liger-kernel-nightly 0.6.2.dev20251011152316__py3-none-any.whl → 0.6.2.dev20251011154427__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/cross_entropy.py +55 -52
- liger_kernel/ops/fused_linear_cross_entropy.py +3 -2
- liger_kernel/transformers/model/falcon_h1.py +108 -0
- liger_kernel/transformers/monkey_patch.py +8 -4
- {liger_kernel_nightly-0.6.2.dev20251011152316.dist-info → liger_kernel_nightly-0.6.2.dev20251011154427.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.6.2.dev20251011152316.dist-info → liger_kernel_nightly-0.6.2.dev20251011154427.dist-info}/RECORD +10 -9
- {liger_kernel_nightly-0.6.2.dev20251011152316.dist-info → liger_kernel_nightly-0.6.2.dev20251011154427.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011152316.dist-info → liger_kernel_nightly-0.6.2.dev20251011154427.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011152316.dist-info → liger_kernel_nightly-0.6.2.dev20251011154427.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011152316.dist-info → liger_kernel_nightly-0.6.2.dev20251011154427.dist-info}/top_level.txt +0 -0
@@ -45,6 +45,7 @@ def liger_cross_entropy_kernel(
|
|
45
45
|
BLOCK_SIZE: tl.constexpr,
|
46
46
|
HAS_WEIGHT: tl.constexpr,
|
47
47
|
HAS_SOFTCAPPING: tl.constexpr,
|
48
|
+
HAS_GRADIENTS: tl.constexpr,
|
48
49
|
):
|
49
50
|
"""
|
50
51
|
This kernel computes both cross entropy loss and the gradient of the input.
|
@@ -72,6 +73,7 @@ def liger_cross_entropy_kernel(
|
|
72
73
|
BLOCK_SIZE (int): The block size for Triton operations.
|
73
74
|
HAS_WEIGHT (bool): The boolean value to determine whether assigning weight to each of the classes.
|
74
75
|
HAS_SOFTCAPPING (bool): The boolean value to determine whether applying soft-capping or not.
|
76
|
+
HAS_GRADIENTS (bool): The boolean value to determine whether calculating gradients in forward pass.
|
75
77
|
"""
|
76
78
|
|
77
79
|
# https://github.com/triton-lang/triton/issues/1058
|
@@ -155,58 +157,58 @@ def liger_cross_entropy_kernel(
|
|
155
157
|
# For 'sum' reduction, no normalization is applied:
|
156
158
|
# dx_y = softmax(x_y) - 1
|
157
159
|
# dx_i = softmax(x_i), for i ≠ y
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
160
|
+
if HAS_GRADIENTS:
|
161
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
162
|
+
X_offsets = i + tl.arange(0, BLOCK_SIZE)
|
163
|
+
X_block = tl.load(
|
164
|
+
X_ptr + X_offsets,
|
165
|
+
mask=X_offsets < n_cols,
|
166
|
+
other=float("-inf"),
|
167
|
+
# Ensure float32 precision for softmax calculation
|
168
|
+
).cast(tl.float32)
|
169
|
+
if HAS_SOFTCAPPING:
|
170
|
+
intermediate = tanh(X_block / softcap)
|
171
|
+
X_block = softcap * intermediate
|
172
|
+
|
173
|
+
if not HAS_WEIGHT:
|
174
|
+
# softmax(x_i)
|
175
|
+
X_block = tl.exp(X_block - m) / d
|
176
|
+
# derivative of z-loss: 2 * lse_square_scale * lse * softmax(x_i)
|
177
|
+
X_block += 2 * lse_square_scale * lse * X_block
|
178
|
+
# smoothing term
|
179
|
+
X_block += -eps
|
180
|
+
# special handle dx_y
|
181
|
+
X_block = tl.where(X_offsets != y, X_block, X_block - (1 - label_smoothing))
|
182
|
+
# reduction scale
|
183
|
+
if reduction == "mean":
|
184
|
+
X_block = X_block / n_non_ignore
|
185
|
+
else:
|
186
|
+
weight_block = tl.load(weight_ptr + X_offsets, mask=X_offsets < n_cols)
|
187
|
+
softmax_X = tl.exp(X_block - m) / d
|
188
|
+
# derivative of original_loss
|
189
|
+
dloss_ori = (1 - label_smoothing) * softmax_X
|
190
|
+
# specially handle dx_y
|
191
|
+
dloss_ori = tl.where(X_offsets != y, dloss_ori, dloss_ori - (1 - label_smoothing))
|
192
|
+
dloss_ori = dloss_ori * weight_y
|
193
|
+
# derivative of smooth_loss
|
194
|
+
dloss_smooth = eps * (-weight_block + softmax_X * weight_sum)
|
195
|
+
# derivative of z-loss
|
196
|
+
dz_loss = 2 * lse_square_scale * lse * softmax_X
|
197
|
+
# reduction scale
|
198
|
+
if reduction == "mean":
|
199
|
+
dloss_ori = dloss_ori / sum_non_ignore_weight
|
200
|
+
dloss_smooth = dloss_smooth / sum_non_ignore_weight
|
201
|
+
# TODO: Implement weighted z_loss. Currently, z_loss is not scaled by weight.
|
202
|
+
dz_loss = dz_loss / n_non_ignore
|
203
|
+
# derivative of total_loss
|
204
|
+
X_block = dloss_ori + dloss_smooth + dz_loss
|
205
|
+
|
206
|
+
# chain rule softcapping
|
207
|
+
# d(softcap * tanh(x / softcap)) = (1 - tanh^2(x / softcap))
|
208
|
+
if HAS_SOFTCAPPING:
|
209
|
+
X_block = X_block * (1 - intermediate * intermediate)
|
210
|
+
|
211
|
+
tl.store(X_ptr + X_offsets, X_block, mask=X_offsets < n_cols)
|
210
212
|
|
211
213
|
# We need tl.debug_barrier() to ensure the new result of X_ptr is written as mentioned in
|
212
214
|
# https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/ops/cross_entropy.py#L34
|
@@ -332,6 +334,7 @@ def cross_entropy_forward(
|
|
332
334
|
BLOCK_SIZE=BLOCK_SIZE,
|
333
335
|
HAS_WEIGHT=True if weight is not None else False,
|
334
336
|
HAS_SOFTCAPPING=True if softcap is not None else False,
|
337
|
+
HAS_GRADIENTS=_input.requires_grad,
|
335
338
|
# TODO: 32 seems to give the best performance
|
336
339
|
# Performance is quite sensitive to num_warps
|
337
340
|
num_warps=32 if not is_hip() else 16,
|
@@ -150,6 +150,7 @@ def fused_linear_cross_entropy_forward(
|
|
150
150
|
RETURN_Z_LOSS=return_z_loss,
|
151
151
|
HAS_WEIGHT=True if ce_weight is not None else False,
|
152
152
|
HAS_SOFTCAPPING=True if softcap is not None else False,
|
153
|
+
HAS_GRADIENTS=_input.requires_grad,
|
153
154
|
BLOCK_SIZE=BLOCK_SIZE,
|
154
155
|
num_warps=32 if not is_hip() else 16,
|
155
156
|
)
|
@@ -173,10 +174,10 @@ def fused_linear_cross_entropy_forward(
|
|
173
174
|
|
174
175
|
grad_input[start_idx:end_idx] = grad_logits_chunk @ weight
|
175
176
|
|
176
|
-
if grad_weight is not None:
|
177
|
+
if grad_weight is not None and _input.requires_grad:
|
177
178
|
grad_weight += torch.mm(grad_logits_chunk.t(), _input_chunk).float()
|
178
179
|
|
179
|
-
if bias is not None:
|
180
|
+
if bias is not None and _input.requires_grad:
|
180
181
|
torch.add(
|
181
182
|
input=grad_bias,
|
182
183
|
other=grad_logits_chunk.sum(dim=0),
|
@@ -0,0 +1,108 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Union
|
4
|
+
|
5
|
+
import torch
|
6
|
+
|
7
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
8
|
+
|
9
|
+
if TYPE_CHECKING:
|
10
|
+
from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
|
11
|
+
|
12
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
13
|
+
|
14
|
+
|
15
|
+
def lce_forward(
|
16
|
+
self,
|
17
|
+
input_ids: torch.LongTensor = None,
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
20
|
+
past_key_values: Optional["FalconHybridMambaAttentionDynamicCache"] = None,
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
23
|
+
use_cache: Optional[bool] = None,
|
24
|
+
output_attentions: Optional[bool] = None,
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
26
|
+
cache_position: Optional[torch.LongTensor] = None,
|
27
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
28
|
+
skip_logits: Optional[bool] = None,
|
29
|
+
**kwargs,
|
30
|
+
) -> Union[tuple, CausalLMOutputWithPast]:
|
31
|
+
r"""
|
32
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
33
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
34
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
35
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
36
|
+
|
37
|
+
Example:
|
38
|
+
|
39
|
+
```python
|
40
|
+
>>> from transformers import AutoTokenizer, FalconH1ForCausalLM
|
41
|
+
|
42
|
+
>>> model = FalconH1ForCausalLM.from_pretrained("...")
|
43
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("...")
|
44
|
+
|
45
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
46
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
47
|
+
|
48
|
+
>>> # Generate
|
49
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
50
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
51
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
52
|
+
```"""
|
53
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
54
|
+
output_hidden_states = (
|
55
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
56
|
+
)
|
57
|
+
|
58
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
59
|
+
outputs = self.model(
|
60
|
+
input_ids=input_ids,
|
61
|
+
attention_mask=attention_mask,
|
62
|
+
position_ids=position_ids,
|
63
|
+
past_key_values=past_key_values,
|
64
|
+
inputs_embeds=inputs_embeds,
|
65
|
+
use_cache=use_cache,
|
66
|
+
output_attentions=output_attentions,
|
67
|
+
output_hidden_states=output_hidden_states,
|
68
|
+
cache_position=cache_position,
|
69
|
+
**kwargs,
|
70
|
+
)
|
71
|
+
|
72
|
+
hidden_states = outputs[0]
|
73
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
74
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
75
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
76
|
+
|
77
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
78
|
+
logits = None
|
79
|
+
loss = None
|
80
|
+
# if in training mode, don't materialize logits
|
81
|
+
if skip_logits and labels is None:
|
82
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
83
|
+
|
84
|
+
if skip_logits is None:
|
85
|
+
# By default, if in training mode, don't materialize logits
|
86
|
+
skip_logits = self.training and labels is not None
|
87
|
+
|
88
|
+
if skip_logits:
|
89
|
+
loss = LigerForCausalLMLoss(
|
90
|
+
hidden_states=kept_hidden_states,
|
91
|
+
lm_head_weight=self.lm_head.weight,
|
92
|
+
labels=labels,
|
93
|
+
shift_labels=shift_labels,
|
94
|
+
hidden_size=self.config.hidden_size,
|
95
|
+
**kwargs,
|
96
|
+
)
|
97
|
+
else:
|
98
|
+
logits = self.lm_head(kept_hidden_states)
|
99
|
+
if labels is not None or shift_labels is not None:
|
100
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
101
|
+
|
102
|
+
return CausalLMOutputWithPast(
|
103
|
+
loss=loss,
|
104
|
+
logits=logits,
|
105
|
+
past_key_values=outputs.past_key_values,
|
106
|
+
hidden_states=outputs.hidden_states,
|
107
|
+
attentions=outputs.attentions,
|
108
|
+
)
|
@@ -15,6 +15,7 @@ from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
|
15
15
|
from liger_kernel.transformers.functional import liger_cross_entropy
|
16
16
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP
|
17
17
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm
|
18
|
+
from liger_kernel.transformers.model.falcon_h1 import lce_forward as falcon_h1_lce_forward
|
18
19
|
from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
|
19
20
|
from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
|
20
21
|
from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
|
@@ -2109,8 +2110,8 @@ def apply_liger_kernel_to_internvl(
|
|
2109
2110
|
|
2110
2111
|
def apply_liger_kernel_to_falcon_h1(
|
2111
2112
|
rope: bool = True,
|
2112
|
-
cross_entropy: bool =
|
2113
|
-
fused_linear_cross_entropy: bool =
|
2113
|
+
cross_entropy: bool = False,
|
2114
|
+
fused_linear_cross_entropy: bool = True,
|
2114
2115
|
rms_norm: bool = True,
|
2115
2116
|
swiglu: bool = False,
|
2116
2117
|
model: PreTrainedModel = None,
|
@@ -2144,7 +2145,7 @@ def apply_liger_kernel_to_falcon_h1(
|
|
2144
2145
|
logger.info("Apply liger RMSNorm")
|
2145
2146
|
modeling_falcon_h1.FalconH1RMSNorm = LigerRMSNorm
|
2146
2147
|
if swiglu:
|
2147
|
-
|
2148
|
+
logger.warning("LigerSwiGLUMLP is not available for Falcon-H1 models. There will be no effect.")
|
2148
2149
|
|
2149
2150
|
if cross_entropy:
|
2150
2151
|
logger.info("Apply liger cross entropy")
|
@@ -2153,7 +2154,10 @@ def apply_liger_kernel_to_falcon_h1(
|
|
2153
2154
|
nn.functional.cross_entropy = liger_cross_entropy
|
2154
2155
|
|
2155
2156
|
if fused_linear_cross_entropy:
|
2156
|
-
|
2157
|
+
if model is not None:
|
2158
|
+
model.forward = MethodType(falcon_h1_lce_forward, model)
|
2159
|
+
else:
|
2160
|
+
modeling_falcon_h1.FalconH1ForCausalLM.forward = falcon_h1_lce_forward
|
2157
2161
|
|
2158
2162
|
if model is not None:
|
2159
2163
|
# The model instance already exists, so we need to additionally patch the
|
@@ -17,10 +17,10 @@ liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsm
|
|
17
17
|
liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
|
18
18
|
liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZb3KwBvmurM,5385
|
19
19
|
liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
20
|
-
liger_kernel/ops/cross_entropy.py,sha256=
|
20
|
+
liger_kernel/ops/cross_entropy.py,sha256=OVkani9JEmCJ8IHN3UgJKzGW7zxJWDwy1EaWVcbShgQ,19517
|
21
21
|
liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
|
22
22
|
liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
|
23
|
-
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=
|
23
|
+
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=PqIPHU8EjkHRJF6cNZViDucFVOgqo7eanJxB53Npke8,14388
|
24
24
|
liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
|
25
25
|
liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
|
26
26
|
liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
|
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
|
|
58
58
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
59
59
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
60
60
|
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
61
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
61
|
+
liger_kernel/transformers/monkey_patch.py,sha256=L5mq5mL0GC62bxthN7p4Db5l7NogFE-1JsbZsr4GGik,105877
|
62
62
|
liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
|
63
63
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
64
64
|
liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
|
@@ -71,6 +71,7 @@ liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_J
|
|
71
71
|
liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
|
72
72
|
liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
|
73
73
|
liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
74
|
+
liger_kernel/transformers/model/falcon_h1.py,sha256=DTzfT-5OzQ6I-pU80Vn5e5ibd1EOEbJV5cMTJFhfwFg,4302
|
74
75
|
liger_kernel/transformers/model/gemma.py,sha256=WryzpVmCm2H_XgLKNu3jJ6gVawjQDjapTetg4WHlbR4,10078
|
75
76
|
liger_kernel/transformers/model/gemma2.py,sha256=eOQEfJBKezJNNrirhkPSagGxr9qj_y4lENOZgjUZKpE,11471
|
76
77
|
liger_kernel/transformers/model/gemma3.py,sha256=-tvZw88S-STqmvdim-xrZZRJ17KLWoge_73ilIvhpIU,14157
|
@@ -98,9 +99,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
98
99
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
99
100
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
100
101
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
101
|
-
liger_kernel_nightly-0.6.2.
|
102
|
-
liger_kernel_nightly-0.6.2.
|
103
|
-
liger_kernel_nightly-0.6.2.
|
104
|
-
liger_kernel_nightly-0.6.2.
|
105
|
-
liger_kernel_nightly-0.6.2.
|
106
|
-
liger_kernel_nightly-0.6.2.
|
102
|
+
liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
103
|
+
liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/METADATA,sha256=3CtD4mdR4zhG-Dj4OQESjqTdQrC1_w-gVsOuzIosGW8,24777
|
104
|
+
liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
105
|
+
liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
106
|
+
liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
107
|
+
liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|