liger-kernel-nightly 0.6.3.dev20251105224413__py3-none-any.whl → 0.6.3.dev20251106220336__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/cross_entropy.py +59 -9
- liger_kernel/ops/fused_linear_cross_entropy.py +27 -4
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/functional.py +24 -6
- liger_kernel/transformers/fused_linear_cross_entropy.py +8 -3
- liger_kernel/transformers/model/falcon_h1.py +19 -5
- liger_kernel/transformers/model/gemma.py +17 -6
- liger_kernel/transformers/model/gemma2.py +14 -5
- liger_kernel/transformers/model/gemma3.py +25 -12
- liger_kernel/transformers/model/glm4.py +16 -4
- liger_kernel/transformers/model/glm4v.py +16 -4
- liger_kernel/transformers/model/glm4v_moe.py +23 -4
- liger_kernel/transformers/model/internvl.py +12 -5
- liger_kernel/transformers/model/llama.py +14 -5
- liger_kernel/transformers/model/llama4.py +16 -4
- liger_kernel/transformers/model/llava.py +12 -4
- liger_kernel/transformers/model/loss_utils.py +31 -3
- liger_kernel/transformers/model/mistral.py +15 -6
- liger_kernel/transformers/model/mixtral.py +16 -7
- liger_kernel/transformers/model/mllama.py +12 -4
- liger_kernel/transformers/model/olmo2.py +16 -4
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +22 -5
- liger_kernel/transformers/model/phi3.py +14 -7
- liger_kernel/transformers/model/qwen2.py +16 -3
- liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
- liger_kernel/transformers/model/qwen2_vl.py +16 -4
- liger_kernel/transformers/model/qwen3.py +18 -5
- liger_kernel/transformers/model/qwen3_moe.py +19 -5
- liger_kernel/transformers/model/qwen3_next.py +17 -5
- liger_kernel/transformers/model/qwen3_vl.py +11 -5
- liger_kernel/transformers/model/qwen3_vl_moe.py +12 -5
- liger_kernel/transformers/model/smollm3.py +15 -6
- {liger_kernel_nightly-0.6.3.dev20251105224413.dist-info → liger_kernel_nightly-0.6.3.dev20251106220336.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.6.3.dev20251105224413.dist-info → liger_kernel_nightly-0.6.3.dev20251106220336.dist-info}/RECORD +39 -38
- {liger_kernel_nightly-0.6.3.dev20251105224413.dist-info → liger_kernel_nightly-0.6.3.dev20251106220336.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.3.dev20251105224413.dist-info → liger_kernel_nightly-0.6.3.dev20251106220336.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.3.dev20251105224413.dist-info → liger_kernel_nightly-0.6.3.dev20251106220336.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.3.dev20251105224413.dist-info → liger_kernel_nightly-0.6.3.dev20251106220336.dist-info}/top_level.txt +0 -0
|
@@ -13,6 +13,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
13
13
|
|
|
14
14
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
15
15
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
16
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
17
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
16
18
|
|
|
17
19
|
logger = logging.getLogger(__name__)
|
|
18
20
|
|
|
@@ -158,7 +160,7 @@ def lce_forward(
|
|
|
158
160
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
159
161
|
skip_logits: Optional[bool] = None,
|
|
160
162
|
**kwargs,
|
|
161
|
-
) -> Union[Tuple,
|
|
163
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
162
164
|
r"""
|
|
163
165
|
Args:
|
|
164
166
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -225,6 +227,7 @@ def lce_forward(
|
|
|
225
227
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
226
228
|
logits = None
|
|
227
229
|
loss = None
|
|
230
|
+
token_accuracy = None
|
|
228
231
|
|
|
229
232
|
if skip_logits and labels is None and shift_labels is None:
|
|
230
233
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -233,8 +236,9 @@ def lce_forward(
|
|
|
233
236
|
# By default, if in training mode, don't materialize logits
|
|
234
237
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
235
238
|
|
|
239
|
+
# Compute loss
|
|
236
240
|
if skip_logits:
|
|
237
|
-
|
|
241
|
+
result = LigerForCausalLMLoss(
|
|
238
242
|
hidden_states=kept_hidden_states,
|
|
239
243
|
lm_head_weight=self.lm_head.weight,
|
|
240
244
|
labels=labels,
|
|
@@ -243,6 +247,7 @@ def lce_forward(
|
|
|
243
247
|
final_logit_softcapping=self.config.final_logit_softcapping,
|
|
244
248
|
**kwargs,
|
|
245
249
|
)
|
|
250
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
246
251
|
|
|
247
252
|
else:
|
|
248
253
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -262,13 +267,17 @@ def lce_forward(
|
|
|
262
267
|
)
|
|
263
268
|
|
|
264
269
|
if not return_dict:
|
|
265
|
-
|
|
266
|
-
|
|
270
|
+
output_tuple = (logits,) + outputs[1:]
|
|
271
|
+
output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
|
|
272
|
+
output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
|
|
273
|
+
return output_tuple
|
|
267
274
|
|
|
268
|
-
|
|
275
|
+
# Return custom output class with token_accuracy field
|
|
276
|
+
return LigerCausalLMOutputWithPast(
|
|
269
277
|
loss=loss,
|
|
270
278
|
logits=logits,
|
|
271
279
|
past_key_values=outputs.past_key_values,
|
|
272
280
|
hidden_states=outputs.hidden_states,
|
|
273
281
|
attentions=outputs.attentions,
|
|
282
|
+
token_accuracy=token_accuracy,
|
|
274
283
|
)
|
|
@@ -7,12 +7,13 @@ import torch.nn as nn
|
|
|
7
7
|
|
|
8
8
|
from transformers.cache_utils import Cache
|
|
9
9
|
from transformers.cache_utils import HybridCache
|
|
10
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
11
|
-
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast
|
|
12
10
|
from transformers.utils import logging
|
|
13
11
|
|
|
14
12
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
15
13
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerGemma3CausalLMOutputWithPast
|
|
16
17
|
|
|
17
18
|
logger = logging.get_logger(__name__)
|
|
18
19
|
|
|
@@ -33,7 +34,7 @@ def causal_forward(
|
|
|
33
34
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
34
35
|
skip_logits: Optional[bool] = None,
|
|
35
36
|
**loss_kwargs,
|
|
36
|
-
) -> Union[Tuple,
|
|
37
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
37
38
|
r"""
|
|
38
39
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
39
40
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -98,12 +99,14 @@ def causal_forward(
|
|
|
98
99
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
|
99
100
|
loss = None
|
|
100
101
|
logits = None
|
|
102
|
+
token_accuracy = None
|
|
101
103
|
|
|
102
104
|
if skip_logits is None:
|
|
103
105
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
104
106
|
|
|
107
|
+
# Compute loss
|
|
105
108
|
if skip_logits:
|
|
106
|
-
|
|
109
|
+
result = LigerForCausalLMLoss(
|
|
107
110
|
hidden_states=kept_hidden_states,
|
|
108
111
|
lm_head_weight=self.lm_head.weight,
|
|
109
112
|
labels=labels,
|
|
@@ -112,7 +115,7 @@ def causal_forward(
|
|
|
112
115
|
final_logit_softcapping=self.config.final_logit_softcapping,
|
|
113
116
|
**loss_kwargs,
|
|
114
117
|
)
|
|
115
|
-
|
|
118
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
116
119
|
else:
|
|
117
120
|
logits = self.lm_head(kept_hidden_states)
|
|
118
121
|
if self.config.final_logit_softcapping is not None:
|
|
@@ -129,15 +132,19 @@ def causal_forward(
|
|
|
129
132
|
)
|
|
130
133
|
|
|
131
134
|
if not return_dict:
|
|
132
|
-
|
|
133
|
-
|
|
135
|
+
output_tuple = (logits,) + outputs[1:]
|
|
136
|
+
output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
|
|
137
|
+
output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
|
|
138
|
+
return output_tuple
|
|
134
139
|
|
|
135
|
-
|
|
140
|
+
# Return custom output class with token_accuracy field
|
|
141
|
+
return LigerCausalLMOutputWithPast(
|
|
136
142
|
loss=loss,
|
|
137
143
|
logits=logits,
|
|
138
144
|
past_key_values=outputs.past_key_values,
|
|
139
145
|
hidden_states=outputs.hidden_states,
|
|
140
146
|
attentions=outputs.attentions,
|
|
147
|
+
token_accuracy=token_accuracy,
|
|
141
148
|
)
|
|
142
149
|
|
|
143
150
|
|
|
@@ -159,7 +166,7 @@ def multimodal_forward(
|
|
|
159
166
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
160
167
|
skip_logits: Optional[bool] = None,
|
|
161
168
|
**lm_kwargs,
|
|
162
|
-
) -> Union[tuple,
|
|
169
|
+
) -> Union[tuple, LigerGemma3CausalLMOutputWithPast]:
|
|
163
170
|
r"""
|
|
164
171
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
165
172
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -235,6 +242,7 @@ def multimodal_forward(
|
|
|
235
242
|
|
|
236
243
|
loss = None
|
|
237
244
|
logits = None
|
|
245
|
+
token_accuracy = None
|
|
238
246
|
if skip_logits and labels is None:
|
|
239
247
|
raise ValueError("skip_logits is True, but labels is None")
|
|
240
248
|
|
|
@@ -261,7 +269,9 @@ def multimodal_forward(
|
|
|
261
269
|
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
262
270
|
|
|
263
271
|
lce = LigerFusedLinearCrossEntropyLoss()
|
|
264
|
-
|
|
272
|
+
result = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
273
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
274
|
+
|
|
265
275
|
else:
|
|
266
276
|
logits = self.lm_head(kept_hidden_states)
|
|
267
277
|
if labels is not None:
|
|
@@ -306,13 +316,16 @@ def multimodal_forward(
|
|
|
306
316
|
|
|
307
317
|
if not return_dict:
|
|
308
318
|
output = (logits,) + outputs[1:]
|
|
309
|
-
|
|
319
|
+
output = (loss,) + output if loss is not None else output
|
|
320
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
321
|
+
return output
|
|
310
322
|
|
|
311
|
-
return
|
|
323
|
+
return LigerGemma3CausalLMOutputWithPast(
|
|
312
324
|
loss=loss,
|
|
313
325
|
logits=logits,
|
|
314
326
|
past_key_values=outputs.past_key_values,
|
|
315
327
|
hidden_states=outputs.hidden_states,
|
|
316
328
|
attentions=outputs.attentions,
|
|
317
329
|
image_hidden_states=outputs.image_hidden_states,
|
|
330
|
+
token_accuracy=token_accuracy,
|
|
318
331
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
8
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -28,7 +29,7 @@ def lce_forward(
|
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
30
31
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
32
33
|
r"""
|
|
33
34
|
Args:
|
|
34
35
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -91,6 +92,7 @@ def lce_forward(
|
|
|
91
92
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
92
93
|
logits = None
|
|
93
94
|
loss = None
|
|
95
|
+
token_accuracy = None
|
|
94
96
|
|
|
95
97
|
if skip_logits and labels is None and shift_labels is None:
|
|
96
98
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -99,8 +101,9 @@ def lce_forward(
|
|
|
99
101
|
# By default, if in training mode, don't materialize logits
|
|
100
102
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
101
103
|
|
|
104
|
+
# Compute loss
|
|
102
105
|
if skip_logits:
|
|
103
|
-
|
|
106
|
+
result = LigerForCausalLMLoss(
|
|
104
107
|
hidden_states=kept_hidden_states,
|
|
105
108
|
lm_head_weight=self.lm_head.weight,
|
|
106
109
|
labels=labels,
|
|
@@ -108,6 +111,7 @@ def lce_forward(
|
|
|
108
111
|
hidden_size=self.config.hidden_size,
|
|
109
112
|
**kwargs,
|
|
110
113
|
)
|
|
114
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
111
115
|
|
|
112
116
|
else:
|
|
113
117
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -120,10 +124,18 @@ def lce_forward(
|
|
|
120
124
|
**kwargs,
|
|
121
125
|
)
|
|
122
126
|
|
|
123
|
-
|
|
127
|
+
if not return_dict:
|
|
128
|
+
output = (logits,) + outputs[1:]
|
|
129
|
+
output = ((loss,) + output) if loss is not None else output
|
|
130
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
131
|
+
return output
|
|
132
|
+
|
|
133
|
+
# Return custom output class with token_accuracy field
|
|
134
|
+
return LigerCausalLMOutputWithPast(
|
|
124
135
|
loss=loss,
|
|
125
136
|
logits=logits,
|
|
126
137
|
past_key_values=outputs.past_key_values,
|
|
127
138
|
hidden_states=outputs.hidden_states,
|
|
128
139
|
attentions=outputs.attentions,
|
|
140
|
+
token_accuracy=token_accuracy,
|
|
129
141
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
8
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -28,7 +29,7 @@ def lce_forward(
|
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
30
31
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
32
33
|
r"""
|
|
33
34
|
Args:
|
|
34
35
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -113,6 +114,7 @@ def lce_forward(
|
|
|
113
114
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
114
115
|
logits = None
|
|
115
116
|
loss = None
|
|
117
|
+
token_accuracy = None
|
|
116
118
|
|
|
117
119
|
if skip_logits and labels is None and shift_labels is None:
|
|
118
120
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -121,8 +123,9 @@ def lce_forward(
|
|
|
121
123
|
# By default, if in training mode, don't materialize logits
|
|
122
124
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
123
125
|
|
|
126
|
+
# Compute loss
|
|
124
127
|
if skip_logits:
|
|
125
|
-
|
|
128
|
+
result = LigerForCausalLMLoss(
|
|
126
129
|
hidden_states=kept_hidden_states,
|
|
127
130
|
lm_head_weight=self.lm_head.weight,
|
|
128
131
|
labels=labels,
|
|
@@ -130,6 +133,7 @@ def lce_forward(
|
|
|
130
133
|
hidden_size=self.config.hidden_size,
|
|
131
134
|
**kwargs,
|
|
132
135
|
)
|
|
136
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
133
137
|
|
|
134
138
|
else:
|
|
135
139
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -142,10 +146,18 @@ def lce_forward(
|
|
|
142
146
|
**kwargs,
|
|
143
147
|
)
|
|
144
148
|
|
|
145
|
-
|
|
149
|
+
if not return_dict:
|
|
150
|
+
output = (logits,) + outputs[1:]
|
|
151
|
+
output = ((loss,) + output) if loss is not None else output
|
|
152
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
153
|
+
return output
|
|
154
|
+
|
|
155
|
+
# Return custom output class with token_accuracy field
|
|
156
|
+
return LigerCausalLMOutputWithPast(
|
|
146
157
|
loss=loss,
|
|
147
158
|
logits=logits,
|
|
148
159
|
past_key_values=outputs.past_key_values,
|
|
149
160
|
hidden_states=outputs.hidden_states,
|
|
150
161
|
attentions=outputs.attentions,
|
|
162
|
+
token_accuracy=token_accuracy,
|
|
151
163
|
)
|
|
@@ -4,10 +4,11 @@ from typing import Union
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
|
-
from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeCausalLMOutputWithPast
|
|
8
7
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
9
8
|
|
|
10
9
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
11
|
+
from liger_kernel.transformers.model.output_classes import LigerGlm4vMoeCausalLMOutputWithPast
|
|
11
12
|
|
|
12
13
|
|
|
13
14
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -27,8 +28,9 @@ def lce_forward(
|
|
|
27
28
|
cache_position: Optional[torch.LongTensor] = None,
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
31
|
+
return_dict: Optional[bool] = None,
|
|
30
32
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
33
|
+
) -> Union[Tuple, LigerGlm4vMoeCausalLMOutputWithPast]:
|
|
32
34
|
r"""
|
|
33
35
|
Args:
|
|
34
36
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -90,6 +92,7 @@ def lce_forward(
|
|
|
90
92
|
>>> output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
|
|
91
93
|
```
|
|
92
94
|
"""
|
|
95
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
93
96
|
|
|
94
97
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
95
98
|
outputs = self.model(
|
|
@@ -114,6 +117,7 @@ def lce_forward(
|
|
|
114
117
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
115
118
|
logits = None
|
|
116
119
|
loss = None
|
|
120
|
+
token_accuracy = None
|
|
117
121
|
|
|
118
122
|
if skip_logits and labels is None and shift_labels is None:
|
|
119
123
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -122,8 +126,9 @@ def lce_forward(
|
|
|
122
126
|
# By default, if in training mode, don't materialize logits
|
|
123
127
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
124
128
|
|
|
129
|
+
# Compute loss
|
|
125
130
|
if skip_logits:
|
|
126
|
-
|
|
131
|
+
result = LigerForCausalLMLoss(
|
|
127
132
|
hidden_states=kept_hidden_states,
|
|
128
133
|
lm_head_weight=self.lm_head.weight,
|
|
129
134
|
labels=labels,
|
|
@@ -131,6 +136,7 @@ def lce_forward(
|
|
|
131
136
|
hidden_size=self.config.hidden_size,
|
|
132
137
|
**kwargs,
|
|
133
138
|
)
|
|
139
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
134
140
|
|
|
135
141
|
else:
|
|
136
142
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -143,11 +149,24 @@ def lce_forward(
|
|
|
143
149
|
**kwargs,
|
|
144
150
|
)
|
|
145
151
|
|
|
146
|
-
|
|
152
|
+
if not return_dict:
|
|
153
|
+
output = (logits,) + outputs[1:]
|
|
154
|
+
output = ((loss,) + output) if loss is not None else output
|
|
155
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
156
|
+
return output
|
|
157
|
+
|
|
158
|
+
# Build output kwargs and include aux_loss only if present (depends on transformers version)
|
|
159
|
+
output_kwargs = dict(
|
|
147
160
|
loss=loss,
|
|
148
161
|
logits=logits,
|
|
149
162
|
past_key_values=outputs.past_key_values,
|
|
150
163
|
hidden_states=outputs.hidden_states,
|
|
151
164
|
attentions=outputs.attentions,
|
|
152
165
|
rope_deltas=outputs.rope_deltas,
|
|
166
|
+
token_accuracy=token_accuracy,
|
|
153
167
|
)
|
|
168
|
+
if hasattr(outputs, "aux_loss"):
|
|
169
|
+
output_kwargs["aux_loss"] = outputs.aux_loss
|
|
170
|
+
|
|
171
|
+
# Return GLM4V MoE output with accuracy
|
|
172
|
+
return LigerGlm4vMoeCausalLMOutputWithPast(**output_kwargs)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.models.internvl.modeling_internvl import InternVLCausalLMOutputWithPast
|
|
9
8
|
from transformers.utils import can_return_tuple
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerInternVLCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
# Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
|
|
@@ -33,7 +34,7 @@ def lce_forward(
|
|
|
33
34
|
image_sizes: Optional[torch.Tensor] = None,
|
|
34
35
|
skip_logits: Optional[bool] = None, # Added argument for liger-kernel
|
|
35
36
|
**lm_kwargs, # renamed from kwargs
|
|
36
|
-
) -> Union[Tuple,
|
|
37
|
+
) -> Union[Tuple, LigerInternVLCausalLMOutputWithPast]:
|
|
37
38
|
r"""
|
|
38
39
|
Example:
|
|
39
40
|
|
|
@@ -111,6 +112,7 @@ def lce_forward(
|
|
|
111
112
|
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
112
113
|
logits = None
|
|
113
114
|
loss = None
|
|
115
|
+
token_accuracy = None
|
|
114
116
|
|
|
115
117
|
if skip_logits and labels is None and shift_labels is None:
|
|
116
118
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -120,7 +122,7 @@ def lce_forward(
|
|
|
120
122
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
121
123
|
|
|
122
124
|
if skip_logits:
|
|
123
|
-
|
|
125
|
+
result = LigerForCausalLMLoss(
|
|
124
126
|
hidden_states=kept_hidden_states,
|
|
125
127
|
lm_head_weight=self.lm_head.weight,
|
|
126
128
|
labels=labels,
|
|
@@ -128,6 +130,7 @@ def lce_forward(
|
|
|
128
130
|
hidden_size=self.config.text_config.hidden_size,
|
|
129
131
|
**lm_kwargs,
|
|
130
132
|
)
|
|
133
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
131
134
|
|
|
132
135
|
else:
|
|
133
136
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -138,13 +141,17 @@ def lce_forward(
|
|
|
138
141
|
|
|
139
142
|
if not return_dict:
|
|
140
143
|
output = (logits,) + outputs[1:]
|
|
141
|
-
|
|
144
|
+
output = (loss,) + output if loss is not None else output
|
|
145
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
146
|
+
return output
|
|
142
147
|
|
|
143
|
-
|
|
148
|
+
# Return custom output class with token_accuracy field
|
|
149
|
+
return LigerInternVLCausalLMOutputWithPast(
|
|
144
150
|
loss=loss,
|
|
145
151
|
logits=logits,
|
|
146
152
|
past_key_values=outputs.past_key_values,
|
|
147
153
|
hidden_states=outputs.hidden_states,
|
|
148
154
|
attentions=outputs.attentions,
|
|
149
155
|
image_hidden_states=outputs.image_hidden_states,
|
|
156
|
+
token_accuracy=token_accuracy,
|
|
150
157
|
)
|
|
@@ -15,6 +15,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
15
15
|
from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
|
|
16
16
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
17
17
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
18
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
19
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
18
20
|
from liger_kernel.utils import PEFT_AVAILABLE
|
|
19
21
|
|
|
20
22
|
if TYPE_CHECKING:
|
|
@@ -162,7 +164,7 @@ def lce_forward(
|
|
|
162
164
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
163
165
|
skip_logits: Optional[bool] = None,
|
|
164
166
|
**kwargs,
|
|
165
|
-
) -> Union[Tuple,
|
|
167
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
166
168
|
r"""
|
|
167
169
|
Args:
|
|
168
170
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -228,6 +230,8 @@ def lce_forward(
|
|
|
228
230
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
229
231
|
logits = None
|
|
230
232
|
loss = None
|
|
233
|
+
token_accuracy = None
|
|
234
|
+
|
|
231
235
|
# if in training mode, don't materialize logits
|
|
232
236
|
if skip_logits and labels is None and shift_labels is None:
|
|
233
237
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -236,8 +240,9 @@ def lce_forward(
|
|
|
236
240
|
# By default, if in training mode, don't materialize logits
|
|
237
241
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
238
242
|
|
|
243
|
+
# Compute loss
|
|
239
244
|
if skip_logits:
|
|
240
|
-
|
|
245
|
+
result = lce_maybe_trainable_lm_head(
|
|
241
246
|
self,
|
|
242
247
|
hidden_states=kept_hidden_states,
|
|
243
248
|
hidden_size=self.config.hidden_size,
|
|
@@ -245,7 +250,7 @@ def lce_forward(
|
|
|
245
250
|
shift_labels=shift_labels,
|
|
246
251
|
**kwargs,
|
|
247
252
|
)
|
|
248
|
-
|
|
253
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
249
254
|
else:
|
|
250
255
|
logits = self.lm_head(kept_hidden_states)
|
|
251
256
|
if labels is not None or shift_labels is not None:
|
|
@@ -259,14 +264,18 @@ def lce_forward(
|
|
|
259
264
|
|
|
260
265
|
if not return_dict:
|
|
261
266
|
output = (logits,) + outputs[1:]
|
|
262
|
-
|
|
267
|
+
output = ((loss,) + output) if loss is not None else output
|
|
268
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
269
|
+
return output
|
|
263
270
|
|
|
264
|
-
|
|
271
|
+
# Return custom output class with token_accuracy field
|
|
272
|
+
return LigerCausalLMOutputWithPast(
|
|
265
273
|
loss=loss,
|
|
266
274
|
logits=logits,
|
|
267
275
|
past_key_values=outputs.past_key_values,
|
|
268
276
|
hidden_states=outputs.hidden_states,
|
|
269
277
|
attentions=outputs.attentions,
|
|
278
|
+
token_accuracy=token_accuracy,
|
|
270
279
|
)
|
|
271
280
|
|
|
272
281
|
|
|
@@ -6,9 +6,10 @@ from typing import Union
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
8
|
from transformers.cache_utils import Cache
|
|
9
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
def lce_forward(
|
|
@@ -26,7 +27,7 @@ def lce_forward(
|
|
|
26
27
|
cache_position: Optional[torch.LongTensor] = None,
|
|
27
28
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
28
29
|
**kwargs,
|
|
29
|
-
) -> Union[Tuple,
|
|
30
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
30
31
|
r"""
|
|
31
32
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
32
33
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -78,9 +79,11 @@ def lce_forward(
|
|
|
78
79
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
79
80
|
logits = None
|
|
80
81
|
loss = None
|
|
82
|
+
token_accuracy = None
|
|
81
83
|
|
|
84
|
+
# Compute loss
|
|
82
85
|
if self.training and (labels is not None or shift_labels is not None):
|
|
83
|
-
|
|
86
|
+
result = LigerForCausalLMLoss(
|
|
84
87
|
hidden_states=kept_hidden_states,
|
|
85
88
|
lm_head_weight=self.lm_head.weight,
|
|
86
89
|
labels=labels,
|
|
@@ -88,6 +91,7 @@ def lce_forward(
|
|
|
88
91
|
hidden_size=self.config.hidden_size,
|
|
89
92
|
**kwargs,
|
|
90
93
|
)
|
|
94
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
91
95
|
|
|
92
96
|
else: # if in inference mode materialize logits
|
|
93
97
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -100,10 +104,18 @@ def lce_forward(
|
|
|
100
104
|
**kwargs,
|
|
101
105
|
)
|
|
102
106
|
|
|
103
|
-
|
|
107
|
+
if not return_dict:
|
|
108
|
+
output = (logits,) + outputs[1:]
|
|
109
|
+
output = ((loss,) + output) if loss is not None else output
|
|
110
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
111
|
+
return output
|
|
112
|
+
|
|
113
|
+
# Return custom output class with token_accuracy field
|
|
114
|
+
return LigerCausalLMOutputWithPast(
|
|
104
115
|
loss=loss,
|
|
105
116
|
logits=logits,
|
|
106
117
|
past_key_values=outputs.past_key_values,
|
|
107
118
|
hidden_states=outputs.hidden_states,
|
|
108
119
|
attentions=outputs.attentions,
|
|
120
|
+
token_accuracy=token_accuracy,
|
|
109
121
|
)
|
|
@@ -11,6 +11,8 @@ from transformers.utils import is_torchdynamo_compiling
|
|
|
11
11
|
|
|
12
12
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
13
13
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
|
+
from liger_kernel.transformers.model.output_classes import LigerLlavaCausalLMOutputWithPast
|
|
14
16
|
|
|
15
17
|
|
|
16
18
|
def lce_forward_deprecated(
|
|
@@ -215,7 +217,7 @@ def lce_forward(
|
|
|
215
217
|
image_sizes: torch.Tensor = None,
|
|
216
218
|
skip_logits: Optional[bool] = None,
|
|
217
219
|
**lm_kwargs,
|
|
218
|
-
) -> Union[Tuple,
|
|
220
|
+
) -> Union[Tuple, LigerLlavaCausalLMOutputWithPast]:
|
|
219
221
|
r"""
|
|
220
222
|
Args:
|
|
221
223
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -293,6 +295,7 @@ def lce_forward(
|
|
|
293
295
|
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
294
296
|
logits = None
|
|
295
297
|
loss = None
|
|
298
|
+
token_accuracy = None
|
|
296
299
|
|
|
297
300
|
if skip_logits and labels is None and shift_labels is None:
|
|
298
301
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -302,7 +305,7 @@ def lce_forward(
|
|
|
302
305
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
303
306
|
|
|
304
307
|
if skip_logits:
|
|
305
|
-
|
|
308
|
+
result = LigerForCausalLMLoss(
|
|
306
309
|
hidden_states=kept_hidden_states,
|
|
307
310
|
lm_head_weight=self.lm_head.weight,
|
|
308
311
|
labels=labels,
|
|
@@ -310,6 +313,7 @@ def lce_forward(
|
|
|
310
313
|
hidden_size=self.config.text_config.hidden_size,
|
|
311
314
|
**lm_kwargs,
|
|
312
315
|
)
|
|
316
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
313
317
|
|
|
314
318
|
else:
|
|
315
319
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -324,13 +328,17 @@ def lce_forward(
|
|
|
324
328
|
|
|
325
329
|
if not return_dict:
|
|
326
330
|
output = (logits,) + outputs[1:]
|
|
327
|
-
|
|
331
|
+
output = (loss,) + output if loss is not None else output
|
|
332
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
333
|
+
return output
|
|
328
334
|
|
|
329
|
-
|
|
335
|
+
# Return custom output class with token_accuracy field
|
|
336
|
+
return LigerLlavaCausalLMOutputWithPast(
|
|
330
337
|
loss=loss,
|
|
331
338
|
logits=logits,
|
|
332
339
|
past_key_values=outputs.past_key_values,
|
|
333
340
|
hidden_states=outputs.hidden_states,
|
|
334
341
|
attentions=outputs.attentions,
|
|
335
342
|
image_hidden_states=outputs.image_hidden_states,
|
|
343
|
+
token_accuracy=token_accuracy,
|
|
336
344
|
)
|