liger-kernel-nightly 0.6.2.dev20251011154226__py3-none-any.whl → 0.6.2.dev20251011154427__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -45,6 +45,7 @@ def liger_cross_entropy_kernel(
45
45
  BLOCK_SIZE: tl.constexpr,
46
46
  HAS_WEIGHT: tl.constexpr,
47
47
  HAS_SOFTCAPPING: tl.constexpr,
48
+ HAS_GRADIENTS: tl.constexpr,
48
49
  ):
49
50
  """
50
51
  This kernel computes both cross entropy loss and the gradient of the input.
@@ -72,6 +73,7 @@ def liger_cross_entropy_kernel(
72
73
  BLOCK_SIZE (int): The block size for Triton operations.
73
74
  HAS_WEIGHT (bool): The boolean value to determine whether assigning weight to each of the classes.
74
75
  HAS_SOFTCAPPING (bool): The boolean value to determine whether applying soft-capping or not.
76
+ HAS_GRADIENTS (bool): The boolean value to determine whether calculating gradients in forward pass.
75
77
  """
76
78
 
77
79
  # https://github.com/triton-lang/triton/issues/1058
@@ -155,58 +157,58 @@ def liger_cross_entropy_kernel(
155
157
  # For 'sum' reduction, no normalization is applied:
156
158
  # dx_y = softmax(x_y) - 1
157
159
  # dx_i = softmax(x_i), for i ≠ y
158
-
159
- for i in range(0, n_cols, BLOCK_SIZE):
160
- X_offsets = i + tl.arange(0, BLOCK_SIZE)
161
- X_block = tl.load(
162
- X_ptr + X_offsets,
163
- mask=X_offsets < n_cols,
164
- other=float("-inf"),
165
- # Ensure float32 precision for softmax calculation
166
- ).cast(tl.float32)
167
- if HAS_SOFTCAPPING:
168
- intermediate = tanh(X_block / softcap)
169
- X_block = softcap * intermediate
170
-
171
- if not HAS_WEIGHT:
172
- # softmax(x_i)
173
- X_block = tl.exp(X_block - m) / d
174
- # derivative of z-loss: 2 * lse_square_scale * lse * softmax(x_i)
175
- X_block += 2 * lse_square_scale * lse * X_block
176
- # smoothing term
177
- X_block += -eps
178
- # special handle dx_y
179
- X_block = tl.where(X_offsets != y, X_block, X_block - (1 - label_smoothing))
180
- # reduction scale
181
- if reduction == "mean":
182
- X_block = X_block / n_non_ignore
183
- else:
184
- weight_block = tl.load(weight_ptr + X_offsets, mask=X_offsets < n_cols)
185
- softmax_X = tl.exp(X_block - m) / d
186
- # derivative of original_loss
187
- dloss_ori = (1 - label_smoothing) * softmax_X
188
- # specially handle dx_y
189
- dloss_ori = tl.where(X_offsets != y, dloss_ori, dloss_ori - (1 - label_smoothing))
190
- dloss_ori = dloss_ori * weight_y
191
- # derivative of smooth_loss
192
- dloss_smooth = eps * (-weight_block + softmax_X * weight_sum)
193
- # derivative of z-loss
194
- dz_loss = 2 * lse_square_scale * lse * softmax_X
195
- # reduction scale
196
- if reduction == "mean":
197
- dloss_ori = dloss_ori / sum_non_ignore_weight
198
- dloss_smooth = dloss_smooth / sum_non_ignore_weight
199
- # TODO: Implement weighted z_loss. Currently, z_loss is not scaled by weight.
200
- dz_loss = dz_loss / n_non_ignore
201
- # derivative of total_loss
202
- X_block = dloss_ori + dloss_smooth + dz_loss
203
-
204
- # chain rule softcapping
205
- # d(softcap * tanh(x / softcap)) = (1 - tanh^2(x / softcap))
206
- if HAS_SOFTCAPPING:
207
- X_block = X_block * (1 - intermediate * intermediate)
208
-
209
- tl.store(X_ptr + X_offsets, X_block, mask=X_offsets < n_cols)
160
+ if HAS_GRADIENTS:
161
+ for i in range(0, n_cols, BLOCK_SIZE):
162
+ X_offsets = i + tl.arange(0, BLOCK_SIZE)
163
+ X_block = tl.load(
164
+ X_ptr + X_offsets,
165
+ mask=X_offsets < n_cols,
166
+ other=float("-inf"),
167
+ # Ensure float32 precision for softmax calculation
168
+ ).cast(tl.float32)
169
+ if HAS_SOFTCAPPING:
170
+ intermediate = tanh(X_block / softcap)
171
+ X_block = softcap * intermediate
172
+
173
+ if not HAS_WEIGHT:
174
+ # softmax(x_i)
175
+ X_block = tl.exp(X_block - m) / d
176
+ # derivative of z-loss: 2 * lse_square_scale * lse * softmax(x_i)
177
+ X_block += 2 * lse_square_scale * lse * X_block
178
+ # smoothing term
179
+ X_block += -eps
180
+ # special handle dx_y
181
+ X_block = tl.where(X_offsets != y, X_block, X_block - (1 - label_smoothing))
182
+ # reduction scale
183
+ if reduction == "mean":
184
+ X_block = X_block / n_non_ignore
185
+ else:
186
+ weight_block = tl.load(weight_ptr + X_offsets, mask=X_offsets < n_cols)
187
+ softmax_X = tl.exp(X_block - m) / d
188
+ # derivative of original_loss
189
+ dloss_ori = (1 - label_smoothing) * softmax_X
190
+ # specially handle dx_y
191
+ dloss_ori = tl.where(X_offsets != y, dloss_ori, dloss_ori - (1 - label_smoothing))
192
+ dloss_ori = dloss_ori * weight_y
193
+ # derivative of smooth_loss
194
+ dloss_smooth = eps * (-weight_block + softmax_X * weight_sum)
195
+ # derivative of z-loss
196
+ dz_loss = 2 * lse_square_scale * lse * softmax_X
197
+ # reduction scale
198
+ if reduction == "mean":
199
+ dloss_ori = dloss_ori / sum_non_ignore_weight
200
+ dloss_smooth = dloss_smooth / sum_non_ignore_weight
201
+ # TODO: Implement weighted z_loss. Currently, z_loss is not scaled by weight.
202
+ dz_loss = dz_loss / n_non_ignore
203
+ # derivative of total_loss
204
+ X_block = dloss_ori + dloss_smooth + dz_loss
205
+
206
+ # chain rule softcapping
207
+ # d(softcap * tanh(x / softcap)) = (1 - tanh^2(x / softcap))
208
+ if HAS_SOFTCAPPING:
209
+ X_block = X_block * (1 - intermediate * intermediate)
210
+
211
+ tl.store(X_ptr + X_offsets, X_block, mask=X_offsets < n_cols)
210
212
 
211
213
  # We need tl.debug_barrier() to ensure the new result of X_ptr is written as mentioned in
212
214
  # https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/ops/cross_entropy.py#L34
@@ -332,6 +334,7 @@ def cross_entropy_forward(
332
334
  BLOCK_SIZE=BLOCK_SIZE,
333
335
  HAS_WEIGHT=True if weight is not None else False,
334
336
  HAS_SOFTCAPPING=True if softcap is not None else False,
337
+ HAS_GRADIENTS=_input.requires_grad,
335
338
  # TODO: 32 seems to give the best performance
336
339
  # Performance is quite sensitive to num_warps
337
340
  num_warps=32 if not is_hip() else 16,
@@ -150,6 +150,7 @@ def fused_linear_cross_entropy_forward(
150
150
  RETURN_Z_LOSS=return_z_loss,
151
151
  HAS_WEIGHT=True if ce_weight is not None else False,
152
152
  HAS_SOFTCAPPING=True if softcap is not None else False,
153
+ HAS_GRADIENTS=_input.requires_grad,
153
154
  BLOCK_SIZE=BLOCK_SIZE,
154
155
  num_warps=32 if not is_hip() else 16,
155
156
  )
@@ -173,10 +174,10 @@ def fused_linear_cross_entropy_forward(
173
174
 
174
175
  grad_input[start_idx:end_idx] = grad_logits_chunk @ weight
175
176
 
176
- if grad_weight is not None:
177
+ if grad_weight is not None and _input.requires_grad:
177
178
  grad_weight += torch.mm(grad_logits_chunk.t(), _input_chunk).float()
178
179
 
179
- if bias is not None:
180
+ if bias is not None and _input.requires_grad:
180
181
  torch.add(
181
182
  input=grad_bias,
182
183
  other=grad_logits_chunk.sum(dim=0),
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20251011154226
3
+ Version: 0.6.2.dev20251011154427
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -17,10 +17,10 @@ liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsm
17
17
  liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
18
18
  liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZb3KwBvmurM,5385
19
19
  liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- liger_kernel/ops/cross_entropy.py,sha256=e8THGnhOcy_0SbOLABx67HEM7-B8a8pG7nDKbCRpQKM,19123
20
+ liger_kernel/ops/cross_entropy.py,sha256=OVkani9JEmCJ8IHN3UgJKzGW7zxJWDwy1EaWVcbShgQ,19517
21
21
  liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
22
22
  liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
23
- liger_kernel/ops/fused_linear_cross_entropy.py,sha256=6rB3pdwU97Ivl2IHndPJjzhP28E9Fd0pUQcPHLiuCjc,14290
23
+ liger_kernel/ops/fused_linear_cross_entropy.py,sha256=PqIPHU8EjkHRJF6cNZViDucFVOgqo7eanJxB53Npke8,14388
24
24
  liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
25
25
  liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
26
26
  liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
@@ -99,9 +99,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
99
99
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
100
100
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
101
101
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
102
- liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
103
- liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/METADATA,sha256=Cu1iB8uZyEsoDEJqbJYGCxahIaLwCKhvp3M1uxaV1Uk,24777
104
- liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
105
- liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
106
- liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
107
- liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/RECORD,,
102
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
103
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/METADATA,sha256=3CtD4mdR4zhG-Dj4OQESjqTdQrC1_w-gVsOuzIosGW8,24777
104
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
105
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
106
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
107
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD,,