liger-kernel-nightly 0.6.3.dev20251028065948__py3-none-any.whl → 0.6.3.dev20251028143010__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2038,6 +2038,7 @@ def apply_liger_kernel_to_internvl(
2038
2038
  cross_entropy: bool = False,
2039
2039
  fused_linear_cross_entropy: bool = True,
2040
2040
  rms_norm: bool = True,
2041
+ layer_norm: bool = True,
2041
2042
  model: Optional[PreTrainedModel] = None,
2042
2043
  **kwargs,
2043
2044
  ) -> None:
@@ -2048,37 +2049,60 @@ def apply_liger_kernel_to_internvl(
2048
2049
  NOTE: InternVL is not available in transformers<4.52.1
2049
2050
 
2050
2051
  Args:
2051
- rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
2052
2052
  cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
2053
2053
  fused_linear_cross_entropy (bool):
2054
2054
  Whether to apply Liger's fused linear cross entropy loss. Default is True.
2055
2055
  `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
2056
2056
  If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
2057
2057
  rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
2058
- swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
2058
+ layer_norm (bool): Whether to apply Liger's LayerNorm. Default is True.
2059
2059
  model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
2060
2060
  loaded. Default is None.
2061
2061
  """
2062
2062
  assert not (cross_entropy and fused_linear_cross_entropy), (
2063
2063
  "cross_entropy and fused_linear_cross_entropy cannot both be True."
2064
2064
  )
2065
+ import torch.nn as torch_nn
2065
2066
 
2066
2067
  from transformers.models.internvl import modeling_internvl
2068
+ from transformers.models.internvl.modeling_internvl import InternVLForConditionalGeneration
2069
+ from transformers.models.internvl.modeling_internvl import InternVLModel
2070
+ from transformers.models.internvl.modeling_internvl import InternVLVisionLayer
2071
+ from transformers.models.internvl.modeling_internvl import InternVLVisionModel
2072
+ from transformers.models.internvl.modeling_internvl import InternVLVisionRMSNorm
2067
2073
 
2074
+ from liger_kernel.transformers.layer_norm import LigerLayerNorm
2068
2075
  from liger_kernel.transformers.model.internvl import lce_forward as internvl_lce_forward
2076
+ from liger_kernel.transformers.rms_norm import LigerRMSNorm
2077
+
2078
+ if layer_norm and model is None:
2079
+ modeling_internvl.nn.LayerNorm = LigerLayerNorm
2069
2080
 
2070
2081
  if cross_entropy:
2071
- logger.warning(TRANSFORMER_DEPRECATION_WARNING)
2072
- modeling_internvl.nn.CrossEntropyLoss = LigerCrossEntropyLoss
2082
+ logger.info("Apply liger cross entropy")
2083
+
2084
+ from transformers.loss.loss_utils import nn
2085
+
2086
+ nn.functional.cross_entropy = liger_cross_entropy
2073
2087
  if fused_linear_cross_entropy:
2074
2088
  modeling_internvl.InternVLForConditionalGeneration.forward = internvl_lce_forward
2075
2089
  if rms_norm:
2076
2090
  modeling_internvl.InternVLVisionRMSNorm = LigerRMSNorm
2077
2091
 
2078
2092
  if model is not None:
2079
- text_model_name, vision_model_name = model.config.text_config.model_type, model.config.vision_config.model_type
2093
+ # The model instance already exists, so we need to additionally patch the
2094
+ # instance variables that reference already-instantiated modules
2095
+ if isinstance(model, (InternVLForConditionalGeneration, InternVLModel)):
2096
+ # NOTE: language_model and visual properties can be accessed throught conditional class.
2097
+ text_model = model.language_model
2098
+ vision_model: InternVLVisionModel = model.vision_tower
2099
+ else:
2100
+ raise TypeError(
2101
+ f"Unsupported internvl model type. `model` must be `InternVLForConditionalGeneration`, `InternVLModel`. Got: {type(model)}"
2102
+ )
2103
+
2104
+ text_model_name = model.config.text_config.model_type
2080
2105
  text_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(text_model_name, None)
2081
- vision_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(vision_model_name, None)
2082
2106
 
2083
2107
  kwargs = {"cross_entropy": False, "fused_linear_cross_entropy": False, **kwargs} | {"rms_norm": rms_norm}
2084
2108
  if text_liger_fn:
@@ -2091,25 +2115,33 @@ def apply_liger_kernel_to_internvl(
2091
2115
  f"These parameters are not supported by {text_model_name}. Enter the remaining {list(text_kwargs.keys())} except for {list(remain_params)}\n"
2092
2116
  f"Parameters accepted by {text_model_name}: {list(accept_params.keys())}"
2093
2117
  )
2094
- text_kwargs["model"] = model.language_model
2118
+ text_kwargs["model"] = text_model
2095
2119
  text_liger_fn(**text_kwargs)
2096
2120
  elif text_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
2097
2121
  logger.warning(f"{text_model_name} is not supported by Liger kernel.")
2098
2122
 
2099
- if vision_liger_fn:
2100
- accept_params = inspect.signature(vision_liger_fn).parameters
2101
- remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
2102
- vision_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
2123
+ # Patch vision model RMSNorm layers
2124
+ if rms_norm:
2125
+ for encoder_layer in vision_model.encoder.layer:
2126
+ encoder_layer: InternVLVisionLayer
2127
+ if isinstance(encoder_layer.attention.q_norm, InternVLVisionRMSNorm):
2128
+ _patch_rms_norm_module(encoder_layer.attention.q_norm)
2129
+ if isinstance(encoder_layer.attention.k_norm, InternVLVisionRMSNorm):
2130
+ _patch_rms_norm_module(encoder_layer.attention.k_norm)
2103
2131
 
2104
- if remain_params:
2105
- logger.warning(
2106
- f"These parameters are not supported by {vision_model_name}. Enter the remaining {list(vision_kwargs.keys())} except for {list(remain_params)}\n"
2107
- f"Parameters accepted by {vision_model_name}: {list(accept_params.keys())}"
2108
- )
2109
- vision_kwargs["model"] = model.vision_tower
2110
- vision_liger_fn(**vision_kwargs)
2111
- elif vision_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
2112
- logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
2132
+ # Patch vision model LayerNorm layers
2133
+ if layer_norm:
2134
+ # Patch layernorm
2135
+ if isinstance(vision_model.layernorm, torch_nn.LayerNorm):
2136
+ _patch_layer_norm_module(vision_model.layernorm)
2137
+
2138
+ # Patch encoder layers
2139
+ for encoder_layer in vision_model.encoder.layer:
2140
+ encoder_layer: InternVLVisionLayer
2141
+ if isinstance(encoder_layer.layernorm_before, torch_nn.LayerNorm):
2142
+ _patch_layer_norm_module(encoder_layer.layernorm_before)
2143
+ if isinstance(encoder_layer.layernorm_after, torch_nn.LayerNorm):
2144
+ _patch_layer_norm_module(encoder_layer.layernorm_after)
2113
2145
 
2114
2146
 
2115
2147
  def apply_liger_kernel_to_smolvlm(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.3.dev20251028065948
3
+ Version: 0.6.3.dev20251028143010
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -59,7 +59,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
59
59
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
60
60
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
61
61
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
62
- liger_kernel/transformers/monkey_patch.py,sha256=NWinrSt9_h4aF2Uax8jZ3of_z1LGmJY_yW9fW6EDieU,115774
62
+ liger_kernel/transformers/monkey_patch.py,sha256=3DLFMn2VusVcR6C5YElfpHJBRoJxvho0a2JoVdGqxHA,117266
63
63
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
64
64
  liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
65
65
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
@@ -103,9 +103,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
103
103
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
104
104
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
105
105
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
106
- liger_kernel_nightly-0.6.3.dev20251028065948.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
107
- liger_kernel_nightly-0.6.3.dev20251028065948.dist-info/METADATA,sha256=2Y-q-3hxi7UILSX1Yn7BTGAqoAhQTpb8mUAyAxagTTQ,24777
108
- liger_kernel_nightly-0.6.3.dev20251028065948.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
109
- liger_kernel_nightly-0.6.3.dev20251028065948.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
110
- liger_kernel_nightly-0.6.3.dev20251028065948.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
111
- liger_kernel_nightly-0.6.3.dev20251028065948.dist-info/RECORD,,
106
+ liger_kernel_nightly-0.6.3.dev20251028143010.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
107
+ liger_kernel_nightly-0.6.3.dev20251028143010.dist-info/METADATA,sha256=ckNo8u8rwQ-UDuznWIg4v4k6i6eePViOYnkx9cshTd8,24777
108
+ liger_kernel_nightly-0.6.3.dev20251028143010.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
109
+ liger_kernel_nightly-0.6.3.dev20251028143010.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
110
+ liger_kernel_nightly-0.6.3.dev20251028143010.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
111
+ liger_kernel_nightly-0.6.3.dev20251028143010.dist-info/RECORD,,