
|
25
27
|
2. https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/rms_layernorm.py#L22
|
|
28
|
+
3. https://arxiv.org/pdf/1910.07467
|
|
26
29
|
"""
|
|
27
30
|
|
|
28
31
|
row_idx = tl.program_id(0)
|
|
@@ -36,16 +39,17 @@ def _rms_norm_forward(
|
|
|
36
39
|
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
|
|
37
40
|
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
|
|
38
41
|
|
|
39
|
-
|
|
40
|
-
|
|
42
|
+
mean_square = tl.sum(X_row * X_row, axis=0) / n_cols
|
|
43
|
+
inv_rms = tl.math.rsqrt(mean_square + eps)
|
|
41
44
|
|
|
42
|
-
#
|
|
43
|
-
|
|
45
|
+
# We can save time by caching rms with minimal memory overhead
|
|
46
|
+
# because rms is much smaller compared to X_row, as rms is for each row.
|
|
47
|
+
# However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
|
|
48
|
+
tl.store(r_ptr, inv_rms)
|
|
44
49
|
|
|
45
|
-
|
|
50
|
+
Y_row = X_row * inv_rms * W_row
|
|
46
51
|
|
|
47
|
-
|
|
48
|
-
tl.store(Y_ptr + col_offsets, output, mask=mask)
|
|
52
|
+
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
|
49
53
|
|
|
50
54
|
|
|
51
55
|
@triton.jit
|
|
@@ -65,9 +69,10 @@ def _rms_norm_backward(
|
|
|
65
69
|
BLOCK_SIZE: tl.constexpr,
|
|
66
70
|
):
|
|
67
71
|
"""
|
|
68
|
-
dx = (1 /
|
|
69
|
-
dw = sum(dy * (x /
|
|
72
|
+
dx = (1 / RMS) * [dy * w - (1 / N) * (1 / RMS^2) * ((dy * w) dot x) * x]. * means element-wise multiplication, whileas dot means dot product
|
|
73
|
+
dw = sum(dy * (x / RMS)). summation over BxT dimension
|
|
70
74
|
"""
|
|
75
|
+
|
|
71
76
|
row_idx = tl.program_id(0)
|
|
72
77
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
73
78
|
mask = col_offsets < n_cols
|
|
@@ -81,26 +86,33 @@ def _rms_norm_backward(
|
|
|
81
86
|
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
|
|
82
87
|
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
|
|
83
88
|
|
|
84
|
-
# Get
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
normed = X_row * inv_var
|
|
89
|
+
# Get cached rms
|
|
90
|
+
inv_rms_row = tl.load(r_ptr)
|
|
88
91
|
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
92
|
+
dX_row = (inv_rms_row) * (
|
|
93
|
+
dY_row * W_row
|
|
94
|
+
- (1 / n_cols)
|
|
95
|
+
* inv_rms_row
|
|
96
|
+
* inv_rms_row
|
|
97
|
+
* tl.sum(dY_row * W_row * X_row, axis=0)
|
|
98
|
+
* X_row
|
|
99
|
+
)
|
|
100
|
+
tl.store(dY_ptr + col_offsets, dX_row, mask=mask)
|
|
95
101
|
|
|
96
102
|
# calculate the gradient of W
|
|
97
|
-
|
|
103
|
+
dW_row = dY_row * X_row * inv_rms_row
|
|
104
|
+
tl.store(dW_ptr + col_offsets, dW_row, mask=mask)
|
|
98
105
|
|
|
99
106
|
|
|
100
107
|
class LigerRMSNormFunction(torch.autograd.Function):
|
|
101
108
|
@staticmethod
|
|
102
109
|
@ensure_contiguous
|
|
103
110
|
def forward(ctx, X, W, eps):
|
|
111
|
+
"""
|
|
112
|
+
X: (B, T, H) or (BxT, H)
|
|
113
|
+
W: (H,)
|
|
114
|
+
"""
|
|
115
|
+
|
|
104
116
|
shape = X.shape
|
|
105
117
|
dim = shape[-1]
|
|
106
118
|
X = X.view(-1, dim)
|
|
@@ -108,6 +120,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
|
|
|
108
120
|
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
109
121
|
|
|
110
122
|
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
123
|
+
# r is to cache (1/rms) for each row
|
|
111
124
|
r = torch.empty(n_rows, dtype=X.dtype, device=X.device)
|
|
112
125
|
|
|
113
126
|
# Check constraints.
|
|
@@ -139,6 +152,10 @@ class LigerRMSNormFunction(torch.autograd.Function):
|
|
|
139
152
|
@staticmethod
|
|
140
153
|
@ensure_contiguous
|
|
141
154
|
def backward(ctx, dY):
|
|
155
|
+
"""
|
|
156
|
+
Y: (B, T, H) or (BxT, H)
|
|
157
|
+
"""
|
|
158
|
+
|
|
142
159
|
shape = dY.shape
|
|
143
160
|
dim = shape[-1]
|
|
144
161
|
dY = dY.view(-1, dim)
|
|
@@ -146,6 +163,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
|
|
|
146
163
|
n_rows, n_cols = dY.shape
|
|
147
164
|
dW = torch.zeros_like(X)
|
|
148
165
|
|
|
166
|
+
# Here we use dY to store the value of dX to save memory
|
|
149
167
|
_rms_norm_backward[(n_rows,)](
|
|
150
168
|
dY,
|
|
151
169
|
dY.stride(0),
|
liger_kernel/ops/swiglu.py
CHANGED
|
@@ -12,43 +12,43 @@ def silu(x):
|
|
|
12
12
|
|
|
13
13
|
@triton.jit
|
|
14
14
|
def _swiglu_forward_kernel(
|
|
15
|
-
|
|
15
|
+
a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
16
16
|
):
|
|
17
17
|
program_id = tl.program_id(0)
|
|
18
18
|
|
|
19
19
|
# locate start index
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
20
|
+
a_ptr += program_id * stride
|
|
21
|
+
b_ptr += program_id * stride
|
|
22
|
+
c_ptr += program_id * stride
|
|
23
23
|
|
|
24
24
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
25
25
|
mask = col_offsets < n_cols
|
|
26
26
|
|
|
27
27
|
# sigmoid requires type float32
|
|
28
|
-
a_row = tl.load(
|
|
29
|
-
b_row = tl.load(
|
|
28
|
+
a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
|
|
29
|
+
b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
|
|
30
30
|
c_row = silu(a_row) * b_row
|
|
31
|
-
tl.store(
|
|
31
|
+
tl.store(c_ptr + col_offsets, c_row, mask=mask)
|
|
32
32
|
|
|
33
33
|
|
|
34
34
|
@triton.jit
|
|
35
35
|
def _swiglu_backward_kernel(
|
|
36
|
-
|
|
36
|
+
dc_ptr, a_ptr, b_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
37
37
|
):
|
|
38
38
|
program_id = tl.program_id(0)
|
|
39
39
|
|
|
40
40
|
# locate start index
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
41
|
+
dc_ptr += program_id * stride
|
|
42
|
+
a_ptr += program_id * stride
|
|
43
|
+
b_ptr += program_id * stride
|
|
44
44
|
|
|
45
45
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
46
46
|
mask = col_offsets < n_cols
|
|
47
47
|
|
|
48
|
-
dc_row = tl.load(
|
|
48
|
+
dc_row = tl.load(dc_ptr + col_offsets, mask=mask, other=0)
|
|
49
49
|
# sigmoid requires type float32
|
|
50
|
-
a_row = tl.load(
|
|
51
|
-
b_row = tl.load(
|
|
50
|
+
a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
|
|
51
|
+
b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
|
|
52
52
|
|
|
53
53
|
# recomputation to save memory
|
|
54
54
|
sig_a = tl.sigmoid(a_row)
|
|
@@ -56,8 +56,8 @@ def _swiglu_backward_kernel(
|
|
|
56
56
|
db_row = dc_row * silu_a
|
|
57
57
|
da_row = dc_row * (silu_a * (1 - sig_a) + sig_a) * b_row
|
|
58
58
|
|
|
59
|
-
tl.store(
|
|
60
|
-
tl.store(
|
|
59
|
+
tl.store(a_ptr + col_offsets, da_row, mask=mask)
|
|
60
|
+
tl.store(b_ptr + col_offsets, db_row, mask=mask)
|
|
61
61
|
|
|
62
62
|
|
|
63
63
|
class LigerSiLUMulFunction(torch.autograd.Function):
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
|
2
|
+
from liger_kernel.transformers.geglu import LigerGEGLUMLP
|
|
2
3
|
from liger_kernel.transformers.model.llama import lce_forward
|
|
3
4
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
|
4
5
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb
|
|
@@ -98,3 +99,32 @@ def apply_liger_kernel_to_mixtral(
|
|
|
98
99
|
modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
99
100
|
if swiglu:
|
|
100
101
|
modeling_mixtral.MixtralBlockSparseTop2MLP = LigerBlockSparseTop2MLP
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def apply_liger_kernel_to_gemma(
|
|
105
|
+
rope: bool = True,
|
|
106
|
+
cross_entropy: bool = True,
|
|
107
|
+
rms_norm: bool = True,
|
|
108
|
+
geglu: bool = True,
|
|
109
|
+
) -> None:
|
|
110
|
+
"""
|
|
111
|
+
Apply Liger kernels to replace original implementation in HuggingFace Gemma2 models
|
|
112
|
+
to make GPU go burrr.
|
|
113
|
+
|
|
114
|
+
Args:
|
|
115
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
116
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
|
|
117
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
118
|
+
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
|
119
|
+
"""
|
|
120
|
+
# TODO(yundai424): add convergence test for gemma
|
|
121
|
+
from transformers.models.gemma import modeling_gemma
|
|
122
|
+
|
|
123
|
+
if rope:
|
|
124
|
+
modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
125
|
+
if rms_norm:
|
|
126
|
+
modeling_gemma.GemmaRMSNorm = LigerRMSNorm
|
|
127
|
+
if cross_entropy:
|
|
128
|
+
modeling_gemma.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
129
|
+
if geglu:
|
|
130
|
+
modeling_gemma.GemmaMLP = LigerGEGLUMLP
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
from liger_kernel.transformers.monkey_patch import (
|
|
4
|
+
apply_liger_kernel_to_gemma,
|
|
5
|
+
apply_liger_kernel_to_llama,
|
|
6
|
+
apply_liger_kernel_to_mistral,
|
|
7
|
+
apply_liger_kernel_to_mixtral,
|
|
8
|
+
)
|
|
9
|
+
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
13
|
+
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
14
|
+
"gemma": apply_liger_kernel_to_gemma,
|
|
15
|
+
"llama": apply_liger_kernel_to_llama,
|
|
16
|
+
"mistral": apply_liger_kernel_to_mistral,
|
|
17
|
+
"mixtral": apply_liger_kernel_to_mixtral,
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def _apply_liger_kernel(model_type: str = "", **kwargs) -> None:
|
|
22
|
+
"""
|
|
23
|
+
Applies Liger kernels based on the specified model type. The custom
|
|
24
|
+
kernels for the specified model type will be applied with the provided
|
|
25
|
+
keyword arguments, otherwise the default configuration will be used.
|
|
26
|
+
|
|
27
|
+
Args:
|
|
28
|
+
- model_type: the model types as defined in transformers/models/auto/modeling_auto.py
|
|
29
|
+
and specified in the model's config.json
|
|
30
|
+
- kwargs: keyword arguments that are passed to the corresponding apply_liger_kernel_to_* function.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
if not model_type:
|
|
34
|
+
logger.info("Model type was not provided. No Liger kernels will be applied.")
|
|
35
|
+
return
|
|
36
|
+
|
|
37
|
+
if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
|
|
38
|
+
logger.info(
|
|
39
|
+
f"There are currently no Liger kernels supported for model type: {model_type}."
|
|
40
|
+
)
|
|
41
|
+
return
|
|
42
|
+
|
|
43
|
+
logger.info(f"Applying Liger kernels for model type: {model_type}.")
|
|
44
|
+
# Apply the default combination of liger kernels available for the model
|
|
45
|
+
MODEL_TYPE_TO_APPLY_LIGER_FN[model_type](**kwargs)
|
|
@@ -1,12 +1,10 @@
|
|
|
1
1
|
import os
|
|
2
2
|
import random
|
|
3
3
|
|
|
4
|
-
from overrides import override
|
|
5
4
|
from triton.runtime.cache import FileCacheManager
|
|
6
5
|
|
|
7
6
|
|
|
8
7
|
class LigerTritonFileCacheManager(FileCacheManager):
|
|
9
|
-
@override
|
|
10
8
|
def put(self, data, filename, binary=True) -> str:
|
|
11
9
|
if not self.cache_dir:
|
|
12
10
|
raise RuntimeError("Could not create or locate cache dir")
|
|
@@ -2,25 +2,26 @@ liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
|
2
2
|
liger_kernel/ops/cross_entropy.py,sha256=YTHKVyPW748EWtbWJeKdIe9S1dEq6i90_PbBuCD-9s0,9178
|
|
3
3
|
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=58MmDhLJGR5b8ixztkhR707yp0VY28oBRASFVwGbeV8,7346
|
|
4
4
|
liger_kernel/ops/geglu.py,sha256=5tGinryOOYRpGtKwJ4B1ertwtzd81xdjevD3Ha7H1AY,3849
|
|
5
|
-
liger_kernel/ops/rms_norm.py,sha256=
|
|
5
|
+
liger_kernel/ops/rms_norm.py,sha256=AQ1jaCXUlrBazqAPg-Cpf2K5OsO4byDKcdfWsGy9-zI,4848
|
|
6
6
|
liger_kernel/ops/rope.py,sha256=fYBct8gDQfKPZdMWlzkZZ8kBzh6nQ7DIpDsc7lZwM8c,8584
|
|
7
|
-
liger_kernel/ops/swiglu.py,sha256=
|
|
7
|
+
liger_kernel/ops/swiglu.py,sha256=MRbSIXsBLqlFr9ZdtuFqSjLJJ-716URmQIhxQ57GGEw,2915
|
|
8
8
|
liger_kernel/ops/utils.py,sha256=vsFIywd8LQlVPRA3RPZOm5HyN8c0cS4NFEEnwjNw-MI,1427
|
|
9
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
9
|
+
liger_kernel/transformers/__init__.py,sha256=nVvk0h7er3fdgubQF8Z8KjA3ew-q5oJHyJRg5cKmBoc,205
|
|
10
10
|
liger_kernel/transformers/cross_entropy.py,sha256=G-L4EaUYVc25NKZ2jrlaG-d5YUvDqJdUlawPN7K1d1g,389
|
|
11
11
|
liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=h0AW9ubFGfz4DBwgh2CLW8rpKo9PvxYpB6AUzjx-1b0,501
|
|
12
12
|
liger_kernel/transformers/geglu.py,sha256=FrLBHZRdI68jw9RR6MSTE59-xCzueOwSRp9jL8y-j98,896
|
|
13
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
13
|
+
liger_kernel/transformers/monkey_patch.py,sha256=FjaRZVWm_ZMHO3NXc4IT6EpCTWJOdZKP72mZq01qbrA,5006
|
|
14
14
|
liger_kernel/transformers/rms_norm.py,sha256=2LHfEctSpzuNRaoZ9uUECSFK8fZeIxIsHm9QbEHZvDQ,452
|
|
15
15
|
liger_kernel/transformers/rope.py,sha256=m-ah8vZBYW8tfplTXCiAPMHJWlB1tdp_JPXJeWE-Boo,943
|
|
16
16
|
liger_kernel/transformers/swiglu.py,sha256=8kt4MffEZT5vx3k0WA-GO-WPLv5kGdnu_nAwlJyMI2U,1516
|
|
17
|
+
liger_kernel/transformers/trainer_integration.py,sha256=gt0fF-se2XiIB6PocHBPBuD6tLCOtQRcb20WfUS2ceA,1645
|
|
17
18
|
liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
18
19
|
liger_kernel/transformers/model/llama.py,sha256=4mfVTMrY7T-xiJeQJe02hBVnAwNCKlvLGp49gj6TWiU,5298
|
|
19
20
|
liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
|
|
20
|
-
liger_kernel/triton/monkey_patch.py,sha256=
|
|
21
|
-
liger_kernel-0.0.
|
|
22
|
-
liger_kernel-0.0.
|
|
23
|
-
liger_kernel-0.0.
|
|
24
|
-
liger_kernel-0.0.
|
|
25
|
-
liger_kernel-0.0.
|
|
26
|
-
liger_kernel-0.0.
|
|
21
|
+
liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
|
|
22
|
+
liger_kernel-0.1.0.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
23
|
+
liger_kernel-0.1.0.dist-info/METADATA,sha256=E_OSiFz2sC4jmWO4VH3sTXWiR3Ev7qNy5oSLSWk-s8g,504
|
|
24
|
+
liger_kernel-0.1.0.dist-info/NOTICE,sha256=BXkXY9aWvEy_7MAB57zDu1z8uMYT1i1l9B6EpHuBa8s,173
|
|
25
|
+
liger_kernel-0.1.0.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
|
26
|
+
liger_kernel-0.1.0.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
27
|
+
liger_kernel-0.1.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|