liger-kernel-nightly 0.6.2.dev20251016055812__py3-none-any.whl → 0.6.2.dev20251020204513__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/model/qwen3_next.py +134 -0
- liger_kernel/transformers/monkey_patch.py +92 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- {liger_kernel_nightly-0.6.2.dev20251016055812.dist-info → liger_kernel_nightly-0.6.2.dev20251020204513.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.6.2.dev20251016055812.dist-info → liger_kernel_nightly-0.6.2.dev20251020204513.dist-info}/RECORD +10 -9
- {liger_kernel_nightly-0.6.2.dev20251016055812.dist-info → liger_kernel_nightly-0.6.2.dev20251020204513.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251016055812.dist-info → liger_kernel_nightly-0.6.2.dev20251020204513.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251016055812.dist-info → liger_kernel_nightly-0.6.2.dev20251020204513.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20251016055812.dist-info → liger_kernel_nightly-0.6.2.dev20251020204513.dist-info}/top_level.txt +0 -0
|
@@ -55,6 +55,7 @@ if TYPE_CHECKING:
|
|
|
55
55
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
56
56
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
57
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
58
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
58
59
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
59
60
|
|
|
60
61
|
|
|
@@ -117,6 +118,7 @@ def __getattr__(name: str):
|
|
|
117
118
|
"apply_liger_kernel_to_qwen2_vl",
|
|
118
119
|
"apply_liger_kernel_to_qwen3",
|
|
119
120
|
"apply_liger_kernel_to_qwen3_moe",
|
|
121
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
120
122
|
"apply_liger_kernel_to_smollm3",
|
|
121
123
|
}
|
|
122
124
|
|
|
@@ -185,6 +187,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
185
187
|
"apply_liger_kernel_to_qwen2_vl",
|
|
186
188
|
"apply_liger_kernel_to_qwen3",
|
|
187
189
|
"apply_liger_kernel_to_qwen3_moe",
|
|
190
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
188
191
|
"apply_liger_kernel_to_smollm3",
|
|
189
192
|
]
|
|
190
193
|
)
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import List
|
|
3
|
+
from typing import Optional
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
9
|
+
from transformers.modeling_outputs import MoeModelOutputWithPast
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from transformers.models.qwen3_next.modeling_qwen3_next import load_balancing_loss_func
|
|
13
|
+
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def lce_forward(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
21
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
22
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
23
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
24
|
+
labels: Optional[torch.LongTensor] = None,
|
|
25
|
+
use_cache: Optional[bool] = None,
|
|
26
|
+
output_attentions: Optional[bool] = None,
|
|
27
|
+
output_hidden_states: Optional[bool] = None,
|
|
28
|
+
output_router_logits: Optional[bool] = None,
|
|
29
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
30
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
31
|
+
skip_logits: Optional[bool] = None,
|
|
32
|
+
**kwargs,
|
|
33
|
+
) -> MoeCausalLMOutputWithPast:
|
|
34
|
+
r"""
|
|
35
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
36
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
37
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
38
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
39
|
+
|
|
40
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
41
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
42
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
43
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
44
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
45
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
|
|
49
|
+
Example:
|
|
50
|
+
|
|
51
|
+
```python
|
|
52
|
+
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
53
|
+
|
|
54
|
+
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
|
|
55
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
|
|
56
|
+
|
|
57
|
+
>>> prompt = "Give me a short introduction to large language model."
|
|
58
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
59
|
+
|
|
60
|
+
>>> # Generate
|
|
61
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
62
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
63
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
64
|
+
```"""
|
|
65
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
66
|
+
output_router_logits = (
|
|
67
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
output_hidden_states = (
|
|
71
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
75
|
+
outputs: MoeModelOutputWithPast = self.model(
|
|
76
|
+
input_ids=input_ids,
|
|
77
|
+
attention_mask=attention_mask,
|
|
78
|
+
position_ids=position_ids,
|
|
79
|
+
past_key_values=past_key_values,
|
|
80
|
+
inputs_embeds=inputs_embeds,
|
|
81
|
+
use_cache=use_cache,
|
|
82
|
+
output_attentions=output_attentions,
|
|
83
|
+
output_hidden_states=output_hidden_states,
|
|
84
|
+
output_router_logits=output_router_logits,
|
|
85
|
+
cache_position=cache_position,
|
|
86
|
+
**kwargs,
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
hidden_states = outputs.last_hidden_state
|
|
90
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
91
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
92
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
93
|
+
|
|
94
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
95
|
+
logits = None
|
|
96
|
+
loss = None
|
|
97
|
+
|
|
98
|
+
if skip_logits is None:
|
|
99
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
100
|
+
|
|
101
|
+
if skip_logits:
|
|
102
|
+
loss = LigerForCausalLMLoss(
|
|
103
|
+
hidden_states=kept_hidden_states,
|
|
104
|
+
lm_head_weight=self.lm_head.weight,
|
|
105
|
+
labels=labels,
|
|
106
|
+
shift_labels=shift_labels,
|
|
107
|
+
hidden_size=self.config.hidden_size,
|
|
108
|
+
**kwargs,
|
|
109
|
+
)
|
|
110
|
+
else: # if in inference model materialize logits
|
|
111
|
+
logits = self.lm_head(kept_hidden_states)
|
|
112
|
+
if labels is not None or shift_labels is not None:
|
|
113
|
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
|
114
|
+
|
|
115
|
+
aux_loss = None
|
|
116
|
+
if output_router_logits:
|
|
117
|
+
aux_loss = load_balancing_loss_func(
|
|
118
|
+
outputs.router_logits,
|
|
119
|
+
self.num_experts,
|
|
120
|
+
self.num_experts_per_tok,
|
|
121
|
+
attention_mask,
|
|
122
|
+
)
|
|
123
|
+
if labels is not None:
|
|
124
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
125
|
+
|
|
126
|
+
return MoeCausalLMOutputWithPast(
|
|
127
|
+
loss=loss,
|
|
128
|
+
aux_loss=aux_loss,
|
|
129
|
+
logits=logits,
|
|
130
|
+
past_key_values=outputs.past_key_values,
|
|
131
|
+
hidden_states=outputs.hidden_states,
|
|
132
|
+
attentions=outputs.attentions,
|
|
133
|
+
router_logits=outputs.router_logits,
|
|
134
|
+
)
|
|
@@ -2180,6 +2180,97 @@ def apply_liger_kernel_to_falcon_h1(
|
|
|
2180
2180
|
_patch_rms_norm_module(decoder_layer.pre_ff_layernorm)
|
|
2181
2181
|
|
|
2182
2182
|
|
|
2183
|
+
def apply_liger_kernel_to_qwen3_next(
|
|
2184
|
+
rope: bool = False,
|
|
2185
|
+
cross_entropy: bool = False,
|
|
2186
|
+
fused_linear_cross_entropy: bool = True,
|
|
2187
|
+
rms_norm: bool = True,
|
|
2188
|
+
swiglu: bool = True,
|
|
2189
|
+
model: PreTrainedModel = None,
|
|
2190
|
+
) -> None:
|
|
2191
|
+
"""
|
|
2192
|
+
Apply Liger kernels to replace original implementation in HuggingFace GLM4v_moe models.
|
|
2193
|
+
|
|
2194
|
+
Args:
|
|
2195
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is False.
|
|
2196
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
2197
|
+
fused_linear_cross_entropy (bool):
|
|
2198
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
2199
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
2200
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
2201
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
2202
|
+
swiglu (bool): Whether to apply Liger's SwiGLUMLP. Default is True.
|
|
2203
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
2204
|
+
loaded. Default is None.
|
|
2205
|
+
"""
|
|
2206
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
2207
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
2208
|
+
)
|
|
2209
|
+
|
|
2210
|
+
from transformers.models.qwen3_next import modeling_qwen3_next
|
|
2211
|
+
from transformers.models.qwen3_next.modeling_qwen3_next import Qwen3NextForCausalLM
|
|
2212
|
+
from transformers.models.qwen3_next.modeling_qwen3_next import Qwen3NextMLP
|
|
2213
|
+
from transformers.models.qwen3_next.modeling_qwen3_next import Qwen3NextModel
|
|
2214
|
+
from transformers.models.qwen3_next.modeling_qwen3_next import Qwen3NextSparseMoeBlock
|
|
2215
|
+
|
|
2216
|
+
from liger_kernel.transformers.model.qwen3_next import lce_forward as qwen3_next_lce_forward
|
|
2217
|
+
from liger_kernel.transformers.rms_norm import LigerRMSNormForQwen3Next
|
|
2218
|
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP
|
|
2219
|
+
|
|
2220
|
+
if rope:
|
|
2221
|
+
# It might enocunter nan issue
|
|
2222
|
+
# modeling_qwen3_next.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
2223
|
+
raise NotImplementedError("liger_rotary_pos_emb is not available for Qwen3Next models.")
|
|
2224
|
+
if rms_norm:
|
|
2225
|
+
modeling_qwen3_next.Qwen3NextRMSNorm = LigerRMSNormForQwen3Next
|
|
2226
|
+
if cross_entropy:
|
|
2227
|
+
from transformers.loss.loss_utils import nn
|
|
2228
|
+
|
|
2229
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
|
2230
|
+
if fused_linear_cross_entropy:
|
|
2231
|
+
if model is not None:
|
|
2232
|
+
if isinstance(model, Qwen3NextForCausalLM):
|
|
2233
|
+
model.forward = MethodType(qwen3_next_lce_forward, model)
|
|
2234
|
+
else:
|
|
2235
|
+
raise TypeError(
|
|
2236
|
+
f" fused_linear_cross_entropy is only applicable on Qwen3NextForCausalLM. Got: {type(model)}"
|
|
2237
|
+
)
|
|
2238
|
+
else:
|
|
2239
|
+
modeling_qwen3_next.Qwen3NextForCausalLM.forward = qwen3_next_lce_forward
|
|
2240
|
+
if swiglu:
|
|
2241
|
+
# Qwen3MoeMLP and Qwen3NextMLP are identical, hence we reuse LigerQwen3MoeSwiGLUMLP
|
|
2242
|
+
modeling_qwen3_next.Qwen3NextMLP = LigerQwen3MoeSwiGLUMLP
|
|
2243
|
+
|
|
2244
|
+
if model is not None:
|
|
2245
|
+
# The model instance already exists, so we need to additionally patch the
|
|
2246
|
+
# instance variables that reference already-instantiated modules
|
|
2247
|
+
if isinstance(model, (Qwen3NextForCausalLM, Qwen3NextModel)):
|
|
2248
|
+
base_model: Qwen3NextForCausalLM = getattr(model, model.base_model_prefix, model)
|
|
2249
|
+
else:
|
|
2250
|
+
raise TypeError(
|
|
2251
|
+
f"Unsupported qwen3_next model type. `model` must be `Qwen3NextForCausalLM`, `Qwen3NextModel`. Got: {type(model)}"
|
|
2252
|
+
)
|
|
2253
|
+
|
|
2254
|
+
if rms_norm:
|
|
2255
|
+
_patch_rms_norm_module(base_model.norm)
|
|
2256
|
+
|
|
2257
|
+
for decoder_layer in base_model.layers:
|
|
2258
|
+
if rms_norm:
|
|
2259
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
2260
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
2261
|
+
|
|
2262
|
+
# Qwen3MoeMLP and Qwen3NextMLP are identical, hence we reuse LigerQwen3MoeSwiGLUMLP
|
|
2263
|
+
if swiglu:
|
|
2264
|
+
if isinstance(decoder_layer.mlp, Qwen3NextMLP):
|
|
2265
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerQwen3MoeSwiGLUMLP)
|
|
2266
|
+
if isinstance(decoder_layer.mlp, Qwen3NextSparseMoeBlock):
|
|
2267
|
+
_patch_swiglu_module(decoder_layer.mlp.shared_expert, LigerQwen3MoeSwiGLUMLP)
|
|
2268
|
+
experts = getattr(decoder_layer.mlp, "experts", None)
|
|
2269
|
+
if experts is not None:
|
|
2270
|
+
for expert in experts:
|
|
2271
|
+
_patch_swiglu_module(expert, LigerQwen3MoeSwiGLUMLP)
|
|
2272
|
+
|
|
2273
|
+
|
|
2183
2274
|
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
2184
2275
|
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
2185
2276
|
"gemma": apply_liger_kernel_to_gemma,
|
|
@@ -2207,6 +2298,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
2207
2298
|
"qwen2_vl_text": apply_liger_kernel_to_qwen2_vl,
|
|
2208
2299
|
"qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
|
|
2209
2300
|
"qwen2_5_vl_text": apply_liger_kernel_to_qwen2_5_vl,
|
|
2301
|
+
"qwen3_next": apply_liger_kernel_to_qwen3_next,
|
|
2210
2302
|
"smollm3": apply_liger_kernel_to_smollm3,
|
|
2211
2303
|
"phi3": apply_liger_kernel_to_phi3,
|
|
2212
2304
|
"paligemma": apply_liger_kernel_to_paligemma,
|
|
@@ -77,3 +77,10 @@ class LigerRMSNormForGlm4(LigerRMSNorm):
|
|
|
77
77
|
self, hidden_size, eps=1e-6, offset=0.0, casting_mode="llama", init_fn="ones", in_place=False, row_mode=None
|
|
78
78
|
):
|
|
79
79
|
super().__init__(hidden_size, eps, offset, casting_mode, init_fn, in_place, row_mode)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class LigerRMSNormForQwen3Next(LigerRMSNorm):
|
|
83
|
+
def __init__(
|
|
84
|
+
self, hidden_size, eps=1e-6, offset=1.0, casting_mode="gemma", init_fn="zeros", in_place=False, row_mode=None
|
|
85
|
+
):
|
|
86
|
+
super().__init__(hidden_size, eps, offset, casting_mode, init_fn, in_place, row_mode)
|
|
@@ -42,7 +42,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
|
42
42
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
|
43
43
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
|
44
44
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
|
45
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
45
|
+
liger_kernel/transformers/__init__.py,sha256=JovUTGIMKlQGiuoHIICmJqwBWUc9lkdZFNHBToR8bpY,9301
|
|
46
46
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
|
47
47
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
|
48
48
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
|
@@ -59,11 +59,11 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
|
|
|
59
59
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
|
60
60
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
|
61
61
|
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
|
62
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
62
|
+
liger_kernel/transformers/monkey_patch.py,sha256=bD9m04L2EYPzzkA0yEqpw7uR3ktbtwG5nSE-JaT54xc,110694
|
|
63
63
|
liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
|
|
64
64
|
liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
|
|
65
65
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
|
66
|
-
liger_kernel/transformers/rms_norm.py,sha256=
|
|
66
|
+
liger_kernel/transformers/rms_norm.py,sha256=HwddVqrqS58jE-M2_4NkFGARtCDBhGnkKyjBN9b3FYI,3004
|
|
67
67
|
liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
|
|
68
68
|
liger_kernel/transformers/softmax.py,sha256=yadlAgE4V2JByMwrDDa2s5SUBp8Jgd57xwnVvAWoBaI,264
|
|
69
69
|
liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsAKUsYA7vj8,403
|
|
@@ -96,14 +96,15 @@ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=Ea3zvL1FJfjlaerpeXCq-1zmorr
|
|
|
96
96
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=ZeasFPGs-bxm2Y_E15mo0YNx5wwtKYDV-bjVKjkLPBk,6018
|
|
97
97
|
liger_kernel/transformers/model/qwen3.py,sha256=Q2aOg5erPrgVgRcqJm8sefLSDtvU1AD5B7aJnP7mRMM,4956
|
|
98
98
|
liger_kernel/transformers/model/qwen3_moe.py,sha256=1CwTMCNFDYsjGoa_aHFBagtC5HuJTV-s0__5UvcjD3A,5686
|
|
99
|
+
liger_kernel/transformers/model/qwen3_next.py,sha256=7To7azriAogxeE7oEvByKztH9154dnDiDVNHHm7PZK4,5632
|
|
99
100
|
liger_kernel/transformers/model/smollm3.py,sha256=0KWVkDtXbjsBKhJnaquV6vUUYyLtfmNwYH0sxJt-qTk,7667
|
|
100
101
|
liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
|
|
101
102
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
|
102
103
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
|
103
104
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
|
104
|
-
liger_kernel_nightly-0.6.2.
|
|
105
|
-
liger_kernel_nightly-0.6.2.
|
|
106
|
-
liger_kernel_nightly-0.6.2.
|
|
107
|
-
liger_kernel_nightly-0.6.2.
|
|
108
|
-
liger_kernel_nightly-0.6.2.
|
|
109
|
-
liger_kernel_nightly-0.6.2.
|
|
105
|
+
liger_kernel_nightly-0.6.2.dev20251020204513.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
106
|
+
liger_kernel_nightly-0.6.2.dev20251020204513.dist-info/METADATA,sha256=Iz9vUDX5WkcRqJmwTuwtffQruLUeavL67r296BZJYrc,24777
|
|
107
|
+
liger_kernel_nightly-0.6.2.dev20251020204513.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
108
|
+
liger_kernel_nightly-0.6.2.dev20251020204513.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
|
109
|
+
liger_kernel_nightly-0.6.2.dev20251020204513.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
110
|
+
liger_kernel_nightly-0.6.2.dev20251020204513.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|