liger-kernel-nightly 0.6.2.dev20251011152316__py3-none-any.whl → 0.6.2.dev20251011154427__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -45,6 +45,7 @@ def liger_cross_entropy_kernel(
45
45
  BLOCK_SIZE: tl.constexpr,
46
46
  HAS_WEIGHT: tl.constexpr,
47
47
  HAS_SOFTCAPPING: tl.constexpr,
48
+ HAS_GRADIENTS: tl.constexpr,
48
49
  ):
49
50
  """
50
51
  This kernel computes both cross entropy loss and the gradient of the input.
@@ -72,6 +73,7 @@ def liger_cross_entropy_kernel(
72
73
  BLOCK_SIZE (int): The block size for Triton operations.
73
74
  HAS_WEIGHT (bool): The boolean value to determine whether assigning weight to each of the classes.
74
75
  HAS_SOFTCAPPING (bool): The boolean value to determine whether applying soft-capping or not.
76
+ HAS_GRADIENTS (bool): The boolean value to determine whether calculating gradients in forward pass.
75
77
  """
76
78
 
77
79
  # https://github.com/triton-lang/triton/issues/1058
@@ -155,58 +157,58 @@ def liger_cross_entropy_kernel(
155
157
  # For 'sum' reduction, no normalization is applied:
156
158
  # dx_y = softmax(x_y) - 1
157
159
  # dx_i = softmax(x_i), for i ≠ y
158
-
159
- for i in range(0, n_cols, BLOCK_SIZE):
160
- X_offsets = i + tl.arange(0, BLOCK_SIZE)
161
- X_block = tl.load(
162
- X_ptr + X_offsets,
163
- mask=X_offsets < n_cols,
164
- other=float("-inf"),
165
- # Ensure float32 precision for softmax calculation
166
- ).cast(tl.float32)
167
- if HAS_SOFTCAPPING:
168
- intermediate = tanh(X_block / softcap)
169
- X_block = softcap * intermediate
170
-
171
- if not HAS_WEIGHT:
172
- # softmax(x_i)
173
- X_block = tl.exp(X_block - m) / d
174
- # derivative of z-loss: 2 * lse_square_scale * lse * softmax(x_i)
175
- X_block += 2 * lse_square_scale * lse * X_block
176
- # smoothing term
177
- X_block += -eps
178
- # special handle dx_y
179
- X_block = tl.where(X_offsets != y, X_block, X_block - (1 - label_smoothing))
180
- # reduction scale
181
- if reduction == "mean":
182
- X_block = X_block / n_non_ignore
183
- else:
184
- weight_block = tl.load(weight_ptr + X_offsets, mask=X_offsets < n_cols)
185
- softmax_X = tl.exp(X_block - m) / d
186
- # derivative of original_loss
187
- dloss_ori = (1 - label_smoothing) * softmax_X
188
- # specially handle dx_y
189
- dloss_ori = tl.where(X_offsets != y, dloss_ori, dloss_ori - (1 - label_smoothing))
190
- dloss_ori = dloss_ori * weight_y
191
- # derivative of smooth_loss
192
- dloss_smooth = eps * (-weight_block + softmax_X * weight_sum)
193
- # derivative of z-loss
194
- dz_loss = 2 * lse_square_scale * lse * softmax_X
195
- # reduction scale
196
- if reduction == "mean":
197
- dloss_ori = dloss_ori / sum_non_ignore_weight
198
- dloss_smooth = dloss_smooth / sum_non_ignore_weight
199
- # TODO: Implement weighted z_loss. Currently, z_loss is not scaled by weight.
200
- dz_loss = dz_loss / n_non_ignore
201
- # derivative of total_loss
202
- X_block = dloss_ori + dloss_smooth + dz_loss
203
-
204
- # chain rule softcapping
205
- # d(softcap * tanh(x / softcap)) = (1 - tanh^2(x / softcap))
206
- if HAS_SOFTCAPPING:
207
- X_block = X_block * (1 - intermediate * intermediate)
208
-
209
- tl.store(X_ptr + X_offsets, X_block, mask=X_offsets < n_cols)
160
+ if HAS_GRADIENTS:
161
+ for i in range(0, n_cols, BLOCK_SIZE):
162
+ X_offsets = i + tl.arange(0, BLOCK_SIZE)
163
+ X_block = tl.load(
164
+ X_ptr + X_offsets,
165
+ mask=X_offsets < n_cols,
166
+ other=float("-inf"),
167
+ # Ensure float32 precision for softmax calculation
168
+ ).cast(tl.float32)
169
+ if HAS_SOFTCAPPING:
170
+ intermediate = tanh(X_block / softcap)
171
+ X_block = softcap * intermediate
172
+
173
+ if not HAS_WEIGHT:
174
+ # softmax(x_i)
175
+ X_block = tl.exp(X_block - m) / d
176
+ # derivative of z-loss: 2 * lse_square_scale * lse * softmax(x_i)
177
+ X_block += 2 * lse_square_scale * lse * X_block
178
+ # smoothing term
179
+ X_block += -eps
180
+ # special handle dx_y
181
+ X_block = tl.where(X_offsets != y, X_block, X_block - (1 - label_smoothing))
182
+ # reduction scale
183
+ if reduction == "mean":
184
+ X_block = X_block / n_non_ignore
185
+ else:
186
+ weight_block = tl.load(weight_ptr + X_offsets, mask=X_offsets < n_cols)
187
+ softmax_X = tl.exp(X_block - m) / d
188
+ # derivative of original_loss
189
+ dloss_ori = (1 - label_smoothing) * softmax_X
190
+ # specially handle dx_y
191
+ dloss_ori = tl.where(X_offsets != y, dloss_ori, dloss_ori - (1 - label_smoothing))
192
+ dloss_ori = dloss_ori * weight_y
193
+ # derivative of smooth_loss
194
+ dloss_smooth = eps * (-weight_block + softmax_X * weight_sum)
195
+ # derivative of z-loss
196
+ dz_loss = 2 * lse_square_scale * lse * softmax_X
197
+ # reduction scale
198
+ if reduction == "mean":
199
+ dloss_ori = dloss_ori / sum_non_ignore_weight
200
+ dloss_smooth = dloss_smooth / sum_non_ignore_weight
201
+ # TODO: Implement weighted z_loss. Currently, z_loss is not scaled by weight.
202
+ dz_loss = dz_loss / n_non_ignore
203
+ # derivative of total_loss
204
+ X_block = dloss_ori + dloss_smooth + dz_loss
205
+
206
+ # chain rule softcapping
207
+ # d(softcap * tanh(x / softcap)) = (1 - tanh^2(x / softcap))
208
+ if HAS_SOFTCAPPING:
209
+ X_block = X_block * (1 - intermediate * intermediate)
210
+
211
+ tl.store(X_ptr + X_offsets, X_block, mask=X_offsets < n_cols)
210
212
 
211
213
  # We need tl.debug_barrier() to ensure the new result of X_ptr is written as mentioned in
212
214
  # https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/ops/cross_entropy.py#L34
@@ -332,6 +334,7 @@ def cross_entropy_forward(
332
334
  BLOCK_SIZE=BLOCK_SIZE,
333
335
  HAS_WEIGHT=True if weight is not None else False,
334
336
  HAS_SOFTCAPPING=True if softcap is not None else False,
337
+ HAS_GRADIENTS=_input.requires_grad,
335
338
  # TODO: 32 seems to give the best performance
336
339
  # Performance is quite sensitive to num_warps
337
340
  num_warps=32 if not is_hip() else 16,
@@ -150,6 +150,7 @@ def fused_linear_cross_entropy_forward(
150
150
  RETURN_Z_LOSS=return_z_loss,
151
151
  HAS_WEIGHT=True if ce_weight is not None else False,
152
152
  HAS_SOFTCAPPING=True if softcap is not None else False,
153
+ HAS_GRADIENTS=_input.requires_grad,
153
154
  BLOCK_SIZE=BLOCK_SIZE,
154
155
  num_warps=32 if not is_hip() else 16,
155
156
  )
@@ -173,10 +174,10 @@ def fused_linear_cross_entropy_forward(
173
174
 
174
175
  grad_input[start_idx:end_idx] = grad_logits_chunk @ weight
175
176
 
176
- if grad_weight is not None:
177
+ if grad_weight is not None and _input.requires_grad:
177
178
  grad_weight += torch.mm(grad_logits_chunk.t(), _input_chunk).float()
178
179
 
179
- if bias is not None:
180
+ if bias is not None and _input.requires_grad:
180
181
  torch.add(
181
182
  input=grad_bias,
182
183
  other=grad_logits_chunk.sum(dim=0),
@@ -0,0 +1,108 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import CausalLMOutputWithPast
8
+
9
+ if TYPE_CHECKING:
10
+ from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
11
+
12
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional["FalconHybridMambaAttentionDynamicCache"] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ cache_position: Optional[torch.LongTensor] = None,
27
+ logits_to_keep: Union[int, torch.Tensor] = 0,
28
+ skip_logits: Optional[bool] = None,
29
+ **kwargs,
30
+ ) -> Union[tuple, CausalLMOutputWithPast]:
31
+ r"""
32
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
34
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
35
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
36
+
37
+ Example:
38
+
39
+ ```python
40
+ >>> from transformers import AutoTokenizer, FalconH1ForCausalLM
41
+
42
+ >>> model = FalconH1ForCausalLM.from_pretrained("...")
43
+ >>> tokenizer = AutoTokenizer.from_pretrained("...")
44
+
45
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
46
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
47
+
48
+ >>> # Generate
49
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
50
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
51
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
52
+ ```"""
53
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
54
+ output_hidden_states = (
55
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
56
+ )
57
+
58
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
59
+ outputs = self.model(
60
+ input_ids=input_ids,
61
+ attention_mask=attention_mask,
62
+ position_ids=position_ids,
63
+ past_key_values=past_key_values,
64
+ inputs_embeds=inputs_embeds,
65
+ use_cache=use_cache,
66
+ output_attentions=output_attentions,
67
+ output_hidden_states=output_hidden_states,
68
+ cache_position=cache_position,
69
+ **kwargs,
70
+ )
71
+
72
+ hidden_states = outputs[0]
73
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
74
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
75
+ kept_hidden_states = hidden_states[:, slice_indices, :]
76
+
77
+ shift_labels = kwargs.pop("shift_labels", None)
78
+ logits = None
79
+ loss = None
80
+ # if in training mode, don't materialize logits
81
+ if skip_logits and labels is None:
82
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
83
+
84
+ if skip_logits is None:
85
+ # By default, if in training mode, don't materialize logits
86
+ skip_logits = self.training and labels is not None
87
+
88
+ if skip_logits:
89
+ loss = LigerForCausalLMLoss(
90
+ hidden_states=kept_hidden_states,
91
+ lm_head_weight=self.lm_head.weight,
92
+ labels=labels,
93
+ shift_labels=shift_labels,
94
+ hidden_size=self.config.hidden_size,
95
+ **kwargs,
96
+ )
97
+ else:
98
+ logits = self.lm_head(kept_hidden_states)
99
+ if labels is not None or shift_labels is not None:
100
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
101
+
102
+ return CausalLMOutputWithPast(
103
+ loss=loss,
104
+ logits=logits,
105
+ past_key_values=outputs.past_key_values,
106
+ hidden_states=outputs.hidden_states,
107
+ attentions=outputs.attentions,
108
+ )
@@ -15,6 +15,7 @@ from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
15
15
  from liger_kernel.transformers.functional import liger_cross_entropy
16
16
  from liger_kernel.transformers.geglu import LigerGEGLUMLP
17
17
  from liger_kernel.transformers.layer_norm import LigerLayerNorm
18
+ from liger_kernel.transformers.model.falcon_h1 import lce_forward as falcon_h1_lce_forward
18
19
  from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
19
20
  from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
20
21
  from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
@@ -2109,8 +2110,8 @@ def apply_liger_kernel_to_internvl(
2109
2110
 
2110
2111
  def apply_liger_kernel_to_falcon_h1(
2111
2112
  rope: bool = True,
2112
- cross_entropy: bool = True,
2113
- fused_linear_cross_entropy: bool = False,
2113
+ cross_entropy: bool = False,
2114
+ fused_linear_cross_entropy: bool = True,
2114
2115
  rms_norm: bool = True,
2115
2116
  swiglu: bool = False,
2116
2117
  model: PreTrainedModel = None,
@@ -2144,7 +2145,7 @@ def apply_liger_kernel_to_falcon_h1(
2144
2145
  logger.info("Apply liger RMSNorm")
2145
2146
  modeling_falcon_h1.FalconH1RMSNorm = LigerRMSNorm
2146
2147
  if swiglu:
2147
- raise NotImplementedError("LigerSwiGLUMLP is not available for Falcon-H1 models.")
2148
+ logger.warning("LigerSwiGLUMLP is not available for Falcon-H1 models. There will be no effect.")
2148
2149
 
2149
2150
  if cross_entropy:
2150
2151
  logger.info("Apply liger cross entropy")
@@ -2153,7 +2154,10 @@ def apply_liger_kernel_to_falcon_h1(
2153
2154
  nn.functional.cross_entropy = liger_cross_entropy
2154
2155
 
2155
2156
  if fused_linear_cross_entropy:
2156
- raise NotImplementedError("LigerFusedLinearCrossEntropy is not available for Falcon-H1 models.")
2157
+ if model is not None:
2158
+ model.forward = MethodType(falcon_h1_lce_forward, model)
2159
+ else:
2160
+ modeling_falcon_h1.FalconH1ForCausalLM.forward = falcon_h1_lce_forward
2157
2161
 
2158
2162
  if model is not None:
2159
2163
  # The model instance already exists, so we need to additionally patch the
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20251011152316
3
+ Version: 0.6.2.dev20251011154427
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -17,10 +17,10 @@ liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsm
17
17
  liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
18
18
  liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZb3KwBvmurM,5385
19
19
  liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- liger_kernel/ops/cross_entropy.py,sha256=e8THGnhOcy_0SbOLABx67HEM7-B8a8pG7nDKbCRpQKM,19123
20
+ liger_kernel/ops/cross_entropy.py,sha256=OVkani9JEmCJ8IHN3UgJKzGW7zxJWDwy1EaWVcbShgQ,19517
21
21
  liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
22
22
  liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
23
- liger_kernel/ops/fused_linear_cross_entropy.py,sha256=6rB3pdwU97Ivl2IHndPJjzhP28E9Fd0pUQcPHLiuCjc,14290
23
+ liger_kernel/ops/fused_linear_cross_entropy.py,sha256=PqIPHU8EjkHRJF6cNZViDucFVOgqo7eanJxB53Npke8,14388
24
24
  liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
25
25
  liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
26
26
  liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=pULIVoznTTWtbXI0jJ7T1bVyLE4CKWThpmF6AwRZZk4,105681
61
+ liger_kernel/transformers/monkey_patch.py,sha256=L5mq5mL0GC62bxthN7p4Db5l7NogFE-1JsbZsr4GGik,105877
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -71,6 +71,7 @@ liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_J
71
71
  liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
72
72
  liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
73
73
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
+ liger_kernel/transformers/model/falcon_h1.py,sha256=DTzfT-5OzQ6I-pU80Vn5e5ibd1EOEbJV5cMTJFhfwFg,4302
74
75
  liger_kernel/transformers/model/gemma.py,sha256=WryzpVmCm2H_XgLKNu3jJ6gVawjQDjapTetg4WHlbR4,10078
75
76
  liger_kernel/transformers/model/gemma2.py,sha256=eOQEfJBKezJNNrirhkPSagGxr9qj_y4lENOZgjUZKpE,11471
76
77
  liger_kernel/transformers/model/gemma3.py,sha256=-tvZw88S-STqmvdim-xrZZRJ17KLWoge_73ilIvhpIU,14157
@@ -98,9 +99,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
98
99
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
99
100
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
100
101
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
101
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
102
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/METADATA,sha256=12-9uxshP3SiGtZdiW-5a2i80JLXg2Kn3RJcHDoWR4I,24777
103
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
104
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
105
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
106
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/RECORD,,
102
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
103
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/METADATA,sha256=3CtD4mdR4zhG-Dj4OQESjqTdQrC1_w-gVsOuzIosGW8,24777
104
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
105
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
106
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
107
+ liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD,,