liger-kernel-nightly 0.6.2.dev20251024142419__py3-none-any.whl → 0.6.2.dev20251027145804__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +101 -0
- {liger_kernel_nightly-0.6.2.dev20251024142419.dist-info → liger_kernel_nightly-0.6.2.dev20251027145804.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.6.2.dev20251024142419.dist-info → liger_kernel_nightly-0.6.2.dev20251027145804.dist-info}/RECORD +9 -8
- {liger_kernel_nightly-0.6.2.dev20251024142419.dist-info → liger_kernel_nightly-0.6.2.dev20251027145804.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251024142419.dist-info → liger_kernel_nightly-0.6.2.dev20251027145804.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251024142419.dist-info → liger_kernel_nightly-0.6.2.dev20251027145804.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20251024142419.dist-info → liger_kernel_nightly-0.6.2.dev20251027145804.dist-info}/top_level.txt +0 -0
|
@@ -57,6 +57,7 @@ if TYPE_CHECKING:
|
|
|
57
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
58
58
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
59
59
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
60
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
60
61
|
|
|
61
62
|
|
|
62
63
|
# Check if 'transformers' is installed
|
|
@@ -120,6 +121,7 @@ def __getattr__(name: str):
|
|
|
120
121
|
"apply_liger_kernel_to_qwen3_moe",
|
|
121
122
|
"apply_liger_kernel_to_qwen3_next",
|
|
122
123
|
"apply_liger_kernel_to_smollm3",
|
|
124
|
+
"apply_liger_kernel_to_smolvlm",
|
|
123
125
|
}
|
|
124
126
|
|
|
125
127
|
if name in monkey_patch_symbols:
|
|
@@ -189,5 +191,6 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
189
191
|
"apply_liger_kernel_to_qwen3_moe",
|
|
190
192
|
"apply_liger_kernel_to_qwen3_next",
|
|
191
193
|
"apply_liger_kernel_to_smollm3",
|
|
194
|
+
"apply_liger_kernel_to_smolvlm",
|
|
192
195
|
]
|
|
193
196
|
)
|
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from transformers.models.smolvlm.modeling_smolvlm import SmolVLMCausalLMOutputWithPast
|
|
8
|
+
from transformers.processing_utils import Unpack
|
|
9
|
+
from transformers.utils.generic import can_return_tuple
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from transformers.cache_utils import Cache
|
|
15
|
+
from transformers.utils.generic import TransformersKwargs
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
# Forward adapted to enable fused Linear + CE without materializing logits.
|
|
19
|
+
# Mirrors the pattern used for other multimodal models (e.g., InternVL, LLaVA).
|
|
20
|
+
@can_return_tuple
|
|
21
|
+
def lce_forward(
|
|
22
|
+
self,
|
|
23
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
24
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
25
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
26
|
+
past_key_values: Optional["Cache"] = None,
|
|
27
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
28
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
29
|
+
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
|
30
|
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
|
31
|
+
labels: Optional[torch.LongTensor] = None,
|
|
32
|
+
use_cache: Optional[bool] = None,
|
|
33
|
+
output_attentions: Optional[bool] = None,
|
|
34
|
+
output_hidden_states: Optional[bool] = None,
|
|
35
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
36
|
+
return_dict: Optional[bool] = None,
|
|
37
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
38
|
+
skip_logits: Optional[bool] = None, # Added argument for liger-kernel
|
|
39
|
+
**lm_kwargs: Unpack["TransformersKwargs"], # renamed from kwargs
|
|
40
|
+
) -> Union[tuple, SmolVLMCausalLMOutputWithPast]:
|
|
41
|
+
r"""
|
|
42
|
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
43
|
+
Mask to avoid performing attention on padding pixel indices.
|
|
44
|
+
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
45
|
+
The hidden states of the image encoder after modality projection.
|
|
46
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
47
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
48
|
+
config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
|
|
49
|
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
50
|
+
|
|
51
|
+
Example:
|
|
52
|
+
|
|
53
|
+
```python
|
|
54
|
+
>>> import requests
|
|
55
|
+
>>> import torch
|
|
56
|
+
>>> from PIL import Image
|
|
57
|
+
>>> from io import BytesIO
|
|
58
|
+
|
|
59
|
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
60
|
+
>>> from transformers.image_utils import load_image
|
|
61
|
+
|
|
62
|
+
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
|
|
63
|
+
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
|
|
64
|
+
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
|
|
65
|
+
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
|
|
66
|
+
|
|
67
|
+
>>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
|
68
|
+
>>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", dtype=torch.bfloat16, device_map="auto")
|
|
69
|
+
|
|
70
|
+
>>> # Create inputs
|
|
71
|
+
>>> messages = [
|
|
72
|
+
... {
|
|
73
|
+
... "role": "user",
|
|
74
|
+
... "content": [
|
|
75
|
+
... {"type": "video", "path": path/to/video},
|
|
76
|
+
... {"type": "text", "text": "What is happening in this video?"},
|
|
77
|
+
... ]
|
|
78
|
+
... }
|
|
79
|
+
... ]
|
|
80
|
+
|
|
81
|
+
>>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True)
|
|
82
|
+
|
|
83
|
+
>>> # Generate
|
|
84
|
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=256)
|
|
85
|
+
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
86
|
+
|
|
87
|
+
>>> print(generated_texts)
|
|
88
|
+
```"""
|
|
89
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
90
|
+
output_hidden_states = (
|
|
91
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
92
|
+
)
|
|
93
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
94
|
+
|
|
95
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
96
|
+
outputs = self.model(
|
|
97
|
+
input_ids=input_ids,
|
|
98
|
+
attention_mask=attention_mask,
|
|
99
|
+
position_ids=position_ids,
|
|
100
|
+
past_key_values=past_key_values,
|
|
101
|
+
inputs_embeds=inputs_embeds,
|
|
102
|
+
pixel_values=pixel_values,
|
|
103
|
+
pixel_attention_mask=pixel_attention_mask,
|
|
104
|
+
image_hidden_states=image_hidden_states,
|
|
105
|
+
use_cache=use_cache,
|
|
106
|
+
output_attentions=output_attentions,
|
|
107
|
+
output_hidden_states=output_hidden_states,
|
|
108
|
+
cache_position=cache_position,
|
|
109
|
+
return_dict=True,
|
|
110
|
+
**lm_kwargs,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# Copied from llava.py
|
|
114
|
+
hidden_states = outputs[0]
|
|
115
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
116
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
117
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
118
|
+
|
|
119
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
120
|
+
logits = None
|
|
121
|
+
loss = None
|
|
122
|
+
|
|
123
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
124
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
125
|
+
|
|
126
|
+
if skip_logits is None:
|
|
127
|
+
# By default, if in training mode, don't materialize logits
|
|
128
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
129
|
+
|
|
130
|
+
if skip_logits:
|
|
131
|
+
loss = LigerForCausalLMLoss(
|
|
132
|
+
hidden_states=kept_hidden_states,
|
|
133
|
+
lm_head_weight=self.lm_head.weight,
|
|
134
|
+
labels=labels,
|
|
135
|
+
shift_labels=shift_labels,
|
|
136
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
137
|
+
**lm_kwargs,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
else:
|
|
141
|
+
logits = self.lm_head(kept_hidden_states)
|
|
142
|
+
if labels is not None or shift_labels is not None:
|
|
143
|
+
loss = self.loss_function(
|
|
144
|
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
if not return_dict:
|
|
148
|
+
output = (logits,) + outputs[1:]
|
|
149
|
+
return (loss,) + output if loss is not None else output
|
|
150
|
+
|
|
151
|
+
return SmolVLMCausalLMOutputWithPast(
|
|
152
|
+
loss=loss,
|
|
153
|
+
logits=logits,
|
|
154
|
+
past_key_values=outputs.past_key_values,
|
|
155
|
+
hidden_states=outputs.hidden_states,
|
|
156
|
+
attentions=outputs.attentions,
|
|
157
|
+
image_hidden_states=outputs.image_hidden_states,
|
|
158
|
+
)
|
|
@@ -2112,6 +2112,106 @@ def apply_liger_kernel_to_internvl(
|
|
|
2112
2112
|
logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
|
|
2113
2113
|
|
|
2114
2114
|
|
|
2115
|
+
def apply_liger_kernel_to_smolvlm(
|
|
2116
|
+
cross_entropy: bool = False,
|
|
2117
|
+
fused_linear_cross_entropy: bool = True,
|
|
2118
|
+
rms_norm: bool = True,
|
|
2119
|
+
layer_norm: bool = True,
|
|
2120
|
+
model: Optional[PreTrainedModel] = None,
|
|
2121
|
+
**kwargs,
|
|
2122
|
+
) -> None:
|
|
2123
|
+
"""
|
|
2124
|
+
Apply Liger kernels to replace original implementation in HuggingFace SmolVLM models.
|
|
2125
|
+
Due to the characteristics of SmolVLM, the model must be passed to apply Liger-Kernel's patch to other models connected to SmolVLM.
|
|
2126
|
+
However, if an LM not supported by Liger-Kernel is connected to SmolVLM, unexpected side effects may occur.
|
|
2127
|
+
NOTE: SmolVLM is not available in transformers<4.50.0
|
|
2128
|
+
|
|
2129
|
+
Args:
|
|
2130
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
2131
|
+
fused_linear_cross_entropy (bool):
|
|
2132
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
2133
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
2134
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
2135
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
2136
|
+
layer_norm (bool): Whether to apply Liger's LayerNorm. Default is True.
|
|
2137
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
2138
|
+
loaded. Default is None.
|
|
2139
|
+
"""
|
|
2140
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
2141
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
2142
|
+
)
|
|
2143
|
+
|
|
2144
|
+
from transformers.models.smolvlm import modeling_smolvlm
|
|
2145
|
+
from transformers.models.smolvlm.modeling_smolvlm import SmolVLMEncoderLayer
|
|
2146
|
+
from transformers.models.smolvlm.modeling_smolvlm import SmolVLMForConditionalGeneration
|
|
2147
|
+
from transformers.models.smolvlm.modeling_smolvlm import SmolVLMModel
|
|
2148
|
+
from transformers.models.smolvlm.modeling_smolvlm import SmolVLMVisionTransformer
|
|
2149
|
+
|
|
2150
|
+
from liger_kernel.transformers.model.smolvlm import lce_forward as smolvlm_lce_forward
|
|
2151
|
+
|
|
2152
|
+
# Patch LayerNorm for vision model if model is not provided (pre-initialization)
|
|
2153
|
+
if layer_norm and model is None:
|
|
2154
|
+
modeling_smolvlm.nn.LayerNorm = LigerLayerNorm
|
|
2155
|
+
|
|
2156
|
+
if cross_entropy:
|
|
2157
|
+
logger.info("Apply liger cross entropy")
|
|
2158
|
+
|
|
2159
|
+
from transformers.loss.loss_utils import nn
|
|
2160
|
+
|
|
2161
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
2162
|
+
if fused_linear_cross_entropy:
|
|
2163
|
+
if model is not None:
|
|
2164
|
+
model.forward = MethodType(smolvlm_lce_forward, model)
|
|
2165
|
+
else:
|
|
2166
|
+
modeling_smolvlm.SmolVLMForConditionalGeneration.forward = smolvlm_lce_forward
|
|
2167
|
+
if rms_norm:
|
|
2168
|
+
modeling_smolvlm.SmolVLMRMSNorm = LigerRMSNorm
|
|
2169
|
+
|
|
2170
|
+
if model is not None:
|
|
2171
|
+
# The model instance already exists, so we need to additionally patch the
|
|
2172
|
+
# instance variables that reference already-instantiated modules
|
|
2173
|
+
if isinstance(model, SmolVLMForConditionalGeneration):
|
|
2174
|
+
text_model = model.model.text_model
|
|
2175
|
+
vision_model: SmolVLMVisionTransformer = model.model.vision_model
|
|
2176
|
+
elif isinstance(model, SmolVLMModel):
|
|
2177
|
+
text_model = model.text_model
|
|
2178
|
+
vision_model: SmolVLMVisionTransformer = model.vision_model
|
|
2179
|
+
else:
|
|
2180
|
+
raise TypeError(
|
|
2181
|
+
f"Unsupported smolvlm model type. `model` must be `SmolVLMForConditionalGeneration`, `SmolVLMModel`. Got: {type(model)}"
|
|
2182
|
+
)
|
|
2183
|
+
|
|
2184
|
+
text_model_name = model.config.text_config.model_type
|
|
2185
|
+
text_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(text_model_name, None)
|
|
2186
|
+
|
|
2187
|
+
kwargs = {"cross_entropy": False, "fused_linear_cross_entropy": False, **kwargs} | {"rms_norm": rms_norm}
|
|
2188
|
+
if text_liger_fn:
|
|
2189
|
+
accept_params = inspect.signature(text_liger_fn).parameters
|
|
2190
|
+
remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
|
|
2191
|
+
text_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
|
|
2192
|
+
|
|
2193
|
+
if remain_params:
|
|
2194
|
+
logger.warning(
|
|
2195
|
+
f"These parameters are not supported by {text_model_name}. Enter the remaining {list(text_kwargs.keys())} except for {list(remain_params)}\n"
|
|
2196
|
+
f"Parameters accepted by {text_model_name}: {list(accept_params.keys())}"
|
|
2197
|
+
)
|
|
2198
|
+
text_kwargs["model"] = text_model
|
|
2199
|
+
text_liger_fn(**text_kwargs)
|
|
2200
|
+
elif text_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
|
|
2201
|
+
logger.warning(f"{text_model_name} is not supported by Liger kernel.")
|
|
2202
|
+
|
|
2203
|
+
# Patch vision model LayerNorm layers
|
|
2204
|
+
if layer_norm:
|
|
2205
|
+
# Patch post_layernorm
|
|
2206
|
+
_patch_layer_norm_module(vision_model.post_layernorm)
|
|
2207
|
+
|
|
2208
|
+
# Patch encoder layers
|
|
2209
|
+
for encoder_layer in vision_model.encoder.layers:
|
|
2210
|
+
encoder_layer: SmolVLMEncoderLayer
|
|
2211
|
+
_patch_layer_norm_module(encoder_layer.layer_norm1)
|
|
2212
|
+
_patch_layer_norm_module(encoder_layer.layer_norm2)
|
|
2213
|
+
|
|
2214
|
+
|
|
2115
2215
|
def apply_liger_kernel_to_falcon_h1(
|
|
2116
2216
|
rope: bool = True,
|
|
2117
2217
|
cross_entropy: bool = False,
|
|
@@ -2304,6 +2404,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
2304
2404
|
"phi3": apply_liger_kernel_to_phi3,
|
|
2305
2405
|
"paligemma": apply_liger_kernel_to_paligemma,
|
|
2306
2406
|
"falcon_h1": apply_liger_kernel_to_falcon_h1,
|
|
2407
|
+
"smolvlm": apply_liger_kernel_to_smolvlm,
|
|
2307
2408
|
}
|
|
2308
2409
|
|
|
2309
2410
|
|
|
@@ -42,7 +42,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
|
42
42
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
|
43
43
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
|
44
44
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
|
45
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
45
|
+
liger_kernel/transformers/__init__.py,sha256=MAAd-YqPdG-j_sbrIE43nrICpA4xTg-dx6M06KWLMFU,9486
|
|
46
46
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
|
47
47
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
|
48
48
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
|
@@ -59,7 +59,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
|
|
|
59
59
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
|
60
60
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
|
61
61
|
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
|
62
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
62
|
+
liger_kernel/transformers/monkey_patch.py,sha256=NWinrSt9_h4aF2Uax8jZ3of_z1LGmJY_yW9fW6EDieU,115774
|
|
63
63
|
liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
|
|
64
64
|
liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
|
|
65
65
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
|
@@ -98,13 +98,14 @@ liger_kernel/transformers/model/qwen3.py,sha256=Q2aOg5erPrgVgRcqJm8sefLSDtvU1AD5
|
|
|
98
98
|
liger_kernel/transformers/model/qwen3_moe.py,sha256=1CwTMCNFDYsjGoa_aHFBagtC5HuJTV-s0__5UvcjD3A,5686
|
|
99
99
|
liger_kernel/transformers/model/qwen3_next.py,sha256=7To7azriAogxeE7oEvByKztH9154dnDiDVNHHm7PZK4,5632
|
|
100
100
|
liger_kernel/transformers/model/smollm3.py,sha256=0KWVkDtXbjsBKhJnaquV6vUUYyLtfmNwYH0sxJt-qTk,7667
|
|
101
|
+
liger_kernel/transformers/model/smolvlm.py,sha256=yFpPKawLVo3zXzLjM7Y_T8FyRrPxVyp-YPFMM8m3k0c,6734
|
|
101
102
|
liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
|
|
102
103
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
|
103
104
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
|
104
105
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
|
105
|
-
liger_kernel_nightly-0.6.2.
|
|
106
|
-
liger_kernel_nightly-0.6.2.
|
|
107
|
-
liger_kernel_nightly-0.6.2.
|
|
108
|
-
liger_kernel_nightly-0.6.2.
|
|
109
|
-
liger_kernel_nightly-0.6.2.
|
|
110
|
-
liger_kernel_nightly-0.6.2.
|
|
106
|
+
liger_kernel_nightly-0.6.2.dev20251027145804.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
107
|
+
liger_kernel_nightly-0.6.2.dev20251027145804.dist-info/METADATA,sha256=fTlOtX-hdTLxvZv3VJoN6zxxhJHCx_UV61frAGslfx8,24777
|
|
108
|
+
liger_kernel_nightly-0.6.2.dev20251027145804.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
109
|
+
liger_kernel_nightly-0.6.2.dev20251027145804.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
|
110
|
+
liger_kernel_nightly-0.6.2.dev20251027145804.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
111
|
+
liger_kernel_nightly-0.6.2.dev20251027145804.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|