liger-kernel-nightly 0.6.3.dev20251121010306__py3-none-any.whl → 0.6.4.dev20251121224847__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
- liger_kernel/chunked_loss/grpo_loss.py +8 -5
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +84 -65
- liger_kernel/transformers/__init__.py +9 -0
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/monkey_patch.py +188 -0
- liger_kernel/transformers/swiglu.py +17 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/METADATA +4 -1
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/RECORD +16 -14
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/top_level.txt +0 -0
|
@@ -32,7 +32,7 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
|
|
|
32
32
|
epsilon_low=0.2,
|
|
33
33
|
epsilon_high=0.2,
|
|
34
34
|
beta=0.04,
|
|
35
|
-
loss_type="
|
|
35
|
+
loss_type="dapo",
|
|
36
36
|
max_completion_length=None,
|
|
37
37
|
importance_sampling_level="token",
|
|
38
38
|
temperature=1.0,
|
|
@@ -60,7 +60,7 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
|
|
|
60
60
|
epsilon_low: Lower bound for clipping the importance sampling ratio
|
|
61
61
|
epsilon_high: Upper bound for clipping the importance sampling ratio
|
|
62
62
|
beta: Weight for the KL penalty
|
|
63
|
-
loss_type: Type of loss calculation ("grpo", "bnpo", "dr_grpo")
|
|
63
|
+
loss_type: Type of loss calculation ("grpo", "bnpo", "dr_grpo", "dapo")
|
|
64
64
|
max_completion_length: Maximum completion length required for "dr_grpo"
|
|
65
65
|
temperature: Temperature for the logits
|
|
66
66
|
compiled: Whether to use torch compile
|
|
@@ -244,6 +244,21 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
|
|
|
244
244
|
|
|
245
245
|
return loss_acc, tuple(final_metrics)
|
|
246
246
|
|
|
247
|
+
@staticmethod
|
|
248
|
+
def _compute_dapo_normalizer(attention_mask):
|
|
249
|
+
"""Global active tokens averaged per process."""
|
|
250
|
+
normalizer = attention_mask.to(torch.float32).sum()
|
|
251
|
+
world_size = 1
|
|
252
|
+
if torch.distributed.is_available() and torch.distributed.is_initialized():
|
|
253
|
+
import torch.distributed as dist
|
|
254
|
+
|
|
255
|
+
normalizer = normalizer.clone()
|
|
256
|
+
dist.all_reduce(normalizer, op=dist.ReduceOp.SUM)
|
|
257
|
+
world_size = dist.get_world_size()
|
|
258
|
+
|
|
259
|
+
normalizer = normalizer / world_size
|
|
260
|
+
return torch.clamp(normalizer, min=1.0)
|
|
261
|
+
|
|
247
262
|
@staticmethod
|
|
248
263
|
def _compute_chunk_loss(
|
|
249
264
|
input_chunk,
|
|
@@ -261,7 +276,7 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
|
|
|
261
276
|
epsilon_low=0.2,
|
|
262
277
|
epsilon_high=0.2,
|
|
263
278
|
beta=0.04,
|
|
264
|
-
loss_type="
|
|
279
|
+
loss_type="dapo",
|
|
265
280
|
max_completion_length=None,
|
|
266
281
|
importance_sampling_level="token",
|
|
267
282
|
temperature=1.0,
|
|
@@ -341,10 +356,11 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
|
|
|
341
356
|
None, # grad_epsilon_low
|
|
342
357
|
None, # grad_epsilon_high
|
|
343
358
|
None, # grad_beta
|
|
359
|
+
None, # grad_loss_type
|
|
360
|
+
None, # grad_max_completion_length
|
|
361
|
+
None, # grad_importance_sampling_level
|
|
344
362
|
None, # grad_temperature
|
|
345
363
|
None, # grad_compiled
|
|
346
364
|
None, # grad_use_ref_model
|
|
347
365
|
None, # grad_chunk_size
|
|
348
|
-
None, # grad_loss_type
|
|
349
|
-
None, # grad_max_completion_length
|
|
350
366
|
)
|
|
@@ -29,7 +29,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
|
|
|
29
29
|
epsilon_low=0.2,
|
|
30
30
|
epsilon_high=0.2,
|
|
31
31
|
beta=0.04,
|
|
32
|
-
loss_type="
|
|
32
|
+
loss_type="dapo", # ["grpo", "bnpo", "dr_grpo", "dapo"]
|
|
33
33
|
max_completion_length=None, # Required for dr_grpo
|
|
34
34
|
importance_sampling_level="token", # ["token", "sequence"] - new parameter for GSPO
|
|
35
35
|
**kwargs,
|
|
@@ -94,6 +94,9 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
|
|
|
94
94
|
if max_completion_length is None:
|
|
95
95
|
raise ValueError("max_completion_length must be provided for loss_type 'dr_grpo'")
|
|
96
96
|
loss = (per_token_loss * attention_mask).sum() / (full_attention_mask.shape[0] * max_completion_length)
|
|
97
|
+
elif loss_type == "dapo":
|
|
98
|
+
loss_normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(full_attention_mask)
|
|
99
|
+
loss = (per_token_loss * attention_mask).sum() / loss_normalizer
|
|
97
100
|
else:
|
|
98
101
|
raise ValueError(f"Unknown loss type: {loss_type}")
|
|
99
102
|
|
|
@@ -135,7 +138,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
|
|
|
135
138
|
beta=0.04,
|
|
136
139
|
epsilon_low=0.2,
|
|
137
140
|
epsilon_high=0.2,
|
|
138
|
-
loss_type="
|
|
141
|
+
loss_type="dapo",
|
|
139
142
|
max_completion_length=None,
|
|
140
143
|
importance_sampling_level="token",
|
|
141
144
|
temperature=1.0,
|
|
@@ -157,7 +160,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
|
|
|
157
160
|
ref_weight (torch.Tensor, optional): Reference model weight tensor. Shape: (vocab_size, hidden_size)
|
|
158
161
|
ref_bias (torch.Tensor, optional): Reference model bias tensor. Shape: (vocab_size,)
|
|
159
162
|
beta (float): Weight for the KL penalty
|
|
160
|
-
loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo"). Defaults to "
|
|
163
|
+
loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo", "dapo"). Defaults to "dapo".
|
|
161
164
|
max_completion_length (int, optional): Maximum completion length, required for "dr_grpo". Defaults to None.
|
|
162
165
|
importance_sampling_level (str): Level of importance sampling ("token" or "sequence"). Defaults to "token".
|
|
163
166
|
temperature (float): Temperature for the logits
|
|
@@ -235,7 +238,7 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
|
|
|
235
238
|
chunk_size: int = 1,
|
|
236
239
|
epsilon_low: float = 0.2,
|
|
237
240
|
epsilon_high: float = 0.2,
|
|
238
|
-
loss_type: str = "
|
|
241
|
+
loss_type: str = "dapo",
|
|
239
242
|
max_completion_length: Optional[int] = None,
|
|
240
243
|
importance_sampling_level: str = "token",
|
|
241
244
|
temperature: float = 1.0,
|
|
@@ -248,7 +251,7 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
|
|
|
248
251
|
chunk_size (int): Size of chunks for processing.
|
|
249
252
|
epsilon_low (float): Lower bound for the importance sampling ratio.
|
|
250
253
|
epsilon_high (float): Upper bound for the importance sampling ratio.
|
|
251
|
-
loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo"). Defaults to "
|
|
254
|
+
loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo", "dapo"). Defaults to "dapo".
|
|
252
255
|
max_completion_length (int, optional): Maximum completion length, required for "dr_grpo". Defaults to None.
|
|
253
256
|
importance_sampling_level (str): Level of importance sampling ("token" or "sequence"). Defaults to "token".
|
|
254
257
|
temperature (float): Temperature for the logits.
|
liger_kernel/ops/grpo_loss.py
CHANGED
|
@@ -128,7 +128,9 @@ def _grpo_loss_fwd_kernel(
|
|
|
128
128
|
per_token_loss1 = coef_1 * advantage
|
|
129
129
|
per_token_loss2 = coef_2 * advantage
|
|
130
130
|
per_token_loss = -tl.minimum(per_token_loss1, per_token_loss2)
|
|
131
|
-
|
|
131
|
+
is_low_clipped = (coef_1 < 1 - EPS_LOW) & (advantage < 0)
|
|
132
|
+
is_high_clipped = (coef_1 > 1 + EPS_HIGH) & (advantage > 0)
|
|
133
|
+
is_clipped = is_low_clipped | is_high_clipped
|
|
132
134
|
|
|
133
135
|
if BETA != 0.0:
|
|
134
136
|
REF_LOGP += off_b * L + off_l
|
liger_kernel/ops/layer_norm.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import math
|
|
1
2
|
import operator
|
|
2
3
|
|
|
3
4
|
import torch
|
|
@@ -85,68 +86,87 @@ def _layer_norm_forward_kernel(
|
|
|
85
86
|
@triton.jit
|
|
86
87
|
def _layer_norm_backward_kernel(
|
|
87
88
|
X_ptr, # pointer to input, shape (n_rows, n_cols)
|
|
89
|
+
stride_x, # stride of each row in input
|
|
88
90
|
W_ptr, # pointer to weights, shape (n_cols,)
|
|
89
91
|
Mean_ptr, # pointer to mean, shape (n_rows,)
|
|
92
|
+
stride_mean, # stride of each row in mean
|
|
90
93
|
RSTD_ptr, # pointer to rstd, shape (n_rows,)
|
|
94
|
+
stride_rstd, # stride of each row in rstd
|
|
91
95
|
DX_ptr, # pointer to input grad, shape (n_rows, n_cols)
|
|
96
|
+
stride_dx, # stride of each row in input grad
|
|
92
97
|
DW_ptr, # pointer to weights grad, shape (n_cols,)
|
|
98
|
+
stride_dw, # stride of each row in weights grad
|
|
93
99
|
DB_ptr, # pointer to bias grad, shape (n_cols,)
|
|
100
|
+
stride_db, # stride of each row in bias grad
|
|
94
101
|
DY_ptr, # pointer to output grad, shape (n_rows, n_cols)
|
|
95
|
-
stride_x, # stride of each row in input
|
|
96
|
-
stride_dx, # stride of each row in input grad
|
|
97
102
|
stride_dy, # stride of each row in output grad
|
|
103
|
+
n_rows,
|
|
98
104
|
n_cols,
|
|
105
|
+
rows_per_program: tl.constexpr,
|
|
99
106
|
BLOCK_SIZE: tl.constexpr,
|
|
100
|
-
dtype: tl.constexpr,
|
|
101
|
-
atomic_dtype: tl.constexpr,
|
|
102
107
|
):
|
|
103
108
|
"""
|
|
104
109
|
References:
|
|
105
110
|
https://arxiv.org/abs/1607.06450
|
|
106
111
|
https://github.com/karpathy/llm.c/blob/master/doc/layernorm/layernorm.md
|
|
107
112
|
"""
|
|
108
|
-
|
|
113
|
+
row_block_id = tl.program_id(0).to(tl.int64)
|
|
114
|
+
row_start = row_block_id * rows_per_program
|
|
115
|
+
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
109
116
|
cols = tl.arange(0, BLOCK_SIZE)
|
|
110
117
|
mask = cols < n_cols
|
|
111
118
|
|
|
119
|
+
dW_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
|
120
|
+
db_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
|
121
|
+
|
|
112
122
|
# Pre-load weights once (same optimization as forward pass)
|
|
113
123
|
w = tl.load(W_ptr + cols, mask=mask, other=0.0)
|
|
114
124
|
w_f32 = w.to(tl.float32)
|
|
115
125
|
|
|
116
126
|
# Calculate pointers for this specific row
|
|
117
|
-
row_X_ptr = X_ptr +
|
|
118
|
-
row_DX_ptr = DX_ptr +
|
|
119
|
-
row_DY_ptr = DY_ptr +
|
|
120
|
-
row_Mean_ptr = Mean_ptr +
|
|
121
|
-
row_RSTD_ptr = RSTD_ptr +
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
127
|
+
row_X_ptr = X_ptr + row_start * stride_x
|
|
128
|
+
row_DX_ptr = DX_ptr + row_start * stride_dx
|
|
129
|
+
row_DY_ptr = DY_ptr + row_start * stride_dy
|
|
130
|
+
row_Mean_ptr = Mean_ptr + row_start
|
|
131
|
+
row_RSTD_ptr = RSTD_ptr + row_start
|
|
132
|
+
|
|
133
|
+
for _ in range(row_start, row_end):
|
|
134
|
+
# Load data for this row
|
|
135
|
+
x = tl.load(row_X_ptr + cols, mask=mask, other=0.0)
|
|
136
|
+
dy = tl.load(row_DY_ptr + cols, mask=mask, other=0.0)
|
|
137
|
+
mean = tl.load(row_Mean_ptr)
|
|
138
|
+
rstd = tl.load(row_RSTD_ptr)
|
|
139
|
+
|
|
140
|
+
# Convert to fp32 for numerical stability
|
|
141
|
+
x_f32 = x.to(tl.float32)
|
|
142
|
+
dy_f32 = dy.to(tl.float32)
|
|
143
|
+
mean_f32 = mean.to(tl.float32)
|
|
144
|
+
rstd_f32 = rstd.to(tl.float32)
|
|
145
|
+
|
|
146
|
+
# Compute backward pass for this row
|
|
147
|
+
x_hat = (x_f32 - mean_f32) * rstd_f32
|
|
148
|
+
wdy = w_f32 * dy_f32
|
|
149
|
+
c1 = tl.sum(x_hat * wdy, axis=0) / n_cols
|
|
150
|
+
c2 = tl.sum(wdy, axis=0) / n_cols
|
|
151
|
+
dx = (wdy - (x_hat * c1 + c2)) * rstd_f32
|
|
152
|
+
|
|
153
|
+
# Store input gradient
|
|
154
|
+
tl.store(row_DX_ptr + cols, dx, mask=mask)
|
|
155
|
+
|
|
156
|
+
# Accumulate weight and bias gradients for this thread block's assigned rows
|
|
157
|
+
dw = dy_f32 * x_hat
|
|
158
|
+
db = dy_f32
|
|
159
|
+
dW_row += dw
|
|
160
|
+
db_row += db
|
|
161
|
+
|
|
162
|
+
row_X_ptr += stride_x
|
|
163
|
+
row_DX_ptr += stride_dx
|
|
164
|
+
row_DY_ptr += stride_dy
|
|
165
|
+
row_Mean_ptr += stride_mean
|
|
166
|
+
row_RSTD_ptr += stride_rstd
|
|
167
|
+
|
|
168
|
+
tl.store(DW_ptr + row_block_id * stride_dw + cols, dW_row, mask=mask)
|
|
169
|
+
tl.store(DB_ptr + row_block_id * stride_db + cols, db_row, mask=mask)
|
|
150
170
|
|
|
151
171
|
|
|
152
172
|
def layer_norm_forward(X, W, B, eps):
|
|
@@ -228,31 +248,25 @@ def layer_norm_backward(dY, X, W, B, Mean, RSTD):
|
|
|
228
248
|
dY = dY.view(-1, dim)
|
|
229
249
|
n_rows, n_cols = dY.shape
|
|
230
250
|
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
251
|
+
sm_count = 1
|
|
252
|
+
if X.device.type == "cuda":
|
|
253
|
+
sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
|
|
254
|
+
elif X.device.type == "xpu":
|
|
255
|
+
sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
|
|
256
|
+
|
|
257
|
+
# fp32 for numerical stability especially.
|
|
258
|
+
_DW = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
|
|
259
|
+
_DB = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
|
|
237
260
|
|
|
238
261
|
# Calculate optimal block size and warp configuration
|
|
239
262
|
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
240
263
|
if n_cols > BLOCK_SIZE:
|
|
241
264
|
raise RuntimeError(f"Feature dimension {n_cols} exceeds maximum supported size of {BLOCK_SIZE}.")
|
|
265
|
+
rows_per_program = math.ceil(n_rows / sm_count)
|
|
266
|
+
grid = (sm_count,)
|
|
242
267
|
|
|
243
|
-
#
|
|
244
|
-
|
|
245
|
-
tl.float32
|
|
246
|
-
if X.dtype == torch.float32
|
|
247
|
-
else tl.bfloat16
|
|
248
|
-
if X.dtype == torch.bfloat16
|
|
249
|
-
else tl.float16
|
|
250
|
-
if X.dtype == torch.float16
|
|
251
|
-
else tl.float32 # fallback
|
|
252
|
-
)
|
|
253
|
-
|
|
254
|
-
# Use float32 for atomic operations if bfloat16 is not supported
|
|
255
|
-
atomic_dtype = tl.float32 if triton_dtype == tl.bfloat16 else triton_dtype
|
|
268
|
+
# Allocate gradient tensors
|
|
269
|
+
DX = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
256
270
|
|
|
257
271
|
kernel_args = {"num_warps": num_warps}
|
|
258
272
|
# XPU-specific optimization
|
|
@@ -260,28 +274,33 @@ def layer_norm_backward(dY, X, W, B, Mean, RSTD):
|
|
|
260
274
|
kernel_args.update({"grf_mode": "large", "num_warps": 32, "num_stages": 4})
|
|
261
275
|
|
|
262
276
|
# Launch kernel with one thread block per row for optimal performance
|
|
263
|
-
grid = (n_rows,)
|
|
264
277
|
_layer_norm_backward_kernel[grid](
|
|
265
278
|
X,
|
|
279
|
+
X.stride(0),
|
|
266
280
|
W,
|
|
267
281
|
Mean,
|
|
282
|
+
Mean.stride(0),
|
|
268
283
|
RSTD,
|
|
284
|
+
RSTD.stride(0),
|
|
269
285
|
DX,
|
|
270
|
-
DW,
|
|
271
|
-
DB,
|
|
272
|
-
dY,
|
|
273
|
-
X.stride(0),
|
|
274
286
|
DX.stride(0),
|
|
287
|
+
_DW,
|
|
288
|
+
_DW.stride(0),
|
|
289
|
+
_DB,
|
|
290
|
+
_DB.stride(0),
|
|
291
|
+
dY,
|
|
275
292
|
dY.stride(0),
|
|
293
|
+
n_rows,
|
|
276
294
|
n_cols,
|
|
295
|
+
rows_per_program=rows_per_program,
|
|
277
296
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
278
|
-
dtype=triton_dtype,
|
|
279
|
-
atomic_dtype=atomic_dtype,
|
|
280
297
|
**kernel_args,
|
|
281
298
|
)
|
|
282
299
|
|
|
283
300
|
DX = DX.view(*shape)
|
|
284
|
-
|
|
301
|
+
DW = _DW.sum(dim=0).to(W.dtype)
|
|
302
|
+
DB = _DB.sum(dim=0).to(B.dtype)
|
|
303
|
+
return DX, DW, DB
|
|
285
304
|
|
|
286
305
|
|
|
287
306
|
class LigerLayerNormFunction(torch.autograd.Function):
|
|
@@ -42,6 +42,8 @@ if TYPE_CHECKING:
|
|
|
42
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
43
43
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
44
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
45
47
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
46
48
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
47
49
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
@@ -50,6 +52,7 @@ if TYPE_CHECKING:
|
|
|
50
52
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
51
53
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
52
54
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
55
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
53
56
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
54
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
55
58
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
@@ -116,6 +119,7 @@ def __getattr__(name: str):
|
|
|
116
119
|
"apply_liger_kernel_to_mixtral",
|
|
117
120
|
"apply_liger_kernel_to_mllama",
|
|
118
121
|
"apply_liger_kernel_to_olmo2",
|
|
122
|
+
"apply_liger_kernel_to_olmo3",
|
|
119
123
|
"apply_liger_kernel_to_paligemma",
|
|
120
124
|
"apply_liger_kernel_to_phi3",
|
|
121
125
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -128,6 +132,8 @@ def __getattr__(name: str):
|
|
|
128
132
|
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
129
133
|
"apply_liger_kernel_to_smollm3",
|
|
130
134
|
"apply_liger_kernel_to_smolvlm",
|
|
135
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
136
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
131
137
|
}
|
|
132
138
|
|
|
133
139
|
if name in monkey_patch_symbols:
|
|
@@ -190,6 +196,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
190
196
|
"apply_liger_kernel_to_mixtral",
|
|
191
197
|
"apply_liger_kernel_to_mllama",
|
|
192
198
|
"apply_liger_kernel_to_olmo2",
|
|
199
|
+
"apply_liger_kernel_to_olmo3",
|
|
193
200
|
"apply_liger_kernel_to_paligemma",
|
|
194
201
|
"apply_liger_kernel_to_phi3",
|
|
195
202
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -202,5 +209,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
202
209
|
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
203
210
|
"apply_liger_kernel_to_smollm3",
|
|
204
211
|
"apply_liger_kernel_to_smolvlm",
|
|
212
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
213
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
205
214
|
]
|
|
206
215
|
)
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
|
|
1
4
|
from liger_kernel.ops.grpo_loss import GrpoLossFunction
|
|
2
5
|
|
|
3
6
|
|
|
@@ -13,12 +16,20 @@ def triton_grpo_loss(
|
|
|
13
16
|
eps_low=0.2,
|
|
14
17
|
eps_high=0.4,
|
|
15
18
|
inplace=True,
|
|
19
|
+
loss_type="dapo",
|
|
20
|
+
max_completion_length=None,
|
|
21
|
+
importance_sampling_level="token",
|
|
22
|
+
reduce=False,
|
|
16
23
|
):
|
|
17
24
|
assert logits is not None and completion_ids is not None and advantages is not None, (
|
|
18
25
|
"must provide logits、completion_ids and advantages"
|
|
19
26
|
)
|
|
27
|
+
if importance_sampling_level != "token":
|
|
28
|
+
raise ValueError(
|
|
29
|
+
f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
|
|
30
|
+
)
|
|
20
31
|
|
|
21
|
-
|
|
32
|
+
per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
|
|
22
33
|
logits,
|
|
23
34
|
old_logp,
|
|
24
35
|
ref_logp,
|
|
@@ -31,6 +42,50 @@ def triton_grpo_loss(
|
|
|
31
42
|
eps_high,
|
|
32
43
|
inplace,
|
|
33
44
|
)
|
|
45
|
+
if not reduce:
|
|
46
|
+
return per_token_loss, per_token_kl, is_clipped
|
|
47
|
+
|
|
48
|
+
loss = _reduce_grpo_loss(
|
|
49
|
+
per_token_loss,
|
|
50
|
+
completion_mask,
|
|
51
|
+
loss_type=loss_type,
|
|
52
|
+
max_completion_length=max_completion_length,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
metrics = []
|
|
56
|
+
if beta != 0.0 and per_token_kl is not None:
|
|
57
|
+
metrics.append(_masked_mean(per_token_kl, completion_mask))
|
|
58
|
+
metrics.append(_masked_mean(is_clipped.float(), completion_mask))
|
|
59
|
+
return loss, metrics
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
|
|
63
|
+
mask = completion_mask
|
|
64
|
+
if mask is None:
|
|
65
|
+
mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
|
|
66
|
+
mask = mask.to(per_token_loss.dtype)
|
|
67
|
+
|
|
68
|
+
if loss_type == "grpo":
|
|
69
|
+
per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
70
|
+
return per_seq.mean()
|
|
71
|
+
if loss_type == "bnpo":
|
|
72
|
+
return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
|
|
73
|
+
if loss_type == "dr_grpo":
|
|
74
|
+
if max_completion_length is None:
|
|
75
|
+
raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
|
|
76
|
+
batch = per_token_loss.shape[0]
|
|
77
|
+
return (per_token_loss * mask).sum() / (batch * max_completion_length)
|
|
78
|
+
if loss_type == "dapo":
|
|
79
|
+
normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
|
|
80
|
+
return (per_token_loss * mask).sum() / normalizer
|
|
81
|
+
raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def _masked_mean(values, mask):
|
|
85
|
+
if mask is None:
|
|
86
|
+
mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
|
|
87
|
+
mask = mask.to(values.dtype)
|
|
88
|
+
return (values * mask).sum() / mask.sum().clamp(min=1.0)
|
|
34
89
|
|
|
35
90
|
|
|
36
91
|
# This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
8
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
9
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def lce_forward(
|
|
13
|
+
self,
|
|
14
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
15
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
16
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
17
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
18
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
19
|
+
labels: Optional[torch.LongTensor] = None,
|
|
20
|
+
use_cache: Optional[bool] = None,
|
|
21
|
+
output_attentions: Optional[bool] = None,
|
|
22
|
+
output_hidden_states: Optional[bool] = None,
|
|
23
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
24
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
25
|
+
skip_logits: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
**kwargs,
|
|
28
|
+
) -> LigerCausalLMOutputWithPast:
|
|
29
|
+
r"""
|
|
30
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
31
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
32
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
33
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
34
|
+
|
|
35
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
36
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
37
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
38
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
39
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
40
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
|
|
44
|
+
Example:
|
|
45
|
+
|
|
46
|
+
```python
|
|
47
|
+
>>> from transformers import AutoTokenizer, HunYuanDenseV1ForCausalLM
|
|
48
|
+
|
|
49
|
+
>>> model = HunYuanDenseV1ForCausalLM.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
|
|
50
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
|
|
51
|
+
|
|
52
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
53
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
54
|
+
|
|
55
|
+
>>> # Generate
|
|
56
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
57
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
58
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
59
|
+
```"""
|
|
60
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
61
|
+
output_hidden_states = (
|
|
62
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
63
|
+
)
|
|
64
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
65
|
+
|
|
66
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
67
|
+
outputs = self.model(
|
|
68
|
+
input_ids=input_ids,
|
|
69
|
+
attention_mask=attention_mask,
|
|
70
|
+
position_ids=position_ids,
|
|
71
|
+
past_key_values=past_key_values,
|
|
72
|
+
inputs_embeds=inputs_embeds,
|
|
73
|
+
use_cache=use_cache,
|
|
74
|
+
output_attentions=output_attentions,
|
|
75
|
+
output_hidden_states=output_hidden_states,
|
|
76
|
+
cache_position=cache_position,
|
|
77
|
+
**kwargs,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
hidden_states = outputs[0]
|
|
81
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
82
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
83
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
84
|
+
|
|
85
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
86
|
+
logits = None
|
|
87
|
+
loss = None
|
|
88
|
+
token_accuracy = None
|
|
89
|
+
|
|
90
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
91
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
92
|
+
|
|
93
|
+
if skip_logits is None:
|
|
94
|
+
# By default, if in training mode, don't materialize logits
|
|
95
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
96
|
+
|
|
97
|
+
# Compute loss
|
|
98
|
+
if skip_logits:
|
|
99
|
+
result = LigerForCausalLMLoss(
|
|
100
|
+
hidden_states=kept_hidden_states,
|
|
101
|
+
lm_head_weight=self.lm_head.weight,
|
|
102
|
+
labels=labels,
|
|
103
|
+
shift_labels=shift_labels,
|
|
104
|
+
hidden_size=self.config.hidden_size,
|
|
105
|
+
**kwargs,
|
|
106
|
+
)
|
|
107
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
108
|
+
|
|
109
|
+
else:
|
|
110
|
+
logits = self.lm_head(kept_hidden_states)
|
|
111
|
+
if labels is not None or shift_labels is not None:
|
|
112
|
+
loss = self.loss_function(
|
|
113
|
+
logits=logits,
|
|
114
|
+
labels=labels,
|
|
115
|
+
shift_labels=shift_labels,
|
|
116
|
+
vocab_size=self.config.vocab_size,
|
|
117
|
+
**kwargs,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
if not return_dict:
|
|
121
|
+
output = (logits,) + outputs[1:]
|
|
122
|
+
output = ((loss,) + output) if loss is not None else output
|
|
123
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
124
|
+
return output
|
|
125
|
+
|
|
126
|
+
# Return custom output class with accuracy field
|
|
127
|
+
return LigerCausalLMOutputWithPast(
|
|
128
|
+
loss=loss,
|
|
129
|
+
logits=logits,
|
|
130
|
+
past_key_values=outputs.past_key_values,
|
|
131
|
+
hidden_states=outputs.hidden_states,
|
|
132
|
+
attentions=outputs.attentions,
|
|
133
|
+
token_accuracy=token_accuracy,
|
|
134
|
+
)
|
|
@@ -0,0 +1,142 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
9
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
13
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
17
|
+
def lce_forward(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: torch.LongTensor = None,
|
|
20
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
21
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
22
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
23
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
24
|
+
labels: Optional[torch.LongTensor] = None,
|
|
25
|
+
use_cache: Optional[bool] = None,
|
|
26
|
+
output_attentions: Optional[bool] = None,
|
|
27
|
+
output_hidden_states: Optional[bool] = None,
|
|
28
|
+
return_dict: Optional[bool] = None,
|
|
29
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
30
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
31
|
+
skip_logits: Optional[bool] = None,
|
|
32
|
+
**kwargs,
|
|
33
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
34
|
+
r"""
|
|
35
|
+
Args:
|
|
36
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
37
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
38
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
39
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
40
|
+
|
|
41
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
42
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
43
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
44
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
45
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
46
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
|
|
50
|
+
Example:
|
|
51
|
+
|
|
52
|
+
```python
|
|
53
|
+
>>> from transformers import AutoTokenizer, Olmo3ForCausalLM
|
|
54
|
+
|
|
55
|
+
>>> model = Olmo3ForCausalLM.from_pretrained("allenai/Olmo-3-7B-Instruct")
|
|
56
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-7B-Instruct")
|
|
57
|
+
|
|
58
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
59
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
60
|
+
|
|
61
|
+
>>> # Generate
|
|
62
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
63
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
64
|
+
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
|
65
|
+
```
|
|
66
|
+
"""
|
|
67
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
68
|
+
output_hidden_states = (
|
|
69
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
70
|
+
)
|
|
71
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
72
|
+
|
|
73
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
74
|
+
outputs: BaseModelOutputWithPast = self.model(
|
|
75
|
+
input_ids=input_ids,
|
|
76
|
+
attention_mask=attention_mask,
|
|
77
|
+
position_ids=position_ids,
|
|
78
|
+
past_key_values=past_key_values,
|
|
79
|
+
inputs_embeds=inputs_embeds,
|
|
80
|
+
use_cache=use_cache,
|
|
81
|
+
output_attentions=output_attentions,
|
|
82
|
+
output_hidden_states=output_hidden_states,
|
|
83
|
+
return_dict=return_dict,
|
|
84
|
+
cache_position=cache_position,
|
|
85
|
+
**kwargs,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
hidden_states = outputs[0]
|
|
89
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
90
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
91
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
92
|
+
|
|
93
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
94
|
+
logits = None
|
|
95
|
+
loss = None
|
|
96
|
+
token_accuracy = None
|
|
97
|
+
|
|
98
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
99
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
100
|
+
|
|
101
|
+
if skip_logits is None:
|
|
102
|
+
# By default, if in training mode, don't materialize logits
|
|
103
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
104
|
+
|
|
105
|
+
# Compute loss
|
|
106
|
+
if skip_logits:
|
|
107
|
+
result = LigerForCausalLMLoss(
|
|
108
|
+
hidden_states=kept_hidden_states,
|
|
109
|
+
lm_head_weight=self.lm_head.weight,
|
|
110
|
+
labels=labels,
|
|
111
|
+
shift_labels=shift_labels,
|
|
112
|
+
hidden_size=self.config.hidden_size,
|
|
113
|
+
**kwargs,
|
|
114
|
+
)
|
|
115
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
116
|
+
|
|
117
|
+
else:
|
|
118
|
+
logits = self.lm_head(kept_hidden_states)
|
|
119
|
+
if labels is not None or shift_labels is not None:
|
|
120
|
+
loss = self.loss_function(
|
|
121
|
+
logits=logits,
|
|
122
|
+
labels=labels,
|
|
123
|
+
shift_labels=shift_labels,
|
|
124
|
+
vocab_size=self.config.vocab_size,
|
|
125
|
+
**kwargs,
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
if not return_dict:
|
|
129
|
+
output = (logits,) + outputs[1:]
|
|
130
|
+
output = ((loss,) + output) if loss is not None else output
|
|
131
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
132
|
+
return output
|
|
133
|
+
|
|
134
|
+
# Return custom output class with token_accuracy field
|
|
135
|
+
return LigerCausalLMOutputWithPast(
|
|
136
|
+
loss=loss,
|
|
137
|
+
logits=logits,
|
|
138
|
+
past_key_values=outputs.past_key_values,
|
|
139
|
+
hidden_states=outputs.hidden_states,
|
|
140
|
+
attentions=outputs.attentions,
|
|
141
|
+
token_accuracy=token_accuracy,
|
|
142
|
+
)
|
|
@@ -1928,6 +1928,74 @@ def apply_liger_kernel_to_olmo2(
|
|
|
1928
1928
|
_patch_rms_norm_module(decoder_layer.post_feedforward_layernorm, in_place=False)
|
|
1929
1929
|
|
|
1930
1930
|
|
|
1931
|
+
def apply_liger_kernel_to_olmo3(
|
|
1932
|
+
rope: bool = True,
|
|
1933
|
+
cross_entropy: bool = False,
|
|
1934
|
+
fused_linear_cross_entropy: bool = True,
|
|
1935
|
+
rms_norm: bool = True,
|
|
1936
|
+
swiglu: bool = True,
|
|
1937
|
+
model: PreTrainedModel = None,
|
|
1938
|
+
) -> None:
|
|
1939
|
+
"""
|
|
1940
|
+
Apply Liger kernels to replace original implementation in HuggingFace Olmo3 models.
|
|
1941
|
+
|
|
1942
|
+
Args:
|
|
1943
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
1944
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
1945
|
+
fused_linear_cross_entropy (bool):
|
|
1946
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
1947
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
1948
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
1949
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
1950
|
+
swiglu (bool): Whether to apply Liger's SwiGLU to Olmo3MLP. Default is True.
|
|
1951
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
1952
|
+
loaded. Default is None.
|
|
1953
|
+
"""
|
|
1954
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
1955
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
1956
|
+
)
|
|
1957
|
+
|
|
1958
|
+
from transformers.models.olmo3 import modeling_olmo3
|
|
1959
|
+
from transformers.models.olmo3.modeling_olmo3 import Olmo3Model
|
|
1960
|
+
|
|
1961
|
+
from liger_kernel.transformers.model.olmo3 import lce_forward as olmo3_lce_forward
|
|
1962
|
+
from liger_kernel.transformers.rms_norm import LigerRMSNormForOlmo2
|
|
1963
|
+
|
|
1964
|
+
# Olmo3 arch is very similar to Olmo2, so we can reuse all these components in the same way.
|
|
1965
|
+
if rope:
|
|
1966
|
+
modeling_olmo3.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
1967
|
+
if rms_norm:
|
|
1968
|
+
modeling_olmo3.Olmo3RMSNorm = LigerRMSNormForOlmo2 # same as olmo2
|
|
1969
|
+
if swiglu:
|
|
1970
|
+
modeling_olmo3.Olmo3MLP = LigerSwiGLUMLP
|
|
1971
|
+
if cross_entropy:
|
|
1972
|
+
from transformers.loss.loss_utils import nn
|
|
1973
|
+
|
|
1974
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
1975
|
+
if fused_linear_cross_entropy:
|
|
1976
|
+
if model is not None:
|
|
1977
|
+
model.forward = MethodType(olmo3_lce_forward, model)
|
|
1978
|
+
else:
|
|
1979
|
+
modeling_olmo3.Olmo3ForCausalLM.forward = olmo3_lce_forward
|
|
1980
|
+
|
|
1981
|
+
if model is not None:
|
|
1982
|
+
# The model instance already exists, so we need to additionally patch the
|
|
1983
|
+
# instance variables that reference already-instantiated modules
|
|
1984
|
+
|
|
1985
|
+
# get the base model from the model instance
|
|
1986
|
+
base_model: Olmo3Model = getattr(model, model.base_model_prefix, model)
|
|
1987
|
+
|
|
1988
|
+
if rms_norm:
|
|
1989
|
+
_patch_rms_norm_module(base_model.norm)
|
|
1990
|
+
|
|
1991
|
+
for decoder_layer in base_model.layers:
|
|
1992
|
+
if swiglu:
|
|
1993
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
|
|
1994
|
+
if rms_norm:
|
|
1995
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm, in_place=False)
|
|
1996
|
+
_patch_rms_norm_module(decoder_layer.post_feedforward_layernorm, in_place=False)
|
|
1997
|
+
|
|
1998
|
+
|
|
1931
1999
|
def apply_liger_kernel_to_glm4(
|
|
1932
2000
|
rope: bool = False,
|
|
1933
2001
|
cross_entropy: bool = False,
|
|
@@ -2558,6 +2626,123 @@ def apply_liger_kernel_to_qwen3_next(
|
|
|
2558
2626
|
_patch_swiglu_module(expert, LigerQwen3MoeSwiGLUMLP)
|
|
2559
2627
|
|
|
2560
2628
|
|
|
2629
|
+
def apply_liger_kernel_to_hunyuan_v1_dense(
|
|
2630
|
+
rope: bool = True,
|
|
2631
|
+
cross_entropy: bool = False,
|
|
2632
|
+
fused_linear_cross_entropy: bool = True,
|
|
2633
|
+
rms_norm: bool = True,
|
|
2634
|
+
swiglu: bool = True,
|
|
2635
|
+
model: PreTrainedModel = None,
|
|
2636
|
+
) -> None:
|
|
2637
|
+
"""
|
|
2638
|
+
Apply Liger kernels to replace original implementation in HuggingFace Hunyuan v1 dense models.
|
|
2639
|
+
"""
|
|
2640
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
2641
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
2642
|
+
)
|
|
2643
|
+
|
|
2644
|
+
from transformers.models.hunyuan_v1_dense import modeling_hunyuan_v1_dense
|
|
2645
|
+
from transformers.models.hunyuan_v1_dense.modeling_hunyuan_v1_dense import HunYuanDenseV1Model
|
|
2646
|
+
|
|
2647
|
+
from liger_kernel.transformers.model.hunyuan_v1 import lce_forward as hunyuan_v1_lce_forward
|
|
2648
|
+
from liger_kernel.transformers.swiglu import LigerHunyuanV1SwiGLUMLP
|
|
2649
|
+
|
|
2650
|
+
if rope:
|
|
2651
|
+
modeling_hunyuan_v1_dense.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
2652
|
+
|
|
2653
|
+
if rms_norm:
|
|
2654
|
+
modeling_hunyuan_v1_dense.HunYuanDenseV1RMSNorm = LigerRMSNorm
|
|
2655
|
+
|
|
2656
|
+
if cross_entropy:
|
|
2657
|
+
from transformers.loss.loss_utils import nn
|
|
2658
|
+
|
|
2659
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
2660
|
+
|
|
2661
|
+
if fused_linear_cross_entropy:
|
|
2662
|
+
if model is not None:
|
|
2663
|
+
model.forward = MethodType(hunyuan_v1_lce_forward, model)
|
|
2664
|
+
else:
|
|
2665
|
+
modeling_hunyuan_v1_dense.HunYuanDenseV1ForCausalLM.forward = hunyuan_v1_lce_forward
|
|
2666
|
+
|
|
2667
|
+
if swiglu:
|
|
2668
|
+
modeling_hunyuan_v1_dense.HunYuanDenseV1MLP = LigerHunyuanV1SwiGLUMLP
|
|
2669
|
+
|
|
2670
|
+
if model is not None:
|
|
2671
|
+
# The model instance already exists, so we need to additionally patch the
|
|
2672
|
+
# instance variables that reference already-instantiated modules
|
|
2673
|
+
|
|
2674
|
+
# get the base model from the model instance
|
|
2675
|
+
base_model: HunYuanDenseV1Model = getattr(model, model.base_model_prefix, model)
|
|
2676
|
+
|
|
2677
|
+
if rms_norm:
|
|
2678
|
+
_patch_rms_norm_module(base_model.norm)
|
|
2679
|
+
for decoder_layer in base_model.layers:
|
|
2680
|
+
if swiglu:
|
|
2681
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerHunyuanV1SwiGLUMLP)
|
|
2682
|
+
if rms_norm:
|
|
2683
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
2684
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
2685
|
+
|
|
2686
|
+
|
|
2687
|
+
def apply_liger_kernel_to_hunyuan_v1_moe(
|
|
2688
|
+
rope: bool = True,
|
|
2689
|
+
cross_entropy: bool = False,
|
|
2690
|
+
fused_linear_cross_entropy: bool = True,
|
|
2691
|
+
rms_norm: bool = True,
|
|
2692
|
+
swiglu: bool = True,
|
|
2693
|
+
model: PreTrainedModel = None,
|
|
2694
|
+
) -> None:
|
|
2695
|
+
"""
|
|
2696
|
+
Apply Liger kernels to replace original implementation in HuggingFace Qwen3 models.
|
|
2697
|
+
"""
|
|
2698
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
2699
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
2700
|
+
)
|
|
2701
|
+
|
|
2702
|
+
from transformers.models.hunyuan_v1_moe import modeling_hunyuan_v1_moe
|
|
2703
|
+
from transformers.models.hunyuan_v1_moe.modeling_hunyuan_v1_moe import HunYuanMoEV1Model
|
|
2704
|
+
|
|
2705
|
+
from liger_kernel.transformers.model.hunyuan_v1 import lce_forward as hunyuan_v1_moe_lce_forward
|
|
2706
|
+
from liger_kernel.transformers.swiglu import LigerHunyuanV1SwiGLUMLP
|
|
2707
|
+
|
|
2708
|
+
if rope:
|
|
2709
|
+
modeling_hunyuan_v1_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
2710
|
+
|
|
2711
|
+
if rms_norm:
|
|
2712
|
+
modeling_hunyuan_v1_moe.HunYuanMoEV1RMSNorm = LigerRMSNorm
|
|
2713
|
+
|
|
2714
|
+
if cross_entropy:
|
|
2715
|
+
from transformers.loss.loss_utils import nn
|
|
2716
|
+
|
|
2717
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
2718
|
+
|
|
2719
|
+
if fused_linear_cross_entropy:
|
|
2720
|
+
if model is not None:
|
|
2721
|
+
model.forward = MethodType(hunyuan_v1_moe_lce_forward, model)
|
|
2722
|
+
else:
|
|
2723
|
+
modeling_hunyuan_v1_moe.HunYuanMoEV1ForCausalLM.forward = hunyuan_v1_moe_lce_forward
|
|
2724
|
+
|
|
2725
|
+
if swiglu:
|
|
2726
|
+
modeling_hunyuan_v1_moe.HunYuanMoEV1MLP = LigerHunyuanV1SwiGLUMLP
|
|
2727
|
+
|
|
2728
|
+
if model is not None:
|
|
2729
|
+
# The model instance already exists, so we need to additionally patch the
|
|
2730
|
+
# instance variables that reference already-instantiated modules
|
|
2731
|
+
|
|
2732
|
+
# get the base model from the model instance
|
|
2733
|
+
base_model: HunYuanMoEV1Model = getattr(model, model.base_model_prefix, model)
|
|
2734
|
+
|
|
2735
|
+
if rms_norm:
|
|
2736
|
+
_patch_rms_norm_module(base_model.norm)
|
|
2737
|
+
for decoder_layer in base_model.layers:
|
|
2738
|
+
if swiglu:
|
|
2739
|
+
for mlp_expert in decoder_layer.mlp.experts:
|
|
2740
|
+
_patch_swiglu_module(mlp_expert, LigerHunyuanV1SwiGLUMLP)
|
|
2741
|
+
if rms_norm:
|
|
2742
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
2743
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
2744
|
+
|
|
2745
|
+
|
|
2561
2746
|
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
2562
2747
|
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
2563
2748
|
"gemma": apply_liger_kernel_to_gemma,
|
|
@@ -2578,6 +2763,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
2578
2763
|
"mistral": apply_liger_kernel_to_mistral,
|
|
2579
2764
|
"mixtral": apply_liger_kernel_to_mixtral,
|
|
2580
2765
|
"olmo2": apply_liger_kernel_to_olmo2,
|
|
2766
|
+
"olmo3": apply_liger_kernel_to_olmo3,
|
|
2581
2767
|
"qwen2": apply_liger_kernel_to_qwen2,
|
|
2582
2768
|
"qwen3": apply_liger_kernel_to_qwen3,
|
|
2583
2769
|
"qwen3_moe": apply_liger_kernel_to_qwen3_moe,
|
|
@@ -2595,6 +2781,8 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
2595
2781
|
"paligemma": apply_liger_kernel_to_paligemma,
|
|
2596
2782
|
"falcon_h1": apply_liger_kernel_to_falcon_h1,
|
|
2597
2783
|
"smolvlm": apply_liger_kernel_to_smolvlm,
|
|
2784
|
+
"hunyuan_v1_dense": apply_liger_kernel_to_hunyuan_v1_dense,
|
|
2785
|
+
"hunyuan_v1_moe": apply_liger_kernel_to_hunyuan_v1_moe,
|
|
2598
2786
|
}
|
|
2599
2787
|
|
|
2600
2788
|
|
|
@@ -77,3 +77,20 @@ class LigerQwen3MoeSwiGLUMLP(nn.Module):
|
|
|
77
77
|
|
|
78
78
|
def forward(self, x):
|
|
79
79
|
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class LigerHunyuanV1SwiGLUMLP(nn.Module):
|
|
83
|
+
def __init__(self, config, layer_idx=None, is_shared_mlp=False):
|
|
84
|
+
super().__init__()
|
|
85
|
+
self.config = config
|
|
86
|
+
self.hidden_size = config.hidden_size
|
|
87
|
+
self.intermediate_size = config.intermediate_size
|
|
88
|
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
89
|
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
90
|
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
91
|
+
self.layer_idx = layer_idx
|
|
92
|
+
if config.hidden_act not in ["silu", "swish"]:
|
|
93
|
+
raise ValueError(f"Activation function {config.hidden_act} not supported.")
|
|
94
|
+
|
|
95
|
+
def forward(self, x):
|
|
96
|
+
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel_nightly
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.4.dev20251121224847
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -310,8 +310,11 @@ loss.backward()
|
|
|
310
310
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
311
311
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
312
312
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
|
+
| Olmo3 | `liger_kernel.transformers.apply_liger_kernel_to_olmo3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
314
|
| GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
314
315
|
| InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
316
|
+
| HunyuanV1 | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_dense` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
|
+
| HunyuanV1 MoE | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_moe` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
318
|
|
|
316
319
|
|
|
317
320
|
## Low-level APIs
|
|
@@ -8,10 +8,10 @@ liger_kernel/chunked_loss/cpo_loss.py,sha256=Gzz1eU4kgcbdubFVRy55e8A1Cr-r45UgNic
|
|
|
8
8
|
liger_kernel/chunked_loss/dpo_loss.py,sha256=I83khNs3QQjuhr8U3NIOAACkbse6DNiBV-TulPZ0lXw,9006
|
|
9
9
|
liger_kernel/chunked_loss/functional.py,sha256=-XPDbLml9dHmvoSU2VNTUrBDFehuzvuAGPikVetBMtI,1132
|
|
10
10
|
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=yRtolfFGfKB-SxGQQyF68GYXd11Zlvh1InLdGeWNFIE,12652
|
|
11
|
-
liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=
|
|
11
|
+
liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=baU19PwqO1FTVxwlB-eyJv6gOLtL7baXGzSncYQ8Ktc,14296
|
|
12
12
|
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=FIH85uUXAOgYx5Ax8MjFhJHVu-2pKtY7wSegd0zSyyY,18336
|
|
13
13
|
liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=RiuK3UtRwH9T6jZ36sA8Urj-TVuOLOO2syLg_JOQapY,13437
|
|
14
|
-
liger_kernel/chunked_loss/grpo_loss.py,sha256=
|
|
14
|
+
liger_kernel/chunked_loss/grpo_loss.py,sha256=bmuZaNgqNbJ5pJGFDXWE-B4BGYF7xWVSN15UyCfuq_s,13079
|
|
15
15
|
liger_kernel/chunked_loss/jsd_loss.py,sha256=G0RghPYYelyZ6DOEiwS8we9TT5MY2iHpiFqzZ2Xy87g,8038
|
|
16
16
|
liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsmSbQyqwQY,7529
|
|
17
17
|
liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
|
|
@@ -25,10 +25,10 @@ liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHu
|
|
|
25
25
|
liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
|
|
26
26
|
liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
|
|
27
27
|
liger_kernel/ops/group_norm.py,sha256=qD4D4lSjSgVtO52EBNLC2iTseALRgPgqXE50U2woggk,10837
|
|
28
|
-
liger_kernel/ops/grpo_loss.py,sha256=
|
|
28
|
+
liger_kernel/ops/grpo_loss.py,sha256=2SyOujtF9I3xiNo4wFf4s6MeiDotE_qeYfRWgj_bOBE,9573
|
|
29
29
|
liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
|
|
30
30
|
liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
|
|
31
|
-
liger_kernel/ops/layer_norm.py,sha256=
|
|
31
|
+
liger_kernel/ops/layer_norm.py,sha256=OMaex1MDsM9kaFs0-q5Pnx3DrMVjongQoZ5-iFIOy00,10523
|
|
32
32
|
liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
|
|
33
33
|
liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
|
|
34
34
|
liger_kernel/ops/poly_norm.py,sha256=MLgI8Ea93fugKibHCUauQ2ASYVXCvpPZe5v3kQZU6po,11152
|
|
@@ -43,7 +43,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
|
43
43
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
|
44
44
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
|
45
45
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
|
46
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
46
|
+
liger_kernel/transformers/__init__.py,sha256=CgwhrY5cdx6OcRgR2ZZJbOIkLswQWPTr-BAaoxDNNOY,10687
|
|
47
47
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
|
48
48
|
liger_kernel/transformers/cross_entropy.py,sha256=DMtHkKrVJDSsels7KgGQJqrXkEAd6Zopcdr-5oRmQgE,2010
|
|
49
49
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
|
@@ -55,12 +55,12 @@ liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJl
|
|
|
55
55
|
liger_kernel/transformers/fused_neighborhood_attention.py,sha256=TxYDUAt9B6WSP14aJP66C_2Mbds2sSIPGnamhUSTrC8,7957
|
|
56
56
|
liger_kernel/transformers/geglu.py,sha256=mrgqzIUVd6lN7fkDKLkw5YaESDxDtFgbot430WwPVOQ,1107
|
|
57
57
|
liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD2VuGJrMBz0,2173
|
|
58
|
-
liger_kernel/transformers/grpo_loss.py,sha256=
|
|
58
|
+
liger_kernel/transformers/grpo_loss.py,sha256=QS6Ycct1E2yMfqoHPBa2sUAu5cmweNPK_-Q_KJE8hb4,6098
|
|
59
59
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
|
60
60
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
|
61
61
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
|
62
62
|
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
|
63
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
63
|
+
liger_kernel/transformers/monkey_patch.py,sha256=4LV6LSz_AAop6HWk1spZm1QigPN9nUDPJu9tK21-jIo,132446
|
|
64
64
|
liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
|
|
65
65
|
liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
|
|
66
66
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
|
@@ -68,7 +68,7 @@ liger_kernel/transformers/rms_norm.py,sha256=HwddVqrqS58jE-M2_4NkFGARtCDBhGnkKyj
|
|
|
68
68
|
liger_kernel/transformers/rope.py,sha256=VMlDZI6zss9mLaLcN5XCE_ktmYRwAi_Eh4TIgO6NrIQ,2361
|
|
69
69
|
liger_kernel/transformers/softmax.py,sha256=yadlAgE4V2JByMwrDDa2s5SUBp8Jgd57xwnVvAWoBaI,264
|
|
70
70
|
liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsAKUsYA7vj8,403
|
|
71
|
-
liger_kernel/transformers/swiglu.py,sha256=
|
|
71
|
+
liger_kernel/transformers/swiglu.py,sha256=dRR69wDWSWfdjtnsTECyxQqWVo5QkdXdXm9SpSQ4Jvw,4291
|
|
72
72
|
liger_kernel/transformers/tiled_mlp.py,sha256=J51-kpzwikDMMhT5bX-RZCKMaXBK6zZc1bhgRYTK5F0,4651
|
|
73
73
|
liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
|
|
74
74
|
liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
|
|
@@ -82,6 +82,7 @@ liger_kernel/transformers/model/gemma3.py,sha256=mEV3Kuy-dqfTk_b899Vb-InuD4_DvwH
|
|
|
82
82
|
liger_kernel/transformers/model/glm4.py,sha256=bSp22iPIjsli4-c_usUOsyh1Bs2gIK8X6ynS0azseUs,5900
|
|
83
83
|
liger_kernel/transformers/model/glm4v.py,sha256=dd-BQpccDCp1SbIxcJ5rG8xcwYQK3KOv1Tgm9TGnZc4,6594
|
|
84
84
|
liger_kernel/transformers/model/glm4v_moe.py,sha256=zKhMdOOrRhlrvCSFaeVYfddL1ubpY8edEO91TN81n98,7135
|
|
85
|
+
liger_kernel/transformers/model/hunyuan_v1.py,sha256=MJvP9xkUFePIV0HLETJM4YPbVCEPkAE1ZI5Jxyiebh0,5731
|
|
85
86
|
liger_kernel/transformers/model/internvl.py,sha256=OOutracs9qrPHSU7FVYar08yinvGrHQVPvo39JEws6w,6473
|
|
86
87
|
liger_kernel/transformers/model/llama.py,sha256=kqZeONzwTBzudoChlKMzq1w23BtYGbxWZC1l1V__JTw,13410
|
|
87
88
|
liger_kernel/transformers/model/llama4.py,sha256=PfkynGVI0xxMs3EtyYpCgaALI6stu25OIrTIymE-pvg,4853
|
|
@@ -91,6 +92,7 @@ liger_kernel/transformers/model/mistral.py,sha256=OcwOzVDMwwDbVccVPv-AaocznzWwzL
|
|
|
91
92
|
liger_kernel/transformers/model/mixtral.py,sha256=YcBDoTEJDgLFJ_RTo180DYGxR8D5Ad9-idumif7kCPE,12130
|
|
92
93
|
liger_kernel/transformers/model/mllama.py,sha256=vAHwCm63sn4kpAY0rDGf_N0HR7KRTBVpBYDVTPOaZTg,12079
|
|
93
94
|
liger_kernel/transformers/model/olmo2.py,sha256=-h2bUOeuPfY1MdShdRvq5_wFDHKP4PEimgIl0fL-BT4,5902
|
|
95
|
+
liger_kernel/transformers/model/olmo3.py,sha256=k2zYOlS8U_b5MwjdToB3tDRQ0bH_mWapVQqJcH8-qAo,6007
|
|
94
96
|
liger_kernel/transformers/model/output_classes.py,sha256=0BGXVR4dYQpSHLkSqpRoXuHMryrceGSlTYRu6pvd8ZY,4542
|
|
95
97
|
liger_kernel/transformers/model/paligemma.py,sha256=r0smHLADkEwfLS6d6ArWoSWEeLt2d_8pmgOO5F04b1o,20793
|
|
96
98
|
liger_kernel/transformers/model/phi3.py,sha256=PT7Kw6yySg-7TsssWfi82eVMN3SWujCqzCqHigAdfeQ,4574
|
|
@@ -108,9 +110,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
|
108
110
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
|
109
111
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
|
110
112
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
|
111
|
-
liger_kernel_nightly-0.6.
|
|
112
|
-
liger_kernel_nightly-0.6.
|
|
113
|
-
liger_kernel_nightly-0.6.
|
|
114
|
-
liger_kernel_nightly-0.6.
|
|
115
|
-
liger_kernel_nightly-0.6.
|
|
116
|
-
liger_kernel_nightly-0.6.
|
|
113
|
+
liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
114
|
+
liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/METADATA,sha256=arayRD-HK6tYJLHubc_dtT2TnAojZ_d13YaPVi-txuQ,25238
|
|
115
|
+
liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
116
|
+
liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
|
117
|
+
liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
118
|
+
liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|