liger-kernel-nightly 0.6.2.dev20251005233549__py3-none-any.whl → 0.6.2.dev20251010092540__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. liger_kernel/transformers/__init__.py +3 -0
  2. liger_kernel/transformers/model/gemma.py +2 -1
  3. liger_kernel/transformers/model/gemma2.py +8 -2
  4. liger_kernel/transformers/model/gemma3.py +27 -2
  5. liger_kernel/transformers/model/glm4.py +2 -1
  6. liger_kernel/transformers/model/glm4v.py +2 -1
  7. liger_kernel/transformers/model/glm4v_moe.py +2 -1
  8. liger_kernel/transformers/model/llama.py +2 -1
  9. liger_kernel/transformers/model/llama4.py +2 -1
  10. liger_kernel/transformers/model/llava.py +6 -2
  11. liger_kernel/transformers/model/mistral.py +2 -1
  12. liger_kernel/transformers/model/mixtral.py +8 -2
  13. liger_kernel/transformers/model/mllama.py +2 -1
  14. liger_kernel/transformers/model/olmo2.py +2 -1
  15. liger_kernel/transformers/model/paligemma.py +19 -0
  16. liger_kernel/transformers/model/phi3.py +2 -1
  17. liger_kernel/transformers/model/qwen2.py +2 -1
  18. liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
  19. liger_kernel/transformers/model/qwen2_vl.py +7 -2
  20. liger_kernel/transformers/model/qwen3.py +2 -1
  21. liger_kernel/transformers/model/qwen3_moe.py +8 -2
  22. liger_kernel/transformers/model/smollm3.py +2 -1
  23. liger_kernel/transformers/monkey_patch.py +67 -0
  24. {liger_kernel_nightly-0.6.2.dev20251005233549.dist-info → liger_kernel_nightly-0.6.2.dev20251010092540.dist-info}/METADATA +1 -1
  25. {liger_kernel_nightly-0.6.2.dev20251005233549.dist-info → liger_kernel_nightly-0.6.2.dev20251010092540.dist-info}/RECORD +29 -29
  26. {liger_kernel_nightly-0.6.2.dev20251005233549.dist-info → liger_kernel_nightly-0.6.2.dev20251010092540.dist-info}/LICENSE +0 -0
  27. {liger_kernel_nightly-0.6.2.dev20251005233549.dist-info → liger_kernel_nightly-0.6.2.dev20251010092540.dist-info}/NOTICE +0 -0
  28. {liger_kernel_nightly-0.6.2.dev20251005233549.dist-info → liger_kernel_nightly-0.6.2.dev20251010092540.dist-info}/WHEEL +0 -0
  29. {liger_kernel_nightly-0.6.2.dev20251005233549.dist-info → liger_kernel_nightly-0.6.2.dev20251010092540.dist-info}/top_level.txt +0 -0
@@ -30,6 +30,7 @@ if TYPE_CHECKING:
30
30
  from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
31
31
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
32
32
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
33
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
33
34
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
34
35
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
35
36
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
@@ -91,6 +92,7 @@ def __getattr__(name: str):
91
92
  monkey_patch_symbols = {
92
93
  "_apply_liger_kernel",
93
94
  "_apply_liger_kernel_to_instance",
95
+ "apply_liger_kernel_to_falcon_h1",
94
96
  "apply_liger_kernel_to_gemma",
95
97
  "apply_liger_kernel_to_gemma2",
96
98
  "apply_liger_kernel_to_gemma3",
@@ -157,6 +159,7 @@ if _TRANSFORMERS_AVAILABLE:
157
159
  "AutoLigerKernelForCausalLM",
158
160
  "_apply_liger_kernel",
159
161
  "_apply_liger_kernel_to_instance",
162
+ "apply_liger_kernel_to_falcon_h1",
160
163
  "apply_liger_kernel_to_gemma",
161
164
  "apply_liger_kernel_to_gemma2",
162
165
  "apply_liger_kernel_to_gemma3",
@@ -228,10 +228,11 @@ def lce_forward(
228
228
  )
229
229
  else:
230
230
  logits = self.lm_head(kept_hidden_states)
231
- if labels is not None:
231
+ if labels is not None or shift_labels is not None:
232
232
  loss = self.loss_function(
233
233
  logits=logits,
234
234
  labels=labels,
235
+ shift_labels=shift_labels,
235
236
  vocab_size=self.config.vocab_size,
236
237
  **kwargs,
237
238
  )
@@ -252,8 +252,14 @@ def lce_forward(
252
252
  logits = logits * self.config.final_logit_softcapping
253
253
 
254
254
  loss = None
255
- if labels is not None:
256
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
255
+ if labels is not None or shift_labels is not None:
256
+ loss = self.loss_function(
257
+ logits=logits,
258
+ labels=labels,
259
+ shift_labels=shift_labels,
260
+ vocab_size=self.vocab_size,
261
+ **kwargs,
262
+ )
257
263
 
258
264
  if not return_dict:
259
265
  output = (logits,) + outputs[1:]
@@ -119,8 +119,14 @@ def causal_forward(
119
119
  logits = logits / self.config.final_logit_softcapping
120
120
  logits = torch.tanh(logits)
121
121
  logits = logits * self.config.final_logit_softcapping
122
- if labels is not None:
123
- loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
122
+ if labels is not None or shift_labels is not None:
123
+ loss = self.loss_function(
124
+ logits=logits,
125
+ labels=labels,
126
+ shift_labels=shift_labels,
127
+ vocab_size=self.vocab_size,
128
+ **loss_kwargs,
129
+ )
124
130
 
125
131
  if not return_dict:
126
132
  output = (logits,) + outputs[1:]
@@ -275,6 +281,25 @@ def multimodal_forward(
275
281
  # Flatten the tokens
276
282
  loss_fct = nn.CrossEntropyLoss()
277
283
 
284
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
285
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
286
+ loss = loss_fct(flat_logits, flat_labels)
287
+ elif shift_labels is not None:
288
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
289
+ logits = logits.float()
290
+ shift_logits = logits[..., :-1, :]
291
+ if attention_mask is not None:
292
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
293
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
294
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
295
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
296
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
297
+ else:
298
+ shift_logits = shift_logits.contiguous()
299
+ shift_labels = shift_labels.contiguous()
300
+ # Flatten the tokens
301
+ loss_fct = nn.CrossEntropyLoss()
302
+
278
303
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
279
304
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
280
305
  loss = loss_fct(flat_logits, flat_labels)
@@ -111,10 +111,11 @@ def lce_forward(
111
111
 
112
112
  else:
113
113
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
114
+ if labels is not None or shift_labels is not None:
115
115
  loss = self.loss_function(
116
116
  logits=logits,
117
117
  labels=labels,
118
+ shift_labels=shift_labels,
118
119
  vocab_size=self.config.vocab_size,
119
120
  **kwargs,
120
121
  )
@@ -133,10 +133,11 @@ def lce_forward(
133
133
 
134
134
  else:
135
135
  logits = self.lm_head(kept_hidden_states)
136
- if labels is not None:
136
+ if labels is not None or shift_labels is not None:
137
137
  loss = self.loss_function(
138
138
  logits=logits,
139
139
  labels=labels,
140
+ shift_labels=shift_labels,
140
141
  vocab_size=self.config.vocab_size,
141
142
  **kwargs,
142
143
  )
@@ -134,10 +134,11 @@ def lce_forward(
134
134
 
135
135
  else:
136
136
  logits = self.lm_head(kept_hidden_states)
137
- if labels is not None:
137
+ if labels is not None or shift_labels is not None:
138
138
  loss = self.loss_function(
139
139
  logits=logits,
140
140
  labels=labels,
141
+ shift_labels=shift_labels,
141
142
  vocab_size=self.config.vocab_size,
142
143
  **kwargs,
143
144
  )
@@ -248,10 +248,11 @@ def lce_forward(
248
248
 
249
249
  else:
250
250
  logits = self.lm_head(kept_hidden_states)
251
- if labels is not None:
251
+ if labels is not None or shift_labels is not None:
252
252
  loss = self.loss_function(
253
253
  logits=logits,
254
254
  labels=labels,
255
+ shift_labels=shift_labels,
255
256
  vocab_size=self.config.vocab_size,
256
257
  **kwargs,
257
258
  )
@@ -91,10 +91,11 @@ def lce_forward(
91
91
 
92
92
  else: # if in inference mode materialize logits
93
93
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
95
95
  loss = self.loss_function(
96
96
  logits=logits,
97
97
  labels=labels,
98
+ shift_labels=shift_labels,
98
99
  vocab_size=self.config.vocab_size,
99
100
  **kwargs,
100
101
  )
@@ -313,9 +313,13 @@ def lce_forward(
313
313
 
314
314
  else:
315
315
  logits = self.lm_head(kept_hidden_states)
316
- if labels is not None:
316
+ if labels is not None or shift_labels is not None:
317
317
  loss = self.loss_function(
318
- logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
318
+ logits=logits,
319
+ labels=labels,
320
+ shift_labels=shift_labels,
321
+ vocab_size=self.config.text_config.vocab_size,
322
+ **lm_kwargs,
319
323
  )
320
324
 
321
325
  if not return_dict:
@@ -115,10 +115,11 @@ def lce_forward(
115
115
  logits = self.lm_head(kept_hidden_states)
116
116
 
117
117
  loss = None
118
- if labels is not None:
118
+ if labels is not None or shift_labels is not None:
119
119
  loss = self.loss_function(
120
120
  logits=logits,
121
121
  labels=labels,
122
+ shift_labels=shift_labels,
122
123
  vocab_size=self.config.vocab_size,
123
124
  **kwargs,
124
125
  )
@@ -248,8 +248,14 @@ def lce_forward(
248
248
  logits = self.lm_head(kept_hidden_states)
249
249
 
250
250
  loss = None
251
- if labels is not None:
252
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
251
+ if labels is not None or shift_labels is not None:
252
+ loss = self.loss_function(
253
+ logits=logits,
254
+ labels=labels,
255
+ shift_labels=shift_labels,
256
+ vocab_size=self.vocab_size,
257
+ **kwargs,
258
+ )
253
259
  aux_loss = None
254
260
  if output_router_logits:
255
261
  aux_loss = load_balancing_loss_func(
@@ -239,10 +239,11 @@ def lce_forward(
239
239
 
240
240
  else:
241
241
  logits = self.lm_head(kept_hidden_states)
242
- if labels is not None:
242
+ if labels is not None or shift_labels is not None:
243
243
  loss = self.loss_function(
244
244
  logits=logits,
245
245
  labels=labels,
246
+ shift_labels=shift_labels,
246
247
  vocab_size=self.config.vocab_size,
247
248
  **kwargs,
248
249
  )
@@ -111,10 +111,11 @@ def lce_forward(
111
111
 
112
112
  else:
113
113
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
114
+ if labels is not None or shift_labels is not None:
115
115
  loss = self.loss_function(
116
116
  logits=logits,
117
117
  labels=labels,
118
+ shift_labels=shift_labels,
118
119
  vocab_size=self.config.vocab_size,
119
120
  **kwargs,
120
121
  )
@@ -379,6 +379,25 @@ def lce_forward(
379
379
  # Flatten the tokens
380
380
  loss_fct = CrossEntropyLoss()
381
381
 
382
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
+ loss = loss_fct(flat_logits, flat_labels)
385
+ elif shift_labels is not None:
386
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
387
+ logits = logits.float()
388
+ shift_logits = logits[..., :-1, :]
389
+ if attention_mask is not None:
390
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
391
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
392
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
393
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
394
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
395
+ else:
396
+ shift_logits = shift_logits.contiguous()
397
+ shift_labels = shift_labels.contiguous()
398
+ # Flatten the tokens
399
+ loss_fct = CrossEntropyLoss()
400
+
382
401
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
402
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
403
  loss = loss_fct(flat_logits, flat_labels)
@@ -91,10 +91,11 @@ def lce_forward(
91
91
 
92
92
  else:
93
93
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
95
95
  loss = self.loss_function(
96
96
  logits=logits,
97
97
  labels=labels,
98
+ shift_labels=shift_labels,
98
99
  vocab_size=self.config.vocab_size,
99
100
  **kwargs,
100
101
  )
@@ -228,10 +228,11 @@ def lce_forward(
228
228
 
229
229
  else:
230
230
  logits = self.lm_head(kept_hidden_states)
231
- if labels is not None:
231
+ if labels is not None or shift_labels is not None:
232
232
  loss = self.loss_function(
233
233
  logits=logits,
234
234
  labels=labels,
235
+ shift_labels=shift_labels,
235
236
  vocab_size=self.config.vocab_size,
236
237
  **kwargs,
237
238
  )
@@ -133,8 +133,13 @@ def lce_forward(
133
133
  logits = self.lm_head(hidden_states)
134
134
 
135
135
  loss = None
136
- if labels is not None:
137
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
136
+ if labels is not None or shift_labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ shift_labels=shift_labels,
141
+ vocab_size=self.config.vocab_size,
142
+ )
138
143
 
139
144
  if not return_dict:
140
145
  output = (logits,) + outputs[1:]
@@ -129,8 +129,13 @@ def lce_forward(
129
129
  logits = self.lm_head(hidden_states)
130
130
 
131
131
  loss = None
132
- if labels is not None:
133
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
132
+ if labels is not None or shift_labels is not None:
133
+ loss = self.loss_function(
134
+ logits=logits,
135
+ labels=labels,
136
+ shift_labels=shift_labels,
137
+ vocab_size=self.config.vocab_size,
138
+ )
134
139
 
135
140
  return Qwen2VLCausalLMOutputWithPast(
136
141
  loss=loss,
@@ -103,10 +103,11 @@ def lce_forward(
103
103
 
104
104
  else:
105
105
  logits = self.lm_head(kept_hidden_states)
106
- if labels is not None:
106
+ if labels is not None or shift_labels is not None:
107
107
  loss = self.loss_function(
108
108
  logits=logits,
109
109
  labels=labels,
110
+ shift_labels=shift_labels,
110
111
  vocab_size=self.config.vocab_size,
111
112
  **kwargs,
112
113
  )
@@ -107,8 +107,14 @@ def lce_forward(
107
107
  )
108
108
  else: # if in inference model materialize logits
109
109
  logits = self.lm_head(kept_hidden_states)
110
- if labels is not None:
111
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
110
+ if labels is not None or shift_labels is not None:
111
+ loss = self.loss_function(
112
+ logits=logits,
113
+ labels=labels,
114
+ shift_labels=shift_labels,
115
+ vocab_size=self.vocab_size,
116
+ **kwargs,
117
+ )
112
118
 
113
119
  aux_loss = None
114
120
  if output_router_logits:
@@ -121,10 +121,11 @@ def lce_forward(
121
121
 
122
122
  else:
123
123
  logits = self.lm_head(kept_hidden_states)
124
- if labels is not None:
124
+ if labels is not None or shift_labels is not None:
125
125
  loss = self.loss_function(
126
126
  logits=logits,
127
127
  labels=labels,
128
+ shift_labels=shift_labels,
128
129
  vocab_size=self.config.vocab_size,
129
130
  **kwargs,
130
131
  )
@@ -2107,6 +2107,72 @@ def apply_liger_kernel_to_internvl(
2107
2107
  logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
2108
2108
 
2109
2109
 
2110
+ def apply_liger_kernel_to_falcon_h1(
2111
+ rope: bool = True,
2112
+ cross_entropy: bool = True,
2113
+ fused_linear_cross_entropy: bool = False,
2114
+ rms_norm: bool = True,
2115
+ swiglu: bool = False,
2116
+ model: PreTrainedModel = None,
2117
+ ) -> None:
2118
+ """
2119
+ Apply Liger kernels to replace original implementation in HuggingFace Falcon-H1 models
2120
+ Args:
2121
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
2122
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
2123
+ fused_linear_cross_entropy (bool):
2124
+ Whether to apply Liger's fused linear cross entropy loss. Default is False.
2125
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
2126
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
2127
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is False.
2128
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
2129
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
2130
+ loaded. Default is None.
2131
+ """
2132
+
2133
+ assert not (cross_entropy and fused_linear_cross_entropy), (
2134
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
2135
+ )
2136
+
2137
+ from transformers.models.falcon_h1 import modeling_falcon_h1
2138
+ from transformers.models.falcon_h1.modeling_falcon_h1 import FalconH1Model
2139
+
2140
+ if rope:
2141
+ logger.info("Apply liger rotary pos emb.")
2142
+ modeling_falcon_h1.apply_rotary_pos_emb = liger_rotary_pos_emb
2143
+ if rms_norm:
2144
+ logger.info("Apply liger RMSNorm")
2145
+ modeling_falcon_h1.FalconH1RMSNorm = LigerRMSNorm
2146
+ if swiglu:
2147
+ raise NotImplementedError("LigerSwiGLUMLP is not available for Falcon-H1 models.")
2148
+
2149
+ if cross_entropy:
2150
+ logger.info("Apply liger cross entropy")
2151
+ from transformers.loss.loss_utils import nn
2152
+
2153
+ nn.functional.cross_entropy = liger_cross_entropy
2154
+
2155
+ if fused_linear_cross_entropy:
2156
+ raise NotImplementedError("LigerFusedLinearCrossEntropy is not available for Falcon-H1 models.")
2157
+
2158
+ if model is not None:
2159
+ # The model instance already exists, so we need to additionally patch the
2160
+ # instance variables that reference already-instantiated modules (e.g. LlamaRMSNorm or LlamaMLP)
2161
+
2162
+ # get the base model from the model instance
2163
+ base_model: FalconH1Model = getattr(model, model.base_model_prefix, model)
2164
+
2165
+ if rms_norm:
2166
+ _patch_rms_norm_module(base_model.final_layernorm)
2167
+
2168
+ for decoder_layer in base_model.layers:
2169
+ if swiglu:
2170
+ _patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
2171
+ if rms_norm:
2172
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
2173
+ _patch_rms_norm_module(decoder_layer.pre_ff_layernorm)
2174
+
2175
+
2110
2176
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
2111
2177
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
2112
2178
  "gemma": apply_liger_kernel_to_gemma,
@@ -2137,6 +2203,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
2137
2203
  "smollm3": apply_liger_kernel_to_smollm3,
2138
2204
  "phi3": apply_liger_kernel_to_phi3,
2139
2205
  "paligemma": apply_liger_kernel_to_paligemma,
2206
+ "falcon_h1": apply_liger_kernel_to_falcon_h1,
2140
2207
  }
2141
2208
 
2142
2209
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20251005233549
3
+ Version: 0.6.2.dev20251010092540
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -41,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
41
41
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
42
42
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
43
43
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
44
- liger_kernel/transformers/__init__.py,sha256=1HPWpJGAZl4TmPzG5kgvNMR7g9Ifvj5usTP4x-RsJ38,8819
44
+ liger_kernel/transformers/__init__.py,sha256=h-VQCbsM-T8l8jApA6mTsJdTnd3VeL14pUAdheruaiU,9010
45
45
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
46
46
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
47
47
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=kGytMCLZdn-hPiNB_FhwojgBye0wmEKK6ZqsyKyCVAo,102745
61
+ liger_kernel/transformers/monkey_patch.py,sha256=pULIVoznTTWtbXI0jJ7T1bVyLE4CKWThpmF6AwRZZk4,105681
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -71,36 +71,36 @@ liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_J
71
71
  liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
72
72
  liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
73
73
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
- liger_kernel/transformers/model/gemma.py,sha256=mNX-mIwV6jI4zfbrUHp0C468pOmjzsL7mjXipGt-eS0,10007
75
- liger_kernel/transformers/model/gemma2.py,sha256=R_JFPyWTk7RyA7D05ZiIaNO5pX8gWcvfWf-6rdCRMxs,11296
76
- liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2GhirHm4tpCf9ApAc,12785
77
- liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
78
- liger_kernel/transformers/model/glm4v.py,sha256=dE9rRx1bOIr4T9xSXj58dtukaR80szeuclbgX0A0ovg,5951
79
- liger_kernel/transformers/model/glm4v_moe.py,sha256=Nij7tIYGkcBhJUMvQhYoFd1tVT4pbkxc2k4MSvN2pak,6166
74
+ liger_kernel/transformers/model/gemma.py,sha256=WryzpVmCm2H_XgLKNu3jJ6gVawjQDjapTetg4WHlbR4,10078
75
+ liger_kernel/transformers/model/gemma2.py,sha256=eOQEfJBKezJNNrirhkPSagGxr9qj_y4lENOZgjUZKpE,11471
76
+ liger_kernel/transformers/model/gemma3.py,sha256=-tvZw88S-STqmvdim-xrZZRJ17KLWoge_73ilIvhpIU,14157
77
+ liger_kernel/transformers/model/glm4.py,sha256=2TBM5-4URpj6uX96G1AZ_DrjAmQtgLwXGzBvaXtfwdk,5328
78
+ liger_kernel/transformers/model/glm4v.py,sha256=nlgEMOBjFEOu7a-cwwp9mWhTFqIs3QrOvcxW-uaPq-s,6022
79
+ liger_kernel/transformers/model/glm4v_moe.py,sha256=q3-R_FoQPayS85AriJWWebblXB6Ix9fvxhSrI3mHiz4,6237
80
80
  liger_kernel/transformers/model/internvl.py,sha256=Uv8KGXOz9NhiKVZDeRNzAJH5kRuMZikUbswWM9u5KM0,6069
81
- liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
82
- liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
83
- liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
81
+ liger_kernel/transformers/model/llama.py,sha256=L_VuaxxFJpzEmpLnaqwBbI5-Q14Qgfj-ufhLydCWgdk,12903
82
+ liger_kernel/transformers/model/llama4.py,sha256=epEO_VD1gJCDovabSIQLxxncoh-TQTBfj-UgIlR5c7U,4281
83
+ liger_kernel/transformers/model/llava.py,sha256=t6kMiyBkteVam-ltiod2f1mevj8l8ZHxYDvfu9C_lEk,15196
84
84
  liger_kernel/transformers/model/loss_utils.py,sha256=02RVkPI7Qs4ZP4yU_udCAvD_2hgIaHmxremRKe3N7EE,1885
85
- liger_kernel/transformers/model/mistral.py,sha256=syYNL8dLThX2-4uC13Lu0krEZ5zw3InviDUR3AJmc-I,5500
86
- liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjYfr1xwRYtsHX0o,11396
87
- liger_kernel/transformers/model/mllama.py,sha256=NhJtlXiuszJHo5YSJOvSGYH47ly7Hse8r-5BKznBg9s,11522
88
- liger_kernel/transformers/model/olmo2.py,sha256=6L_bo-ZUgO1lYppdJneOtYxNIylQKS6BiGp13g7Uq9E,5259
89
- liger_kernel/transformers/model/paligemma.py,sha256=xuIx3oOwTgftU3jqLfWOxUxgCLBNJh0yNC21an9qDjo,18773
90
- liger_kernel/transformers/model/phi3.py,sha256=AwScxUe3LjmHHyQg4gW9bMoUI7uA6fUEMXJ3YhBiHtQ,4046
91
- liger_kernel/transformers/model/qwen2.py,sha256=3fpOTEOkniQmkCfN1KUa3KhseHJVzhj2Ht9FdYPUy-E,9962
92
- liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSWrwW4B9dYY2uOZDwg,6331
93
- liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
94
- liger_kernel/transformers/model/qwen3.py,sha256=w2jBHuK9kK9EmOr5dnEIXNQXUgUSV_sJUkXSEwxLPHs,4885
95
- liger_kernel/transformers/model/qwen3_moe.py,sha256=BkpfFH3fOH0yRfA7LF-AoHTLut2GV0Y4MOlkiIYewfU,5511
96
- liger_kernel/transformers/model/smollm3.py,sha256=mqayvpwpMbp2yd_Ue7IPzy-dA4KHSDi_ROZW5vHCHfQ,7596
85
+ liger_kernel/transformers/model/mistral.py,sha256=XmM4N21RIOkJ9PJ4PZ3DcRUhGUczn_lbx0plf1zeHb0,5571
86
+ liger_kernel/transformers/model/mixtral.py,sha256=SLdLO81AZL7zror0LXLkn2PHqKzjwMMs4kALNqoaT00,11571
87
+ liger_kernel/transformers/model/mllama.py,sha256=5q8q2BxQR_8hNZ83XrJIbndw-l6T7ZyFLM7OCv_uPK0,11593
88
+ liger_kernel/transformers/model/olmo2.py,sha256=9O1Cze2B6ON-i1jgjQwjpS_WsDEK0PzL003s-MkevWA,5330
89
+ liger_kernel/transformers/model/paligemma.py,sha256=mnTnSmEDla_bbVmPFmqhNVT__Cuf-TM-KLGFUa1sU-4,19967
90
+ liger_kernel/transformers/model/phi3.py,sha256=L4gG8htOABmaxzcmHph0bBFCACRvL9r6wuDVFXi2o7Q,4117
91
+ liger_kernel/transformers/model/qwen2.py,sha256=lgn0X6EzAZUhOv17ZDD9choIDdaPVIAsIrrdvwzWXqs,10033
92
+ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=Ea3zvL1FJfjlaerpeXCq-1zmorrajwNsR-XsgWr4fFQ,6465
93
+ liger_kernel/transformers/model/qwen2_vl.py,sha256=ZeasFPGs-bxm2Y_E15mo0YNx5wwtKYDV-bjVKjkLPBk,6018
94
+ liger_kernel/transformers/model/qwen3.py,sha256=Q2aOg5erPrgVgRcqJm8sefLSDtvU1AD5B7aJnP7mRMM,4956
95
+ liger_kernel/transformers/model/qwen3_moe.py,sha256=1CwTMCNFDYsjGoa_aHFBagtC5HuJTV-s0__5UvcjD3A,5686
96
+ liger_kernel/transformers/model/smollm3.py,sha256=0KWVkDtXbjsBKhJnaquV6vUUYyLtfmNwYH0sxJt-qTk,7667
97
97
  liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
98
98
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
99
99
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
100
100
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
101
- liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
102
- liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/METADATA,sha256=a9HNSwKTdwQwsiF67WLIuJaD2Lt7R91GwAK1H9nRE-M,24777
103
- liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
104
- liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
105
- liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
106
- liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/RECORD,,
101
+ liger_kernel_nightly-0.6.2.dev20251010092540.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
102
+ liger_kernel_nightly-0.6.2.dev20251010092540.dist-info/METADATA,sha256=zCC_B9RCWkw0mEKq1LUnpnl3HiWlM0qYzs8uQkDFdkw,24777
103
+ liger_kernel_nightly-0.6.2.dev20251010092540.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
104
+ liger_kernel_nightly-0.6.2.dev20251010092540.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
105
+ liger_kernel_nightly-0.6.2.dev20251010092540.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
106
+ liger_kernel_nightly-0.6.2.dev20251010092540.dist-info/RECORD,,