liger-kernel-nightly 0.6.2.dev20251011152316__py3-none-any.whl → 0.6.2.dev20251011154226__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,108 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import CausalLMOutputWithPast
8
+
9
+ if TYPE_CHECKING:
10
+ from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
11
+
12
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional["FalconHybridMambaAttentionDynamicCache"] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ cache_position: Optional[torch.LongTensor] = None,
27
+ logits_to_keep: Union[int, torch.Tensor] = 0,
28
+ skip_logits: Optional[bool] = None,
29
+ **kwargs,
30
+ ) -> Union[tuple, CausalLMOutputWithPast]:
31
+ r"""
32
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
34
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
35
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
36
+
37
+ Example:
38
+
39
+ ```python
40
+ >>> from transformers import AutoTokenizer, FalconH1ForCausalLM
41
+
42
+ >>> model = FalconH1ForCausalLM.from_pretrained("...")
43
+ >>> tokenizer = AutoTokenizer.from_pretrained("...")
44
+
45
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
46
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
47
+
48
+ >>> # Generate
49
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
50
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
51
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
52
+ ```"""
53
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
54
+ output_hidden_states = (
55
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
56
+ )
57
+
58
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
59
+ outputs = self.model(
60
+ input_ids=input_ids,
61
+ attention_mask=attention_mask,
62
+ position_ids=position_ids,
63
+ past_key_values=past_key_values,
64
+ inputs_embeds=inputs_embeds,
65
+ use_cache=use_cache,
66
+ output_attentions=output_attentions,
67
+ output_hidden_states=output_hidden_states,
68
+ cache_position=cache_position,
69
+ **kwargs,
70
+ )
71
+
72
+ hidden_states = outputs[0]
73
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
74
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
75
+ kept_hidden_states = hidden_states[:, slice_indices, :]
76
+
77
+ shift_labels = kwargs.pop("shift_labels", None)
78
+ logits = None
79
+ loss = None
80
+ # if in training mode, don't materialize logits
81
+ if skip_logits and labels is None:
82
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
83
+
84
+ if skip_logits is None:
85
+ # By default, if in training mode, don't materialize logits
86
+ skip_logits = self.training and labels is not None
87
+
88
+ if skip_logits:
89
+ loss = LigerForCausalLMLoss(
90
+ hidden_states=kept_hidden_states,
91
+ lm_head_weight=self.lm_head.weight,
92
+ labels=labels,
93
+ shift_labels=shift_labels,
94
+ hidden_size=self.config.hidden_size,
95
+ **kwargs,
96
+ )
97
+ else:
98
+ logits = self.lm_head(kept_hidden_states)
99
+ if labels is not None or shift_labels is not None:
100
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
101
+
102
+ return CausalLMOutputWithPast(
103
+ loss=loss,
104
+ logits=logits,
105
+ past_key_values=outputs.past_key_values,
106
+ hidden_states=outputs.hidden_states,
107
+ attentions=outputs.attentions,
108
+ )
@@ -15,6 +15,7 @@ from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
15
15
  from liger_kernel.transformers.functional import liger_cross_entropy
16
16
  from liger_kernel.transformers.geglu import LigerGEGLUMLP
17
17
  from liger_kernel.transformers.layer_norm import LigerLayerNorm
18
+ from liger_kernel.transformers.model.falcon_h1 import lce_forward as falcon_h1_lce_forward
18
19
  from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
19
20
  from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
20
21
  from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
@@ -2109,8 +2110,8 @@ def apply_liger_kernel_to_internvl(
2109
2110
 
2110
2111
  def apply_liger_kernel_to_falcon_h1(
2111
2112
  rope: bool = True,
2112
- cross_entropy: bool = True,
2113
- fused_linear_cross_entropy: bool = False,
2113
+ cross_entropy: bool = False,
2114
+ fused_linear_cross_entropy: bool = True,
2114
2115
  rms_norm: bool = True,
2115
2116
  swiglu: bool = False,
2116
2117
  model: PreTrainedModel = None,
@@ -2144,7 +2145,7 @@ def apply_liger_kernel_to_falcon_h1(
2144
2145
  logger.info("Apply liger RMSNorm")
2145
2146
  modeling_falcon_h1.FalconH1RMSNorm = LigerRMSNorm
2146
2147
  if swiglu:
2147
- raise NotImplementedError("LigerSwiGLUMLP is not available for Falcon-H1 models.")
2148
+ logger.warning("LigerSwiGLUMLP is not available for Falcon-H1 models. There will be no effect.")
2148
2149
 
2149
2150
  if cross_entropy:
2150
2151
  logger.info("Apply liger cross entropy")
@@ -2153,7 +2154,10 @@ def apply_liger_kernel_to_falcon_h1(
2153
2154
  nn.functional.cross_entropy = liger_cross_entropy
2154
2155
 
2155
2156
  if fused_linear_cross_entropy:
2156
- raise NotImplementedError("LigerFusedLinearCrossEntropy is not available for Falcon-H1 models.")
2157
+ if model is not None:
2158
+ model.forward = MethodType(falcon_h1_lce_forward, model)
2159
+ else:
2160
+ modeling_falcon_h1.FalconH1ForCausalLM.forward = falcon_h1_lce_forward
2157
2161
 
2158
2162
  if model is not None:
2159
2163
  # The model instance already exists, so we need to additionally patch the
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20251011152316
3
+ Version: 0.6.2.dev20251011154226
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=pULIVoznTTWtbXI0jJ7T1bVyLE4CKWThpmF6AwRZZk4,105681
61
+ liger_kernel/transformers/monkey_patch.py,sha256=L5mq5mL0GC62bxthN7p4Db5l7NogFE-1JsbZsr4GGik,105877
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -71,6 +71,7 @@ liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_J
71
71
  liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
72
72
  liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
73
73
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
+ liger_kernel/transformers/model/falcon_h1.py,sha256=DTzfT-5OzQ6I-pU80Vn5e5ibd1EOEbJV5cMTJFhfwFg,4302
74
75
  liger_kernel/transformers/model/gemma.py,sha256=WryzpVmCm2H_XgLKNu3jJ6gVawjQDjapTetg4WHlbR4,10078
75
76
  liger_kernel/transformers/model/gemma2.py,sha256=eOQEfJBKezJNNrirhkPSagGxr9qj_y4lENOZgjUZKpE,11471
76
77
  liger_kernel/transformers/model/gemma3.py,sha256=-tvZw88S-STqmvdim-xrZZRJ17KLWoge_73ilIvhpIU,14157
@@ -98,9 +99,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
98
99
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
99
100
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
100
101
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
101
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
102
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/METADATA,sha256=12-9uxshP3SiGtZdiW-5a2i80JLXg2Kn3RJcHDoWR4I,24777
103
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
104
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
105
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
106
- liger_kernel_nightly-0.6.2.dev20251011152316.dist-info/RECORD,,
102
+ liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
103
+ liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/METADATA,sha256=Cu1iB8uZyEsoDEJqbJYGCxahIaLwCKhvp3M1uxaV1Uk,24777
104
+ liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
105
+ liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
106
+ liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
107
+ liger_kernel_nightly-0.6.2.dev20251011154226.dist-info/RECORD,,