liger-kernel-nightly 0.6.4.dev20251202054858__py3-none-any.whl → 0.6.4.dev20260107111351__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (58) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +7 -1
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +10 -3
  3. liger_kernel/chunked_loss/jsd_loss.py +21 -6
  4. liger_kernel/ops/__init__.py +141 -0
  5. liger_kernel/ops/backends/README.md +151 -0
  6. liger_kernel/ops/backends/__init__.py +13 -0
  7. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  8. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  9. liger_kernel/ops/backends/_ascend/ops/__init__.py +43 -0
  10. liger_kernel/ops/backends/_ascend/ops/geglu.py +244 -0
  11. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  12. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  13. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  14. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  15. liger_kernel/ops/backends/registry.py +61 -0
  16. liger_kernel/ops/cross_entropy.py +12 -3
  17. liger_kernel/ops/fused_linear_cross_entropy.py +2 -1
  18. liger_kernel/ops/geglu.py +3 -2
  19. liger_kernel/ops/rms_norm.py +126 -49
  20. liger_kernel/ops/utils.py +12 -0
  21. liger_kernel/transformers/__init__.py +3 -0
  22. liger_kernel/transformers/auto_model.py +21 -0
  23. liger_kernel/transformers/cross_entropy.py +1 -1
  24. liger_kernel/transformers/dyt.py +1 -1
  25. liger_kernel/transformers/experimental/embedding.py +1 -1
  26. liger_kernel/transformers/functional.py +20 -20
  27. liger_kernel/transformers/fused_add_rms_norm.py +1 -1
  28. liger_kernel/transformers/fused_linear_cross_entropy.py +1 -1
  29. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  30. liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
  31. liger_kernel/transformers/geglu.py +1 -1
  32. liger_kernel/transformers/group_norm.py +1 -1
  33. liger_kernel/transformers/grpo_loss.py +1 -1
  34. liger_kernel/transformers/jsd.py +1 -1
  35. liger_kernel/transformers/kl_div.py +1 -1
  36. liger_kernel/transformers/layer_norm.py +1 -1
  37. liger_kernel/transformers/llama4_rope.py +1 -1
  38. liger_kernel/transformers/model/gemma3.py +1 -0
  39. liger_kernel/transformers/model/gpt_oss.py +211 -0
  40. liger_kernel/transformers/model/paligemma.py +1 -0
  41. liger_kernel/transformers/monkey_patch.py +118 -39
  42. liger_kernel/transformers/multi_token_attention.py +1 -1
  43. liger_kernel/transformers/poly_norm.py +1 -1
  44. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  45. liger_kernel/transformers/rms_norm.py +8 -3
  46. liger_kernel/transformers/rope.py +28 -27
  47. liger_kernel/transformers/softmax.py +1 -1
  48. liger_kernel/transformers/sparsemax.py +1 -1
  49. liger_kernel/transformers/swiglu.py +1 -1
  50. liger_kernel/transformers/tiled_mlp.py +3 -3
  51. liger_kernel/transformers/tvd.py +1 -1
  52. liger_kernel/utils.py +27 -0
  53. {liger_kernel_nightly-0.6.4.dev20251202054858.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/METADATA +9 -3
  54. {liger_kernel_nightly-0.6.4.dev20251202054858.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/RECORD +58 -46
  55. {liger_kernel_nightly-0.6.4.dev20251202054858.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/LICENSE +0 -0
  56. {liger_kernel_nightly-0.6.4.dev20251202054858.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/NOTICE +0 -0
  57. {liger_kernel_nightly-0.6.4.dev20251202054858.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/WHEEL +0 -0
  58. {liger_kernel_nightly-0.6.4.dev20251202054858.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/top_level.txt +0 -0
@@ -235,6 +235,7 @@ def multimodal_forward(
235
235
  **lm_kwargs,
236
236
  )
237
237
 
238
+ shift_labels = lm_kwargs.pop("shift_labels", None)
238
239
  hidden_states = outputs[0]
239
240
 
240
241
  slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
@@ -0,0 +1,211 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import MoeModelOutputWithPast
8
+ from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: Optional[torch.LongTensor] = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ output_router_logits: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> LigerMoeCausalLMOutputWithPast:
32
+ r"""
33
+ Forward pass for causal language modeling with Mixture of Experts (MoE) architecture using Liger Kernel optimizations.
34
+
35
+ Args:
36
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
37
+ Indices of input sequence tokens in the vocabulary. Indices can be obtained using tokenizers.
38
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
39
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
40
+ - 1 for tokens that are **not masked**,
41
+ - 0 for tokens that are **masked**.
42
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
43
+ Indices of positions of each input sequence tokens in the position embeddings.
44
+ past_key_values (`List[torch.FloatTensor]` or `Cache`, *optional*):
45
+ Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up
46
+ sequential decoding. See `past_key_values` input for more details.
47
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
48
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
49
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
50
+ than the model's internal embedding lookup matrix.
51
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
52
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
53
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
54
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
55
+ use_cache (`bool`, *optional*):
56
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
57
+ (see `past_key_values`).
58
+ output_attentions (`bool`, *optional*):
59
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
60
+ tensors for more detail.
61
+ output_hidden_states (`bool`, *optional*):
62
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
63
+ more detail.
64
+ output_router_logits (`bool`, *optional*):
65
+ Whether or not to return the router logits of all MoE layers. See `router_logits` under returned tensors
66
+ for more detail.
67
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
68
+ Indices depicting the position of the input sequence tokens in the sequence.
69
+ logits_to_keep (`int` or `torch.Tensor`, *optional*, defaults to 0):
70
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
71
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
72
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
73
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
74
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
75
+ skip_logits (`bool`, *optional*):
76
+ Whether to skip logit computation and directly compute loss. If `None`, defaults to `True` during training
77
+ when labels are provided (to save memory), and `False` during inference.
78
+
79
+ Returns:
80
+ `LigerMoeCausalLMOutputWithPast`: An output object containing:
81
+ - loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
82
+ Language modeling loss (for next-token prediction), including the auxiliary load balancing loss.
83
+ - aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
84
+ Auxiliary load balancing loss for the sparse MoE modules.
85
+ - logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
86
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
87
+ Note: logits are `None` during training when `skip_logits=True` to save memory.
88
+ - past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed):
89
+ Cached key and value projection states for faster sequential decoding.
90
+ - hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
91
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for each layer) of shape
92
+ `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer.
93
+ - attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`):
94
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
95
+ sequence_length)`. Attentions weights after the attention softmax.
96
+ - router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True`):
97
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
98
+ Router logits of the MoE layers, useful to compute the auxiliary loss and z_loss.
99
+ - token_accuracy (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
100
+ Token-level prediction accuracy.
101
+
102
+ Example:
103
+
104
+ ```python
105
+ >>> from transformers import AutoTokenizer, GptOssForCausalLM
106
+ >>> from liger_kernel.transformers import apply_liger_kernel_to_gpt_oss
107
+
108
+ >>> # Apply Liger Kernel patches for optimized performance
109
+ >>> apply_liger_kernel_to_gpt_oss()
110
+
111
+ >>> model = GptOssForCausalLM.from_pretrained("openai/gpt-oss-20b")
112
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
113
+
114
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
115
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
116
+
117
+ >>> # Inference: Forward pass returns logits
118
+ >>> outputs = model(**inputs)
119
+ >>> outputs.logits.shape
120
+ torch.Size([1, 12, 201088])
121
+
122
+ >>> # Get next token prediction
123
+ >>> next_token_logits = outputs.logits[:, -1, :]
124
+ >>> predicted_token_id = next_token_logits.argmax(dim=-1)
125
+
126
+ >>> # Training: Forward pass with labels returns loss
127
+ >>> labels = inputs.input_ids.clone()
128
+ >>> outputs = model(**inputs, labels=labels)
129
+ >>> outputs.loss
130
+ tensor(2.6454)
131
+ ```"""
132
+
133
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
134
+ output_router_logits = (
135
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
136
+ )
137
+
138
+ output_hidden_states = (
139
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
140
+ )
141
+
142
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
143
+ outputs: MoeModelOutputWithPast = self.model(
144
+ input_ids=input_ids,
145
+ attention_mask=attention_mask,
146
+ position_ids=position_ids,
147
+ past_key_values=past_key_values,
148
+ inputs_embeds=inputs_embeds,
149
+ use_cache=use_cache,
150
+ output_attentions=output_attentions,
151
+ output_hidden_states=output_hidden_states,
152
+ output_router_logits=output_router_logits,
153
+ cache_position=cache_position,
154
+ **kwargs,
155
+ )
156
+
157
+ hidden_states = outputs.last_hidden_state
158
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
159
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
160
+ kept_hidden_states = hidden_states[:, slice_indices, :]
161
+
162
+ shift_labels = kwargs.pop("shift_labels", None)
163
+ logits = None
164
+ loss = None
165
+ token_accuracy = None
166
+
167
+ if skip_logits is None:
168
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
169
+
170
+ if skip_logits:
171
+ result = LigerForCausalLMLoss(
172
+ hidden_states=kept_hidden_states,
173
+ lm_head_weight=self.lm_head.weight,
174
+ labels=labels,
175
+ shift_labels=shift_labels,
176
+ hidden_size=self.config.hidden_size,
177
+ **kwargs,
178
+ )
179
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
180
+ else: # if in inference model materialize logits
181
+ logits = self.lm_head(kept_hidden_states)
182
+ if labels is not None or shift_labels is not None:
183
+ loss = self.loss_function(
184
+ logits=logits,
185
+ labels=labels,
186
+ shift_labels=shift_labels,
187
+ vocab_size=self.vocab_size,
188
+ **kwargs,
189
+ )
190
+
191
+ aux_loss = None
192
+ if output_router_logits:
193
+ aux_loss = load_balancing_loss_func(
194
+ outputs.router_logits,
195
+ self.num_experts,
196
+ self.num_experts_per_tok,
197
+ attention_mask,
198
+ )
199
+ if labels is not None:
200
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
201
+
202
+ return LigerMoeCausalLMOutputWithPast(
203
+ loss=loss,
204
+ aux_loss=aux_loss,
205
+ logits=logits,
206
+ past_key_values=outputs.past_key_values,
207
+ hidden_states=outputs.hidden_states,
208
+ attentions=outputs.attentions,
209
+ router_logits=outputs.router_logits,
210
+ token_accuracy=token_accuracy,
211
+ )
@@ -330,6 +330,7 @@ def lce_forward(
330
330
  **lm_kwargs,
331
331
  )
332
332
 
333
+ shift_labels = lm_kwargs.pop("shift_labels", None)
333
334
  hidden_states = outputs[0]
334
335
 
335
336
  loss = None
@@ -20,6 +20,7 @@ from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forwa
20
20
  from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
21
21
  from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
22
22
  from liger_kernel.transformers.model.gemma2 import lce_forward_deprecated as gemma2_lce_forward_deprected
23
+ from liger_kernel.transformers.model.gpt_oss import lce_forward as gpt_oss_lce_forward
23
24
  from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
24
25
  from liger_kernel.transformers.model.llama import lce_forward_deprecated as llama_lce_forward_deprecated
25
26
  from liger_kernel.transformers.model.llava import lce_forward as llava_lce_forward
@@ -34,8 +35,7 @@ from liger_kernel.transformers.model.smollm3 import lce_forward as smollm3_lce_f
34
35
  from liger_kernel.transformers.qwen2vl_mrope import liger_multimodal_rotary_pos_emb
35
36
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
36
37
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
37
- from liger_kernel.transformers.rope import liger_rotary_pos_emb_with_cast
38
- from liger_kernel.transformers.rope import liger_rotary_pos_emb_with_cast_and_leading_batch
38
+ from liger_kernel.transformers.rope import liger_rotary_pos_emb_vision
39
39
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP
40
40
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP
41
41
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
@@ -430,7 +430,7 @@ def apply_liger_kernel_to_llava(
430
430
  f"These parameters are not supported by {text_model_name}. Enter the remaining {list(text_kwargs.keys())} except for {list(remain_params)}\n"
431
431
  f"Parameters accepted by {text_model_name}: {list(accept_params.keys())}"
432
432
  )
433
- text_kwargs["model"] = model.language_model
433
+ text_kwargs["model"] = model.model.language_model
434
434
  text_liger_fn(**text_kwargs)
435
435
  elif text_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
436
436
  logger.warning(f"{text_model_name} is not supported by Liger kernel.")
@@ -445,7 +445,7 @@ def apply_liger_kernel_to_llava(
445
445
  f"These parameters are not supported by {vision_model_name}. Enter the remaining {list(vision_kwargs.keys())} except for {list(remain_params)}\n"
446
446
  f"Parameters accepted by {vision_model_name}: {list(accept_params.keys())}"
447
447
  )
448
- vision_kwargs["model"] = model.vision_tower
448
+ vision_kwargs["model"] = model.model.vision_tower
449
449
  vision_liger_fn(**vision_kwargs)
450
450
  elif vision_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
451
451
  logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
@@ -615,8 +615,8 @@ def apply_liger_kernel_to_mllama(
615
615
  # instance variables that reference already-instantiated modules
616
616
 
617
617
  if isinstance(model, MllamaForConditionalGeneration):
618
- language_model: MllamaForCausalLM = model.language_model
619
- vision_model: MllamaVisionModel = model.vision_model
618
+ language_model: MllamaForCausalLM = model.model.language_model
619
+ vision_model: MllamaVisionModel = model.model.vision_model
620
620
  if isinstance(language_model, MllamaForCausalLM):
621
621
  text_model: MllamaTextModel = language_model.model
622
622
  else:
@@ -1118,8 +1118,8 @@ def apply_liger_kernel_to_gemma3(
1118
1118
  # instance variables that reference already-instantiated modules
1119
1119
 
1120
1120
  if isinstance(model, Gemma3ForConditionalGeneration):
1121
- if isinstance(model.vision_tower, SiglipVisionModel):
1122
- vision_tower = model.vision_tower
1121
+ if isinstance(model.model.vision_tower, SiglipVisionModel):
1122
+ vision_tower = model.model.vision_tower
1123
1123
 
1124
1124
  _patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
1125
1125
 
@@ -1132,7 +1132,7 @@ def apply_liger_kernel_to_gemma3(
1132
1132
  raise TypeError("The vision tower must be SiglipVisionModel")
1133
1133
 
1134
1134
  if rms_norm:
1135
- _patch_rms_norm_module_for_gemma3(model.multi_modal_projector.mm_soft_emb_norm)
1135
+ _patch_rms_norm_module_for_gemma3(model.model.multi_modal_projector.mm_soft_emb_norm)
1136
1136
 
1137
1137
  apply_liger_kernel_to_gemma3_text(
1138
1138
  rope=rope,
@@ -1140,7 +1140,7 @@ def apply_liger_kernel_to_gemma3(
1140
1140
  fused_linear_cross_entropy=False,
1141
1141
  rms_norm=rms_norm,
1142
1142
  geglu=geglu,
1143
- model=model.language_model,
1143
+ model=model.model.language_model,
1144
1144
  )
1145
1145
 
1146
1146
  else:
@@ -1228,7 +1228,7 @@ def apply_liger_kernel_to_paligemma(
1228
1228
  if not isinstance(model, PaliGemmaForConditionalGeneration):
1229
1229
  raise TypeError("model have to be of type PaliGemmaForConditionalGeneration")
1230
1230
 
1231
- vision_tower: SiglipVisionModel = model.vision_tower
1231
+ vision_tower: SiglipVisionModel = model.model.vision_tower
1232
1232
 
1233
1233
  _patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
1234
1234
 
@@ -1238,7 +1238,7 @@ def apply_liger_kernel_to_paligemma(
1238
1238
  _patch_layer_norm_module(layer.layer_norm1)
1239
1239
  _patch_layer_norm_module(layer.layer_norm2)
1240
1240
 
1241
- language_model = model.language_model
1241
+ language_model = model.model.language_model
1242
1242
 
1243
1243
  if isinstance(language_model, (GemmaForCausalLM, GemmaModel)):
1244
1244
  apply_liger_kernel_to_gemma(
@@ -1459,6 +1459,79 @@ def apply_liger_kernel_to_qwen3_moe(
1459
1459
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1460
1460
 
1461
1461
 
1462
+ def apply_liger_kernel_to_gpt_oss(
1463
+ rope: bool = True,
1464
+ cross_entropy: bool = False,
1465
+ fused_linear_cross_entropy: bool = True,
1466
+ rms_norm: bool = True,
1467
+ swiglu: bool = False, # Set to False by default since GPT-OSS has custom expert implementation
1468
+ model: PreTrainedModel = None,
1469
+ ) -> None:
1470
+ """
1471
+ Apply Liger kernels to replace original implementation in HuggingFace GPT-OSS models.
1472
+ NOTE: GPT-OSS is supported in transformers >= 4.55.0
1473
+ NOTE: SwiGLU patching is disabled by default for GPT-OSS as it uses a custom expert
1474
+ implementation with clamping and MXFP4 quantization.
1475
+
1476
+ Args:
1477
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
1478
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
1479
+ fused_linear_cross_entropy (bool):
1480
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
1481
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
1482
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
1483
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
1484
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is False.
1485
+ Note: GPT-OSS uses a custom expert implementation, so SwiGLU patching is disabled by default.
1486
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
1487
+ loaded. Default is None.
1488
+ """
1489
+ if version.parse(transformers.__version__) < version.parse("4.55.0"):
1490
+ logger.warning("GPT-OSS support requires transformers >= 4.55.0")
1491
+ return
1492
+
1493
+ assert not (cross_entropy and fused_linear_cross_entropy), (
1494
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
1495
+ )
1496
+
1497
+ from transformers.models.gpt_oss import modeling_gpt_oss
1498
+ from transformers.models.gpt_oss.modeling_gpt_oss import GptOssModel
1499
+
1500
+ if rope:
1501
+ modeling_gpt_oss.apply_rotary_pos_emb = liger_rotary_pos_emb
1502
+
1503
+ if rms_norm:
1504
+ modeling_gpt_oss.GptOssRMSNorm = LigerRMSNorm
1505
+
1506
+ if cross_entropy:
1507
+ from transformers.loss.loss_utils import nn
1508
+
1509
+ nn.functional.cross_entropy = liger_cross_entropy
1510
+
1511
+ if fused_linear_cross_entropy:
1512
+ if model is not None:
1513
+ model.forward = MethodType(gpt_oss_lce_forward, model)
1514
+ else:
1515
+ modeling_gpt_oss.GptOssForCausalLM.forward = gpt_oss_lce_forward
1516
+
1517
+ # Note: SwiGLU patching is not implemented for GPT-OSS due to custom expert implementation
1518
+ # with clamping (swiglu_limit=7.0) and MXFP4 quantization
1519
+
1520
+ if model is not None:
1521
+ # The model instance already exists, so we need to additionally patch the
1522
+ # instance variables that reference already-instantiated modules
1523
+
1524
+ # get the base model from the model instance
1525
+ base_model: GptOssModel = getattr(model, model.base_model_prefix, model)
1526
+
1527
+ if rms_norm:
1528
+ _patch_rms_norm_module(base_model.norm)
1529
+ for decoder_layer in base_model.layers:
1530
+ if rms_norm:
1531
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
1532
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1533
+
1534
+
1462
1535
  def apply_liger_kernel_to_qwen2_vl(
1463
1536
  rope: bool = True,
1464
1537
  cross_entropy: bool = False,
@@ -1520,11 +1593,10 @@ def apply_liger_kernel_to_qwen2_vl(
1520
1593
  if model is not None:
1521
1594
  # The model instance already exists, so we need to additionally patch the
1522
1595
  # instance variables that reference already-instantiated modules
1523
-
1524
- if isinstance(model, (Qwen2VLForConditionalGeneration, Qwen2VLModel)):
1525
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
1526
- # Not sure if it is subject to changes in the future.
1527
- # Reference: https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py#L1698
1596
+ if isinstance(model, Qwen2VLForConditionalGeneration):
1597
+ text_model: Qwen2VLTextModel = model.model.language_model
1598
+ vision_model: Qwen2VisionTransformerPretrainedModel = model.model.visual
1599
+ elif isinstance(model, Qwen2VLModel):
1528
1600
  text_model: Qwen2VLTextModel = model.language_model
1529
1601
  vision_model: Qwen2VisionTransformerPretrainedModel = model.visual
1530
1602
  elif isinstance(model, Qwen2VLTextModel):
@@ -1611,11 +1683,10 @@ def apply_liger_kernel_to_qwen2_5_vl(
1611
1683
  if model is not None:
1612
1684
  # The model instance already exists, so we need to additionally patch the
1613
1685
  # instance variables that reference already-instantiated modules
1614
-
1615
- if isinstance(model, (Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLModel)):
1616
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
1617
- # Not sure if it is subject to changes in the future.
1618
- # Reference: https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1823
1686
+ if isinstance(model, Qwen2_5_VLForConditionalGeneration):
1687
+ text_model: Qwen2_5_VLTextModel = model.model.language_model
1688
+ vision_model: Qwen2_5_VisionTransformerPretrainedModel = model.model.visual
1689
+ elif isinstance(model, Qwen2_5_VLModel):
1619
1690
  text_model: Qwen2_5_VLTextModel = model.language_model
1620
1691
  vision_model: Qwen2_5_VisionTransformerPretrainedModel = model.visual
1621
1692
  elif isinstance(model, Qwen2_5_VLTextModel):
@@ -1629,7 +1700,7 @@ def apply_liger_kernel_to_qwen2_5_vl(
1629
1700
 
1630
1701
  if vision_model is not None:
1631
1702
  # Patch Qwen2_5_VisionTransformerPretrainedModel
1632
- for vision_block in model.visual.blocks:
1703
+ for vision_block in vision_model.blocks:
1633
1704
  if rms_norm:
1634
1705
  _patch_rms_norm_module(vision_block.norm1)
1635
1706
  _patch_rms_norm_module(vision_block.norm2)
@@ -1680,8 +1751,8 @@ def apply_liger_kernel_to_qwen3_vl(
1680
1751
  from liger_kernel.transformers.model.qwen3_vl import lce_forward as qwen3_vl_lce_forward
1681
1752
 
1682
1753
  if rope:
1683
- modeling_qwen3_vl.apply_rotary_pos_emb = liger_rotary_pos_emb_with_cast
1684
- modeling_qwen3_vl.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_with_cast_and_leading_batch
1754
+ modeling_qwen3_vl.apply_rotary_pos_emb = liger_rotary_pos_emb
1755
+ modeling_qwen3_vl.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_vision
1685
1756
 
1686
1757
  if rms_norm:
1687
1758
  modeling_qwen3_vl.Qwen3VLTextRMSNorm = LigerRMSNorm
@@ -1698,7 +1769,9 @@ def apply_liger_kernel_to_qwen3_vl(
1698
1769
  modeling_qwen3_vl.Qwen3VLForConditionalGeneration.forward = qwen3_vl_lce_forward
1699
1770
 
1700
1771
  if model is not None and rms_norm:
1701
- if isinstance(model, (Qwen3VLForConditionalGeneration, Qwen3VLModel)):
1772
+ if isinstance(model, Qwen3VLForConditionalGeneration):
1773
+ text_model: Qwen3VLTextModel = model.model.language_model
1774
+ elif isinstance(model, Qwen3VLModel):
1702
1775
  text_model: Qwen3VLTextModel = model.language_model
1703
1776
  elif isinstance(model, Qwen3VLTextModel):
1704
1777
  text_model = model
@@ -1755,8 +1828,8 @@ def apply_liger_kernel_to_qwen3_vl_moe(
1755
1828
  from liger_kernel.transformers.model.qwen3_vl_moe import lce_forward as qwen3_vl_moe_lce_forward
1756
1829
 
1757
1830
  if rope:
1758
- modeling_qwen3_vl_moe.apply_rotary_pos_emb = liger_rotary_pos_emb_with_cast
1759
- modeling_qwen3_vl_moe.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_with_cast_and_leading_batch
1831
+ modeling_qwen3_vl_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
1832
+ modeling_qwen3_vl_moe.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_vision
1760
1833
 
1761
1834
  if rms_norm:
1762
1835
  modeling_qwen3_vl_moe.Qwen3VLMoeTextRMSNorm = LigerRMSNorm
@@ -1773,7 +1846,9 @@ def apply_liger_kernel_to_qwen3_vl_moe(
1773
1846
  modeling_qwen3_vl_moe.Qwen3VLMoeForConditionalGeneration.forward = qwen3_vl_moe_lce_forward
1774
1847
 
1775
1848
  if model is not None and rms_norm:
1776
- if isinstance(model, (Qwen3VLMoeForConditionalGeneration, Qwen3VLMoeModel)):
1849
+ if isinstance(model, Qwen3VLMoeForConditionalGeneration):
1850
+ text_model: Qwen3VLMoeTextModel = model.model.language_model
1851
+ elif isinstance(model, Qwen3VLMoeModel):
1777
1852
  text_model: Qwen3VLMoeTextModel = model.language_model
1778
1853
  elif isinstance(model, Qwen3VLMoeTextModel):
1779
1854
  text_model = model
@@ -2118,10 +2193,10 @@ def apply_liger_kernel_to_glm4v(
2118
2193
  if model is not None:
2119
2194
  # The model instance already exists, so we need to additionally patch the
2120
2195
  # instance variables that reference already-instantiated modules
2121
- if isinstance(model, (Glm4vForConditionalGeneration, Glm4vModel)):
2122
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
2123
- # Not sure if it is subject to changes in the future.
2124
- # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4v/modeling_glm4v.py#L1305
2196
+ if isinstance(model, Glm4vForConditionalGeneration):
2197
+ text_model: Glm4vTextModel = model.model.language_model
2198
+ vision_model: Glm4vVisionModel = model.model.visual
2199
+ elif isinstance(model, Glm4vModel):
2125
2200
  text_model: Glm4vTextModel = model.language_model
2126
2201
  vision_model: Glm4vVisionModel = model.visual
2127
2202
  elif isinstance(model, Glm4vTextModel):
@@ -2208,10 +2283,11 @@ def apply_liger_kernel_to_glm4v_moe(
2208
2283
  if model is not None:
2209
2284
  # The model instance already exists, so we need to additionally patch the
2210
2285
  # instance variables that reference already-instantiated modules
2211
- if isinstance(model, (Glm4vMoeForConditionalGeneration, Glm4vMoeModel)):
2212
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
2213
- # Not sure if it is subject to changes in the future.
2214
- # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4v_moe/modeling_glm4v_moe.py#L337
2286
+ if isinstance(model, Glm4vMoeForConditionalGeneration):
2287
+ text_model: Glm4vMoeTextModel = model.model.language_model
2288
+ vision_model: Glm4vMoeVisionModel = model.model.visual
2289
+ Glm4vMoeTextMoE = modeling_glm4v_moe.Glm4vMoeTextMoE
2290
+ elif isinstance(model, Glm4vMoeModel):
2215
2291
  text_model: Glm4vMoeTextModel = model.language_model
2216
2292
  vision_model: Glm4vMoeVisionModel = model.visual
2217
2293
  Glm4vMoeTextMoE = modeling_glm4v_moe.Glm4vMoeTextMoE
@@ -2314,8 +2390,10 @@ def apply_liger_kernel_to_internvl(
2314
2390
  if model is not None:
2315
2391
  # The model instance already exists, so we need to additionally patch the
2316
2392
  # instance variables that reference already-instantiated modules
2317
- if isinstance(model, (InternVLForConditionalGeneration, InternVLModel)):
2318
- # NOTE: language_model and visual properties can be accessed throught conditional class.
2393
+ if isinstance(model, InternVLForConditionalGeneration):
2394
+ text_model = model.model.language_model
2395
+ vision_model: InternVLVisionModel = model.model.vision_tower
2396
+ elif isinstance(model, InternVLModel):
2319
2397
  text_model = model.language_model
2320
2398
  vision_model: InternVLVisionModel = model.vision_tower
2321
2399
  else:
@@ -2752,6 +2830,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
2752
2830
  "glm4": apply_liger_kernel_to_glm4,
2753
2831
  "glm4v": apply_liger_kernel_to_glm4v,
2754
2832
  "glm4v_moe": apply_liger_kernel_to_glm4v_moe,
2833
+ "gpt_oss": apply_liger_kernel_to_gpt_oss,
2755
2834
  "internvl": apply_liger_kernel_to_internvl,
2756
2835
  "llama": apply_liger_kernel_to_llama,
2757
2836
  "llama4_text": apply_liger_kernel_to_llama4,
@@ -5,7 +5,7 @@ import torch.nn as nn
5
5
 
6
6
  from torch.nn.modules.utils import _pair
7
7
 
8
- from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
8
+ from liger_kernel.ops import LigerMultiTokenAttentionFunction
9
9
 
10
10
 
11
11
  class LigerMultiTokenAttention(nn.Module):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.poly_norm import LigerPolyNormFunction
4
+ from liger_kernel.ops import LigerPolyNormFunction
5
5
 
6
6
 
7
7
  class LigerPolyNorm(nn.Module):
@@ -1,4 +1,4 @@
1
- from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
1
+ from liger_kernel.ops import LigerQwen2VLMRopeFunction
2
2
 
3
3
 
4
4
  def liger_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.rms_norm import LigerRMSNormFunction
4
+ from liger_kernel.ops import LigerRMSNormFunction
5
5
 
6
6
 
7
7
  class LigerRMSNorm(nn.Module):
@@ -14,13 +14,18 @@ class LigerRMSNorm(nn.Module):
14
14
  init_fn="ones",
15
15
  in_place=True,
16
16
  row_mode=None,
17
+ elementwise_affine=True,
17
18
  ):
18
19
  super().__init__()
19
20
  assert init_fn in [
20
21
  "ones",
21
22
  "zeros",
22
23
  ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
23
- self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
24
+ self.elementwise_affine = elementwise_affine
25
+ if self.elementwise_affine:
26
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
27
+ else:
28
+ self.register_parameter("weight", None)
24
29
  self.variance_epsilon, self.offset, self.casting_mode, self.in_place, self.row_mode = (
25
30
  eps,
26
31
  offset,
@@ -41,7 +46,7 @@ class LigerRMSNorm(nn.Module):
41
46
  )
42
47
 
43
48
  def extra_repr(self):
44
- return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}, row_mode={self.row_mode}"
49
+ return f"weight_shape={tuple(self.weight.shape) if self.weight is not None else None}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}, row_mode={self.row_mode}"
45
50
 
46
51
 
47
52
  class LigerRMSNormForGemma(LigerRMSNorm):