liger-kernel-nightly 0.6.3.dev20251121010306__py3-none-any.whl → 0.6.3.dev20251121195543__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +6 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/monkey_patch.py +119 -0
- liger_kernel/transformers/swiglu.py +17 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.3.dev20251121195543.dist-info}/METADATA +3 -1
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.3.dev20251121195543.dist-info}/RECORD +10 -9
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.3.dev20251121195543.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.3.dev20251121195543.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.3.dev20251121195543.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.3.dev20251121010306.dist-info → liger_kernel_nightly-0.6.3.dev20251121195543.dist-info}/top_level.txt +0 -0
|
@@ -42,6 +42,8 @@ if TYPE_CHECKING:
|
|
|
42
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
43
43
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
44
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
45
47
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
46
48
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
47
49
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
@@ -128,6 +130,8 @@ def __getattr__(name: str):
|
|
|
128
130
|
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
129
131
|
"apply_liger_kernel_to_smollm3",
|
|
130
132
|
"apply_liger_kernel_to_smolvlm",
|
|
133
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
134
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
131
135
|
}
|
|
132
136
|
|
|
133
137
|
if name in monkey_patch_symbols:
|
|
@@ -202,5 +206,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
202
206
|
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
203
207
|
"apply_liger_kernel_to_smollm3",
|
|
204
208
|
"apply_liger_kernel_to_smolvlm",
|
|
209
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
210
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
205
211
|
]
|
|
206
212
|
)
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
8
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
9
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def lce_forward(
|
|
13
|
+
self,
|
|
14
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
15
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
16
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
17
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
18
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
19
|
+
labels: Optional[torch.LongTensor] = None,
|
|
20
|
+
use_cache: Optional[bool] = None,
|
|
21
|
+
output_attentions: Optional[bool] = None,
|
|
22
|
+
output_hidden_states: Optional[bool] = None,
|
|
23
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
24
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
25
|
+
skip_logits: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
**kwargs,
|
|
28
|
+
) -> LigerCausalLMOutputWithPast:
|
|
29
|
+
r"""
|
|
30
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
31
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
32
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
33
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
34
|
+
|
|
35
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
36
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
37
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
38
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
39
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
40
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
|
|
44
|
+
Example:
|
|
45
|
+
|
|
46
|
+
```python
|
|
47
|
+
>>> from transformers import AutoTokenizer, HunYuanDenseV1ForCausalLM
|
|
48
|
+
|
|
49
|
+
>>> model = HunYuanDenseV1ForCausalLM.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
|
|
50
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
|
|
51
|
+
|
|
52
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
53
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
54
|
+
|
|
55
|
+
>>> # Generate
|
|
56
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
57
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
58
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
59
|
+
```"""
|
|
60
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
61
|
+
output_hidden_states = (
|
|
62
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
63
|
+
)
|
|
64
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
65
|
+
|
|
66
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
67
|
+
outputs = self.model(
|
|
68
|
+
input_ids=input_ids,
|
|
69
|
+
attention_mask=attention_mask,
|
|
70
|
+
position_ids=position_ids,
|
|
71
|
+
past_key_values=past_key_values,
|
|
72
|
+
inputs_embeds=inputs_embeds,
|
|
73
|
+
use_cache=use_cache,
|
|
74
|
+
output_attentions=output_attentions,
|
|
75
|
+
output_hidden_states=output_hidden_states,
|
|
76
|
+
cache_position=cache_position,
|
|
77
|
+
**kwargs,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
hidden_states = outputs[0]
|
|
81
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
82
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
83
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
84
|
+
|
|
85
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
86
|
+
logits = None
|
|
87
|
+
loss = None
|
|
88
|
+
token_accuracy = None
|
|
89
|
+
|
|
90
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
91
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
92
|
+
|
|
93
|
+
if skip_logits is None:
|
|
94
|
+
# By default, if in training mode, don't materialize logits
|
|
95
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
96
|
+
|
|
97
|
+
# Compute loss
|
|
98
|
+
if skip_logits:
|
|
99
|
+
result = LigerForCausalLMLoss(
|
|
100
|
+
hidden_states=kept_hidden_states,
|
|
101
|
+
lm_head_weight=self.lm_head.weight,
|
|
102
|
+
labels=labels,
|
|
103
|
+
shift_labels=shift_labels,
|
|
104
|
+
hidden_size=self.config.hidden_size,
|
|
105
|
+
**kwargs,
|
|
106
|
+
)
|
|
107
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
108
|
+
|
|
109
|
+
else:
|
|
110
|
+
logits = self.lm_head(kept_hidden_states)
|
|
111
|
+
if labels is not None or shift_labels is not None:
|
|
112
|
+
loss = self.loss_function(
|
|
113
|
+
logits=logits,
|
|
114
|
+
labels=labels,
|
|
115
|
+
shift_labels=shift_labels,
|
|
116
|
+
vocab_size=self.config.vocab_size,
|
|
117
|
+
**kwargs,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
if not return_dict:
|
|
121
|
+
output = (logits,) + outputs[1:]
|
|
122
|
+
output = ((loss,) + output) if loss is not None else output
|
|
123
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
124
|
+
return output
|
|
125
|
+
|
|
126
|
+
# Return custom output class with accuracy field
|
|
127
|
+
return LigerCausalLMOutputWithPast(
|
|
128
|
+
loss=loss,
|
|
129
|
+
logits=logits,
|
|
130
|
+
past_key_values=outputs.past_key_values,
|
|
131
|
+
hidden_states=outputs.hidden_states,
|
|
132
|
+
attentions=outputs.attentions,
|
|
133
|
+
token_accuracy=token_accuracy,
|
|
134
|
+
)
|
|
@@ -2558,6 +2558,123 @@ def apply_liger_kernel_to_qwen3_next(
|
|
|
2558
2558
|
_patch_swiglu_module(expert, LigerQwen3MoeSwiGLUMLP)
|
|
2559
2559
|
|
|
2560
2560
|
|
|
2561
|
+
def apply_liger_kernel_to_hunyuan_v1_dense(
|
|
2562
|
+
rope: bool = True,
|
|
2563
|
+
cross_entropy: bool = False,
|
|
2564
|
+
fused_linear_cross_entropy: bool = True,
|
|
2565
|
+
rms_norm: bool = True,
|
|
2566
|
+
swiglu: bool = True,
|
|
2567
|
+
model: PreTrainedModel = None,
|
|
2568
|
+
) -> None:
|
|
2569
|
+
"""
|
|
2570
|
+
Apply Liger kernels to replace original implementation in HuggingFace Hunyuan v1 dense models.
|
|
2571
|
+
"""
|
|
2572
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
2573
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
2574
|
+
)
|
|
2575
|
+
|
|
2576
|
+
from transformers.models.hunyuan_v1_dense import modeling_hunyuan_v1_dense
|
|
2577
|
+
from transformers.models.hunyuan_v1_dense.modeling_hunyuan_v1_dense import HunYuanDenseV1Model
|
|
2578
|
+
|
|
2579
|
+
from liger_kernel.transformers.model.hunyuan_v1 import lce_forward as hunyuan_v1_lce_forward
|
|
2580
|
+
from liger_kernel.transformers.swiglu import LigerHunyuanV1SwiGLUMLP
|
|
2581
|
+
|
|
2582
|
+
if rope:
|
|
2583
|
+
modeling_hunyuan_v1_dense.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
2584
|
+
|
|
2585
|
+
if rms_norm:
|
|
2586
|
+
modeling_hunyuan_v1_dense.HunYuanDenseV1RMSNorm = LigerRMSNorm
|
|
2587
|
+
|
|
2588
|
+
if cross_entropy:
|
|
2589
|
+
from transformers.loss.loss_utils import nn
|
|
2590
|
+
|
|
2591
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
2592
|
+
|
|
2593
|
+
if fused_linear_cross_entropy:
|
|
2594
|
+
if model is not None:
|
|
2595
|
+
model.forward = MethodType(hunyuan_v1_lce_forward, model)
|
|
2596
|
+
else:
|
|
2597
|
+
modeling_hunyuan_v1_dense.HunYuanDenseV1ForCausalLM.forward = hunyuan_v1_lce_forward
|
|
2598
|
+
|
|
2599
|
+
if swiglu:
|
|
2600
|
+
modeling_hunyuan_v1_dense.HunYuanDenseV1MLP = LigerHunyuanV1SwiGLUMLP
|
|
2601
|
+
|
|
2602
|
+
if model is not None:
|
|
2603
|
+
# The model instance already exists, so we need to additionally patch the
|
|
2604
|
+
# instance variables that reference already-instantiated modules
|
|
2605
|
+
|
|
2606
|
+
# get the base model from the model instance
|
|
2607
|
+
base_model: HunYuanDenseV1Model = getattr(model, model.base_model_prefix, model)
|
|
2608
|
+
|
|
2609
|
+
if rms_norm:
|
|
2610
|
+
_patch_rms_norm_module(base_model.norm)
|
|
2611
|
+
for decoder_layer in base_model.layers:
|
|
2612
|
+
if swiglu:
|
|
2613
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerHunyuanV1SwiGLUMLP)
|
|
2614
|
+
if rms_norm:
|
|
2615
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
2616
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
2617
|
+
|
|
2618
|
+
|
|
2619
|
+
def apply_liger_kernel_to_hunyuan_v1_moe(
|
|
2620
|
+
rope: bool = True,
|
|
2621
|
+
cross_entropy: bool = False,
|
|
2622
|
+
fused_linear_cross_entropy: bool = True,
|
|
2623
|
+
rms_norm: bool = True,
|
|
2624
|
+
swiglu: bool = True,
|
|
2625
|
+
model: PreTrainedModel = None,
|
|
2626
|
+
) -> None:
|
|
2627
|
+
"""
|
|
2628
|
+
Apply Liger kernels to replace original implementation in HuggingFace Qwen3 models.
|
|
2629
|
+
"""
|
|
2630
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
2631
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
2632
|
+
)
|
|
2633
|
+
|
|
2634
|
+
from transformers.models.hunyuan_v1_moe import modeling_hunyuan_v1_moe
|
|
2635
|
+
from transformers.models.hunyuan_v1_moe.modeling_hunyuan_v1_moe import HunYuanMoEV1Model
|
|
2636
|
+
|
|
2637
|
+
from liger_kernel.transformers.model.hunyuan_v1 import lce_forward as hunyuan_v1_moe_lce_forward
|
|
2638
|
+
from liger_kernel.transformers.swiglu import LigerHunyuanV1SwiGLUMLP
|
|
2639
|
+
|
|
2640
|
+
if rope:
|
|
2641
|
+
modeling_hunyuan_v1_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
2642
|
+
|
|
2643
|
+
if rms_norm:
|
|
2644
|
+
modeling_hunyuan_v1_moe.HunYuanMoEV1RMSNorm = LigerRMSNorm
|
|
2645
|
+
|
|
2646
|
+
if cross_entropy:
|
|
2647
|
+
from transformers.loss.loss_utils import nn
|
|
2648
|
+
|
|
2649
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
2650
|
+
|
|
2651
|
+
if fused_linear_cross_entropy:
|
|
2652
|
+
if model is not None:
|
|
2653
|
+
model.forward = MethodType(hunyuan_v1_moe_lce_forward, model)
|
|
2654
|
+
else:
|
|
2655
|
+
modeling_hunyuan_v1_moe.HunYuanMoEV1ForCausalLM.forward = hunyuan_v1_moe_lce_forward
|
|
2656
|
+
|
|
2657
|
+
if swiglu:
|
|
2658
|
+
modeling_hunyuan_v1_moe.HunYuanMoEV1MLP = LigerHunyuanV1SwiGLUMLP
|
|
2659
|
+
|
|
2660
|
+
if model is not None:
|
|
2661
|
+
# The model instance already exists, so we need to additionally patch the
|
|
2662
|
+
# instance variables that reference already-instantiated modules
|
|
2663
|
+
|
|
2664
|
+
# get the base model from the model instance
|
|
2665
|
+
base_model: HunYuanMoEV1Model = getattr(model, model.base_model_prefix, model)
|
|
2666
|
+
|
|
2667
|
+
if rms_norm:
|
|
2668
|
+
_patch_rms_norm_module(base_model.norm)
|
|
2669
|
+
for decoder_layer in base_model.layers:
|
|
2670
|
+
if swiglu:
|
|
2671
|
+
for mlp_expert in decoder_layer.mlp.experts:
|
|
2672
|
+
_patch_swiglu_module(mlp_expert, LigerHunyuanV1SwiGLUMLP)
|
|
2673
|
+
if rms_norm:
|
|
2674
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
2675
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
2676
|
+
|
|
2677
|
+
|
|
2561
2678
|
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
2562
2679
|
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
2563
2680
|
"gemma": apply_liger_kernel_to_gemma,
|
|
@@ -2595,6 +2712,8 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
2595
2712
|
"paligemma": apply_liger_kernel_to_paligemma,
|
|
2596
2713
|
"falcon_h1": apply_liger_kernel_to_falcon_h1,
|
|
2597
2714
|
"smolvlm": apply_liger_kernel_to_smolvlm,
|
|
2715
|
+
"hunyuan_v1_dense": apply_liger_kernel_to_hunyuan_v1_dense,
|
|
2716
|
+
"hunyuan_v1_moe": apply_liger_kernel_to_hunyuan_v1_moe,
|
|
2598
2717
|
}
|
|
2599
2718
|
|
|
2600
2719
|
|
|
@@ -77,3 +77,20 @@ class LigerQwen3MoeSwiGLUMLP(nn.Module):
|
|
|
77
77
|
|
|
78
78
|
def forward(self, x):
|
|
79
79
|
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class LigerHunyuanV1SwiGLUMLP(nn.Module):
|
|
83
|
+
def __init__(self, config, layer_idx=None, is_shared_mlp=False):
|
|
84
|
+
super().__init__()
|
|
85
|
+
self.config = config
|
|
86
|
+
self.hidden_size = config.hidden_size
|
|
87
|
+
self.intermediate_size = config.intermediate_size
|
|
88
|
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
89
|
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
90
|
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
91
|
+
self.layer_idx = layer_idx
|
|
92
|
+
if config.hidden_act not in ["silu", "swish"]:
|
|
93
|
+
raise ValueError(f"Activation function {config.hidden_act} not supported.")
|
|
94
|
+
|
|
95
|
+
def forward(self, x):
|
|
96
|
+
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel_nightly
|
|
3
|
-
Version: 0.6.3.
|
|
3
|
+
Version: 0.6.3.dev20251121195543
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -312,6 +312,8 @@ loss.backward()
|
|
|
312
312
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
313
|
| GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
314
314
|
| InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
|
+
| HunyuanV1 | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_dense` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
316
|
+
| HunyuanV1 MoE | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_moe` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
317
|
|
|
316
318
|
|
|
317
319
|
## Low-level APIs
|
|
@@ -43,7 +43,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
|
43
43
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
|
44
44
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
|
45
45
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
|
46
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
46
|
+
liger_kernel/transformers/__init__.py,sha256=zApQL1sGf2GOo7gWHfQxJ9X6D7QFwAuds4cPJJ-H81Y,10508
|
|
47
47
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
|
48
48
|
liger_kernel/transformers/cross_entropy.py,sha256=DMtHkKrVJDSsels7KgGQJqrXkEAd6Zopcdr-5oRmQgE,2010
|
|
49
49
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
|
@@ -60,7 +60,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
|
|
|
60
60
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
|
61
61
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
|
62
62
|
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
|
63
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
63
|
+
liger_kernel/transformers/monkey_patch.py,sha256=Th4XiYT2fRRo1YNOCLkLLiTgjEpCdidWOT8-ozxgFsE,129377
|
|
64
64
|
liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
|
|
65
65
|
liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
|
|
66
66
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
|
@@ -68,7 +68,7 @@ liger_kernel/transformers/rms_norm.py,sha256=HwddVqrqS58jE-M2_4NkFGARtCDBhGnkKyj
|
|
|
68
68
|
liger_kernel/transformers/rope.py,sha256=VMlDZI6zss9mLaLcN5XCE_ktmYRwAi_Eh4TIgO6NrIQ,2361
|
|
69
69
|
liger_kernel/transformers/softmax.py,sha256=yadlAgE4V2JByMwrDDa2s5SUBp8Jgd57xwnVvAWoBaI,264
|
|
70
70
|
liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsAKUsYA7vj8,403
|
|
71
|
-
liger_kernel/transformers/swiglu.py,sha256=
|
|
71
|
+
liger_kernel/transformers/swiglu.py,sha256=FLvxamjGru9N-ZelsccTvNn0CjUnId9ldiBrOnH-8QQ,4290
|
|
72
72
|
liger_kernel/transformers/tiled_mlp.py,sha256=J51-kpzwikDMMhT5bX-RZCKMaXBK6zZc1bhgRYTK5F0,4651
|
|
73
73
|
liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
|
|
74
74
|
liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
|
|
@@ -82,6 +82,7 @@ liger_kernel/transformers/model/gemma3.py,sha256=mEV3Kuy-dqfTk_b899Vb-InuD4_DvwH
|
|
|
82
82
|
liger_kernel/transformers/model/glm4.py,sha256=bSp22iPIjsli4-c_usUOsyh1Bs2gIK8X6ynS0azseUs,5900
|
|
83
83
|
liger_kernel/transformers/model/glm4v.py,sha256=dd-BQpccDCp1SbIxcJ5rG8xcwYQK3KOv1Tgm9TGnZc4,6594
|
|
84
84
|
liger_kernel/transformers/model/glm4v_moe.py,sha256=zKhMdOOrRhlrvCSFaeVYfddL1ubpY8edEO91TN81n98,7135
|
|
85
|
+
liger_kernel/transformers/model/hunyuan_v1.py,sha256=MJvP9xkUFePIV0HLETJM4YPbVCEPkAE1ZI5Jxyiebh0,5731
|
|
85
86
|
liger_kernel/transformers/model/internvl.py,sha256=OOutracs9qrPHSU7FVYar08yinvGrHQVPvo39JEws6w,6473
|
|
86
87
|
liger_kernel/transformers/model/llama.py,sha256=kqZeONzwTBzudoChlKMzq1w23BtYGbxWZC1l1V__JTw,13410
|
|
87
88
|
liger_kernel/transformers/model/llama4.py,sha256=PfkynGVI0xxMs3EtyYpCgaALI6stu25OIrTIymE-pvg,4853
|
|
@@ -108,9 +109,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
|
108
109
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
|
109
110
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
|
110
111
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
|
111
|
-
liger_kernel_nightly-0.6.3.
|
|
112
|
-
liger_kernel_nightly-0.6.3.
|
|
113
|
-
liger_kernel_nightly-0.6.3.
|
|
114
|
-
liger_kernel_nightly-0.6.3.
|
|
115
|
-
liger_kernel_nightly-0.6.3.
|
|
116
|
-
liger_kernel_nightly-0.6.3.
|
|
112
|
+
liger_kernel_nightly-0.6.3.dev20251121195543.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
113
|
+
liger_kernel_nightly-0.6.3.dev20251121195543.dist-info/METADATA,sha256=3jCmn8uhrcmwtmASbQwo4NBudeZ9NJOfj5RN5Xlylr0,25097
|
|
114
|
+
liger_kernel_nightly-0.6.3.dev20251121195543.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
115
|
+
liger_kernel_nightly-0.6.3.dev20251121195543.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
|
116
|
+
liger_kernel_nightly-0.6.3.dev20251121195543.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
117
|
+
liger_kernel_nightly-0.6.3.dev20251121195543.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|