liger-kernel-nightly 0.6.2.dev20251013144132__py3-none-any.whl → 0.6.2.dev20251014053719__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,386 @@
1
+ import operator
2
+
3
+ import torch
4
+ import triton
5
+ import triton.language as tl
6
+
7
+ from liger_kernel.ops.utils import calculate_settings
8
+ from liger_kernel.ops.utils import compare_version
9
+ from liger_kernel.ops.utils import ensure_contiguous
10
+
11
+ if compare_version("triton", operator.ge, "3.0.0"):
12
+ try:
13
+ from triton.language.extra.libdevice import rsqrt
14
+ except ModuleNotFoundError:
15
+ from triton.language.extra.cuda.libdevice import rsqrt
16
+ else:
17
+ from triton.language.math import rsqrt
18
+
19
+
20
+ @triton.jit
21
+ def _poly_norm_forward_kernel(
22
+ Y_ptr,
23
+ Y_row_stride,
24
+ X_ptr,
25
+ X_row_stride,
26
+ W_ptr, # weight: [3] for [w0, w1, w2]
27
+ B_ptr, # bias: scalar
28
+ RSTD_ptr, # cache rstd for backward: shape (n_rows, 3)
29
+ RSTD_row_stride,
30
+ n_cols,
31
+ eps,
32
+ BLOCK_SIZE: tl.constexpr,
33
+ ):
34
+ """
35
+ PolyNorm formula:
36
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
37
+ where norm(u) = u / sqrt(mean(u²) + ε)
38
+
39
+ Reference:
40
+ 1. https://github.com/BryceZhuo/PolyCom/
41
+ 2. https://arxiv.org/pdf/2411.03884
42
+
43
+ Cache rstd values for backward pass
44
+ """
45
+ row_idx = tl.program_id(0).to(tl.int64)
46
+ col_offsets = tl.arange(0, BLOCK_SIZE)
47
+ mask = col_offsets < n_cols
48
+
49
+ # Load pointers
50
+ Y_ptr += row_idx * Y_row_stride
51
+ X_ptr += row_idx * X_row_stride
52
+ RSTD_ptr += row_idx * RSTD_row_stride
53
+
54
+ # Load input row
55
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
56
+
57
+ # Load weights and bias
58
+ w0 = tl.load(W_ptr + 0)
59
+ w1 = tl.load(W_ptr + 1)
60
+ w2 = tl.load(W_ptr + 2)
61
+ b = tl.load(B_ptr)
62
+
63
+ # Compute x³, x², x
64
+ X_pow3 = X_row * X_row * X_row
65
+ X_pow2 = X_row * X_row
66
+ X_pow1 = X_row
67
+
68
+ # Compute norm(x³): norm(u) = u * rsqrt(mean(u²) + eps)
69
+ mean_square_3 = tl.sum(X_pow3 * X_pow3, axis=0) / n_cols
70
+ rstd_3 = rsqrt(mean_square_3 + eps)
71
+ norm_x3 = X_pow3 * rstd_3
72
+
73
+ # Compute norm(x²)
74
+ mean_square_2 = tl.sum(X_pow2 * X_pow2, axis=0) / n_cols
75
+ rstd_2 = rsqrt(mean_square_2 + eps)
76
+ norm_x2 = X_pow2 * rstd_2
77
+
78
+ # Compute norm(x)
79
+ mean_square_1 = tl.sum(X_pow1 * X_pow1, axis=0) / n_cols
80
+ rstd_1 = rsqrt(mean_square_1 + eps)
81
+ norm_x1 = X_pow1 * rstd_1
82
+
83
+ # Cache rstd values for backward
84
+ tl.store(RSTD_ptr + 0, rstd_3)
85
+ tl.store(RSTD_ptr + 1, rstd_2)
86
+ tl.store(RSTD_ptr + 2, rstd_1)
87
+
88
+ # Compute output: y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
89
+ Y_row = w0 * norm_x3 + w1 * norm_x2 + w2 * norm_x1 + b
90
+
91
+ # Store output
92
+ tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
93
+
94
+
95
+ @triton.jit
96
+ def _poly_norm_backward_kernel(
97
+ dY_ptr,
98
+ dY_row_stride,
99
+ dX_ptr,
100
+ dX_row_stride,
101
+ X_ptr,
102
+ X_row_stride,
103
+ W_ptr,
104
+ RSTD_ptr,
105
+ RSTD_row_stride,
106
+ dW_ptr, # shape: (n_programs, 3)
107
+ dW_row_stride,
108
+ dB_ptr, # shape: (n_programs,)
109
+ n_rows,
110
+ n_cols,
111
+ rows_per_program: tl.constexpr,
112
+ BLOCK_SIZE: tl.constexpr,
113
+ ):
114
+ """
115
+ PolyNorm Backward Kernel Gradient:
116
+ ∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
117
+
118
+ where:
119
+ - D_p = RMS(x^p) = 1/rstd_p
120
+ - S_p = sum(grad * x^p) over the row
121
+ - d = n_cols
122
+ - p ∈ {3, 2, 1}
123
+ """
124
+ row_block_id = tl.program_id(0).to(tl.int64)
125
+ row_start = row_block_id * rows_per_program
126
+ row_end = min((row_block_id + 1) * rows_per_program, n_rows)
127
+ col_offsets = tl.arange(0, BLOCK_SIZE)
128
+ mask = col_offsets < n_cols
129
+
130
+ # Initialize accumulators for weight and bias gradients (scalars)
131
+ dW0_acc = 0.0
132
+ dW1_acc = 0.0
133
+ dW2_acc = 0.0
134
+ dB_acc = 0.0
135
+
136
+ # Load weights
137
+ w0 = tl.load(W_ptr + 0).to(tl.float32)
138
+ w1 = tl.load(W_ptr + 1).to(tl.float32)
139
+ w2 = tl.load(W_ptr + 2).to(tl.float32)
140
+
141
+ dY_ptr += row_start * dY_row_stride
142
+ dX_ptr += row_start * dX_row_stride
143
+ X_ptr += row_start * X_row_stride
144
+ RSTD_ptr += row_start * RSTD_row_stride
145
+
146
+ for _ in range(row_start, row_end):
147
+ # Load input and gradient
148
+ dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
149
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
150
+
151
+ # Load cached rstd values
152
+ rstd_3 = tl.load(RSTD_ptr + 0).to(tl.float32)
153
+ rstd_2 = tl.load(RSTD_ptr + 1).to(tl.float32)
154
+ rstd_1 = tl.load(RSTD_ptr + 2).to(tl.float32)
155
+
156
+ # Compute powers
157
+ X_pow3 = X_row * X_row * X_row
158
+ X_pow2 = X_row * X_row
159
+ X_pow1 = X_row
160
+
161
+ # Accumulate bias gradient: dB = sum(dY)
162
+ dB_acc += tl.sum(dY_row, axis=0)
163
+
164
+ # Compute gradient w.r.t. input using closed-form formula
165
+ # For p=3: ∂L/∂x from w0 * norm(x³)
166
+ S_3 = tl.sum(dY_row * X_pow3, axis=0) # scalar
167
+ grad_x_3 = w0 * (
168
+ 3.0 * X_pow2 * rstd_3 * dY_row
169
+ - (3.0 / n_cols) * X_row * X_row * X_row * X_row * X_row * (rstd_3 * rstd_3 * rstd_3) * S_3
170
+ )
171
+
172
+ # For p=2: ∂L/∂x from w1 * norm(x²)
173
+ S_2 = tl.sum(dY_row * X_pow2, axis=0) # scalar
174
+ grad_x_2 = w1 * (
175
+ 2.0 * X_row * rstd_2 * dY_row - (2.0 / n_cols) * X_row * X_row * X_row * (rstd_2 * rstd_2 * rstd_2) * S_2
176
+ )
177
+
178
+ # For p=1: ∂L/∂x from w2 * norm(x)
179
+ S_1 = tl.sum(dY_row * X_pow1, axis=0) # scalar
180
+ grad_x_1 = w2 * (1.0 * rstd_1 * dY_row - (1.0 / n_cols) * X_row * (rstd_1 * rstd_1 * rstd_1) * S_1)
181
+
182
+ # Accumulate weight gradients using closed-form: dW_p = rstd_p * S_p
183
+ dW0_acc += rstd_3 * S_3
184
+ dW1_acc += rstd_2 * S_2
185
+ dW2_acc += rstd_1 * S_1
186
+
187
+ # Total gradient
188
+ dX_row = grad_x_3 + grad_x_2 + grad_x_1
189
+
190
+ # Store gradient
191
+ tl.store(dX_ptr + col_offsets, dX_row, mask=mask)
192
+
193
+ # Update pointers
194
+ dY_ptr += dY_row_stride
195
+ dX_ptr += dX_row_stride
196
+ X_ptr += X_row_stride
197
+ RSTD_ptr += RSTD_row_stride
198
+
199
+ # Store accumulated gradients (scalars)
200
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 0, dW0_acc)
201
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 1, dW1_acc)
202
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 2, dW2_acc)
203
+ tl.store(dB_ptr + row_block_id, dB_acc)
204
+
205
+
206
+ def poly_norm_forward(X, W, B, eps=1e-6):
207
+ """
208
+ PolyNorm Forward Pass
209
+
210
+ Args:
211
+ X: input tensor of shape (*, H) where H is hidden dimension
212
+ W: weight tensor of shape (3,) for [w0, w1, w2]
213
+ B: bias scalar tensor
214
+ eps: epsilon for numerical stability
215
+
216
+ Returns:
217
+ Y: output tensor of same shape as X
218
+ X: reshaped input (for backward)
219
+ RSTD: cached rstd values (for backward)
220
+ BLOCK_SIZE: block size used
221
+ num_warps: number of warps used
222
+ """
223
+ shape = X.shape
224
+ dim = shape[-1]
225
+ X = X.view(-1, dim)
226
+ n_rows, n_cols = X.shape
227
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
228
+
229
+ # RSTD is to cache rstd for each row
230
+ Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
231
+ RSTD = torch.empty((n_rows, 3), dtype=torch.float32, device=X.device)
232
+
233
+ # Check constraints
234
+ assert W.shape[0] == 3, "Weight tensor must have shape (3,)"
235
+ assert B.numel() == 1, "Bias must be a scalar"
236
+
237
+ # XPU-specific optimization
238
+ kernel_args = {}
239
+ if X.device.type == "xpu":
240
+ kernel_args["grf_mode"] = "large"
241
+
242
+ # Launch kernel
243
+ _poly_norm_forward_kernel[(n_rows,)](
244
+ Y,
245
+ Y.stride(0),
246
+ X,
247
+ X.stride(0),
248
+ W,
249
+ B,
250
+ RSTD,
251
+ RSTD.stride(0),
252
+ n_cols,
253
+ eps,
254
+ BLOCK_SIZE=BLOCK_SIZE,
255
+ num_warps=num_warps,
256
+ **kernel_args,
257
+ )
258
+
259
+ return Y.view(*shape), X, RSTD, BLOCK_SIZE, num_warps
260
+
261
+
262
+ def poly_norm_backward(dY, X, W, RSTD, BLOCK_SIZE, num_warps, in_place):
263
+ """
264
+ PolyNorm Backward Pass
265
+
266
+ Args:
267
+ dY: gradient of output
268
+ X: input tensor (already reshaped to 2D)
269
+ W: weight tensor
270
+ RSTD: cached rstd values from forward
271
+ BLOCK_SIZE: block size from forward
272
+ num_warps: number of warps from forward
273
+ in_place: whether to in-place modify dY to store dX (saves memory)
274
+
275
+ Returns:
276
+ dX: gradient w.r.t. input
277
+ dW: gradient w.r.t. weight
278
+ dB: gradient w.r.t. bias
279
+ """
280
+ shape = dY.shape
281
+ dim = shape[-1]
282
+ dY = dY.view(-1, dim)
283
+ n_rows, n_cols = dY.shape
284
+
285
+ # Get number of SMs for parallelization
286
+ import math
287
+
288
+ sm_count = 1
289
+ if X.device.type == "cuda":
290
+ sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
291
+ elif X.device.type == "xpu":
292
+ sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
293
+
294
+ # Allocate or reuse gradients
295
+ if in_place is True:
296
+ dX = dY
297
+ else:
298
+ dX = torch.zeros_like(dY)
299
+
300
+ _dW = torch.empty((sm_count, 3), dtype=torch.float32, device=W.device)
301
+ _dB = torch.empty((sm_count,), dtype=torch.float32, device=W.device)
302
+
303
+ rows_per_program = math.ceil(n_rows / sm_count)
304
+ grid = (sm_count,)
305
+
306
+ # XPU-specific optimization
307
+ kernel_args = {}
308
+ if X.device.type == "xpu":
309
+ kernel_args["grf_mode"] = "large"
310
+
311
+ # Launch backward kernel
312
+ _poly_norm_backward_kernel[grid](
313
+ dY,
314
+ dY.stride(0),
315
+ dX,
316
+ dX.stride(0),
317
+ X,
318
+ X.stride(0),
319
+ W,
320
+ RSTD,
321
+ RSTD.stride(0),
322
+ _dW,
323
+ _dW.stride(0),
324
+ _dB,
325
+ n_rows,
326
+ n_cols,
327
+ rows_per_program,
328
+ BLOCK_SIZE=BLOCK_SIZE,
329
+ num_warps=num_warps,
330
+ **kernel_args,
331
+ )
332
+
333
+ # Reduce gradients across SMs
334
+ dX = dX.view(*shape)
335
+ dW = _dW.sum(dim=0).to(W.dtype)
336
+ dB = _dB.sum().to(W.dtype)
337
+
338
+ return dX, dW, dB
339
+
340
+
341
+ class LigerPolyNormFunction(torch.autograd.Function):
342
+ """
343
+ PolyNorm Function with forward and backward pass
344
+
345
+ PolyNorm formula:
346
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
347
+ where norm(u) = u / sqrt(mean(u²) + ε)
348
+
349
+ Backward uses closed-form gradient:
350
+ ∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
351
+ """
352
+
353
+ @staticmethod
354
+ @ensure_contiguous
355
+ def forward(ctx, X, W, B, eps=1e-6, in_place=True):
356
+ """
357
+ Args:
358
+ X: input tensor of shape (B, T, H) or (BxT, H)
359
+ W: weight tensor of shape (3,) for [w0, w1, w2]
360
+ B: bias scalar
361
+ eps: epsilon for numerical stability
362
+ in_place: whether to in-place modify grad_output in backward (saves memory)
363
+
364
+ Returns:
365
+ Y: output tensor of same shape as X
366
+ """
367
+ Y, X, RSTD, BLOCK_SIZE, num_warps = poly_norm_forward(X, W, B, eps)
368
+ ctx.BLOCK_SIZE = BLOCK_SIZE
369
+ ctx.num_warps = num_warps
370
+ ctx.in_place = in_place
371
+ ctx.save_for_backward(X, W, RSTD)
372
+ return Y
373
+
374
+ @staticmethod
375
+ @ensure_contiguous
376
+ def backward(ctx, grad_output):
377
+ """
378
+ Args:
379
+ grad_output: gradient of output
380
+
381
+ Returns:
382
+ dX, dW, dB: gradients w.r.t. X, W, B
383
+ """
384
+ X, W, RSTD = ctx.saved_tensors
385
+ dX, dW, dB = poly_norm_backward(grad_output, X, W, RSTD, ctx.BLOCK_SIZE, ctx.num_warps, ctx.in_place)
386
+ return dX, dW, dB, None, None
@@ -15,6 +15,7 @@ from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
15
15
  from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
16
16
  from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
17
17
  from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
18
+ from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
18
19
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
19
20
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
20
21
  from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
@@ -137,6 +138,7 @@ __all__ = [
137
138
  "LigerJSD",
138
139
  "LigerLayerNorm",
139
140
  "LigerFusedAddRMSNorm",
141
+ "LigerPolyNorm",
140
142
  "LigerRMSNorm",
141
143
  "liger_rotary_pos_emb",
142
144
  "liger_llama4_text_rotary_pos_emb",
@@ -12,6 +12,7 @@ from liger_kernel.ops.jsd import LigerJSDFunction
12
12
  from liger_kernel.ops.kl_div import LigerKLDivLossFunction
13
13
  from liger_kernel.ops.layer_norm import LigerLayerNormFunction
14
14
  from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
15
+ from liger_kernel.ops.poly_norm import LigerPolyNormFunction
15
16
  from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
16
17
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
17
18
  from liger_kernel.ops.rope import LigerRopeFunction
@@ -258,6 +259,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
258
259
  return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
259
260
 
260
261
 
262
+ def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
263
+ return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
264
+
265
+
261
266
  def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
262
267
  return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
263
268
 
@@ -0,0 +1,42 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops.poly_norm import LigerPolyNormFunction
5
+
6
+
7
+ class LigerPolyNorm(nn.Module):
8
+ """
9
+ PolyNorm layer wrapper for Liger kernel.
10
+
11
+ PolyNorm formula:
12
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
13
+ where norm(u) = u / sqrt(mean(u²) + ε)
14
+
15
+ Reference:
16
+ https://github.com/BryceZhuo/PolyCom/
17
+
18
+ Args:
19
+ eps: epsilon for numerical stability (default: 1e-6)
20
+ in_place: whether to in-place modify grad_output in backward to save memory (default: False).
21
+ Set to True to save memory if grad_output is not needed elsewhere.
22
+ """
23
+
24
+ def __init__(self, eps=1e-6, in_place=True):
25
+ super().__init__()
26
+ # Align with PolyCom reference: initialize weights to (1/3, 1/3, 1/3) and bias to 1.0
27
+ self.weight = nn.Parameter(torch.full((3,), 1.0 / 3.0))
28
+ self.bias = nn.Parameter(torch.tensor(1.0))
29
+ self.variance_epsilon = eps
30
+ self.in_place = in_place
31
+
32
+ def forward(self, hidden_states):
33
+ return LigerPolyNormFunction.apply(
34
+ hidden_states,
35
+ self.weight,
36
+ self.bias,
37
+ self.variance_epsilon,
38
+ self.in_place,
39
+ )
40
+
41
+ def extra_repr(self):
42
+ return f"weight_shape={tuple(self.weight.shape)}, eps={self.variance_epsilon}, in_place={self.in_place}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20251013144132
3
+ Version: 0.6.2.dev20251014053719
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -31,6 +31,7 @@ liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,87
31
31
  liger_kernel/ops/layer_norm.py,sha256=WmiORsIyufOhazmYZTPjeSc5Z-xTAYwXAKqUcCv_dlY,9807
32
32
  liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
33
33
  liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
34
+ liger_kernel/ops/poly_norm.py,sha256=MLgI8Ea93fugKibHCUauQ2ASYVXCvpPZe5v3kQZU6po,11152
34
35
  liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
35
36
  liger_kernel/ops/rms_norm.py,sha256=DtvsWN5YktFAoc0JYSAwVeoZfryBFJlX-ipU7ooP01A,18891
36
37
  liger_kernel/ops/rope.py,sha256=v-7JHRrv-5ImoROkpKfl30WwWI4qTa2tAl7zQeB4ml4,8956
@@ -41,12 +42,12 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
41
42
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
42
43
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
43
44
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
44
- liger_kernel/transformers/__init__.py,sha256=h-VQCbsM-T8l8jApA6mTsJdTnd3VeL14pUAdheruaiU,9010
45
+ liger_kernel/transformers/__init__.py,sha256=d0H4knUp93iR3OPR3lpYriZYCvC-w_i2cDTYtcgfhzo,9107
45
46
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
46
47
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
47
48
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
48
49
  liger_kernel/transformers/fsdp.py,sha256=CUiyjTmjkjY7pLXQv8ly9rnzgXw6529csd9pvtJNMYc,3096
49
- liger_kernel/transformers/functional.py,sha256=-vpz95wbv5wLpInjSG06KNHETsEgKnRIiV-lMYHVs68,7841
50
+ liger_kernel/transformers/functional.py,sha256=a8EGYjHDg34rhnaD4JpU8I20XJ7xiqJvqqjoh4NcwYk,8022
50
51
  liger_kernel/transformers/fused_add_rms_norm.py,sha256=7_Bzg-x6lLe6W1qG2DtjDALhEpNZlC6N5GppEs9cTYY,1199
51
52
  liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=toa54dpmJduoZLhU3lJA-HPZ03MYcMKekDWPcdYjvYA,2020
52
53
  liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
@@ -60,6 +61,7 @@ liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC
60
61
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
62
  liger_kernel/transformers/monkey_patch.py,sha256=TUmx8aY0lonyThcATirRBdSs7uItVvnBggohjBItBuQ,106060
62
63
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
64
+ liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
63
65
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
66
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
65
67
  liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
@@ -99,9 +101,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
99
101
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
100
102
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
101
103
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
102
- liger_kernel_nightly-0.6.2.dev20251013144132.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
103
- liger_kernel_nightly-0.6.2.dev20251013144132.dist-info/METADATA,sha256=3lZjwj_uIcS1aYE--_B3JuOh95x-txytvJPkdZGO_QA,24777
104
- liger_kernel_nightly-0.6.2.dev20251013144132.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
105
- liger_kernel_nightly-0.6.2.dev20251013144132.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
106
- liger_kernel_nightly-0.6.2.dev20251013144132.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
107
- liger_kernel_nightly-0.6.2.dev20251013144132.dist-info/RECORD,,
104
+ liger_kernel_nightly-0.6.2.dev20251014053719.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
105
+ liger_kernel_nightly-0.6.2.dev20251014053719.dist-info/METADATA,sha256=e3be0F1h_8UbWvgJ2XF2N2zg40P2H2R-f-o_b3OJguA,24777
106
+ liger_kernel_nightly-0.6.2.dev20251014053719.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
107
+ liger_kernel_nightly-0.6.2.dev20251014053719.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
108
+ liger_kernel_nightly-0.6.2.dev20251014053719.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
109
+ liger_kernel_nightly-0.6.2.dev20251014053719.dist-info/RECORD,,