liger-kernel-nightly 0.6.2.dev20250923161735__py3-none-any.whl → 0.6.2.dev20251008084122__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. liger_kernel/transformers/__init__.py +3 -0
  2. liger_kernel/transformers/model/gemma.py +2 -1
  3. liger_kernel/transformers/model/gemma2.py +8 -2
  4. liger_kernel/transformers/model/gemma3.py +27 -2
  5. liger_kernel/transformers/model/glm4.py +2 -1
  6. liger_kernel/transformers/model/glm4v.py +2 -1
  7. liger_kernel/transformers/model/glm4v_moe.py +2 -1
  8. liger_kernel/transformers/model/internvl.py +150 -0
  9. liger_kernel/transformers/model/llama.py +2 -1
  10. liger_kernel/transformers/model/llama4.py +2 -1
  11. liger_kernel/transformers/model/llava.py +6 -2
  12. liger_kernel/transformers/model/mistral.py +2 -1
  13. liger_kernel/transformers/model/mixtral.py +8 -2
  14. liger_kernel/transformers/model/mllama.py +2 -1
  15. liger_kernel/transformers/model/olmo2.py +2 -1
  16. liger_kernel/transformers/model/paligemma.py +19 -0
  17. liger_kernel/transformers/model/phi3.py +2 -1
  18. liger_kernel/transformers/model/qwen2.py +2 -1
  19. liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
  20. liger_kernel/transformers/model/qwen2_vl.py +7 -2
  21. liger_kernel/transformers/model/qwen3.py +2 -1
  22. liger_kernel/transformers/model/qwen3_moe.py +8 -2
  23. liger_kernel/transformers/model/smollm3.py +2 -1
  24. liger_kernel/transformers/monkey_patch.py +80 -1
  25. {liger_kernel_nightly-0.6.2.dev20250923161735.dist-info → liger_kernel_nightly-0.6.2.dev20251008084122.dist-info}/METADATA +2 -1
  26. {liger_kernel_nightly-0.6.2.dev20250923161735.dist-info → liger_kernel_nightly-0.6.2.dev20251008084122.dist-info}/RECORD +30 -29
  27. {liger_kernel_nightly-0.6.2.dev20250923161735.dist-info → liger_kernel_nightly-0.6.2.dev20251008084122.dist-info}/LICENSE +0 -0
  28. {liger_kernel_nightly-0.6.2.dev20250923161735.dist-info → liger_kernel_nightly-0.6.2.dev20251008084122.dist-info}/NOTICE +0 -0
  29. {liger_kernel_nightly-0.6.2.dev20250923161735.dist-info → liger_kernel_nightly-0.6.2.dev20251008084122.dist-info}/WHEEL +0 -0
  30. {liger_kernel_nightly-0.6.2.dev20250923161735.dist-info → liger_kernel_nightly-0.6.2.dev20251008084122.dist-info}/top_level.txt +0 -0
@@ -38,6 +38,7 @@ if TYPE_CHECKING:
38
38
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
39
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
40
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
41
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
41
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
42
43
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
43
44
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
@@ -98,6 +99,7 @@ def __getattr__(name: str):
98
99
  "apply_liger_kernel_to_glm4v",
99
100
  "apply_liger_kernel_to_glm4v_moe",
100
101
  "apply_liger_kernel_to_granite",
102
+ "apply_liger_kernel_to_internvl",
101
103
  "apply_liger_kernel_to_llama",
102
104
  "apply_liger_kernel_to_llava",
103
105
  "apply_liger_kernel_to_llama4",
@@ -163,6 +165,7 @@ if _TRANSFORMERS_AVAILABLE:
163
165
  "apply_liger_kernel_to_glm4v",
164
166
  "apply_liger_kernel_to_glm4v_moe",
165
167
  "apply_liger_kernel_to_granite",
168
+ "apply_liger_kernel_to_internvl",
166
169
  "apply_liger_kernel_to_llama",
167
170
  "apply_liger_kernel_to_llava",
168
171
  "apply_liger_kernel_to_llama4",
@@ -228,10 +228,11 @@ def lce_forward(
228
228
  )
229
229
  else:
230
230
  logits = self.lm_head(kept_hidden_states)
231
- if labels is not None:
231
+ if labels is not None or shift_labels is not None:
232
232
  loss = self.loss_function(
233
233
  logits=logits,
234
234
  labels=labels,
235
+ shift_labels=shift_labels,
235
236
  vocab_size=self.config.vocab_size,
236
237
  **kwargs,
237
238
  )
@@ -252,8 +252,14 @@ def lce_forward(
252
252
  logits = logits * self.config.final_logit_softcapping
253
253
 
254
254
  loss = None
255
- if labels is not None:
256
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
255
+ if labels is not None or shift_labels is not None:
256
+ loss = self.loss_function(
257
+ logits=logits,
258
+ labels=labels,
259
+ shift_labels=shift_labels,
260
+ vocab_size=self.vocab_size,
261
+ **kwargs,
262
+ )
257
263
 
258
264
  if not return_dict:
259
265
  output = (logits,) + outputs[1:]
@@ -119,8 +119,14 @@ def causal_forward(
119
119
  logits = logits / self.config.final_logit_softcapping
120
120
  logits = torch.tanh(logits)
121
121
  logits = logits * self.config.final_logit_softcapping
122
- if labels is not None:
123
- loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
122
+ if labels is not None or shift_labels is not None:
123
+ loss = self.loss_function(
124
+ logits=logits,
125
+ labels=labels,
126
+ shift_labels=shift_labels,
127
+ vocab_size=self.vocab_size,
128
+ **loss_kwargs,
129
+ )
124
130
 
125
131
  if not return_dict:
126
132
  output = (logits,) + outputs[1:]
@@ -275,6 +281,25 @@ def multimodal_forward(
275
281
  # Flatten the tokens
276
282
  loss_fct = nn.CrossEntropyLoss()
277
283
 
284
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
285
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
286
+ loss = loss_fct(flat_logits, flat_labels)
287
+ elif shift_labels is not None:
288
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
289
+ logits = logits.float()
290
+ shift_logits = logits[..., :-1, :]
291
+ if attention_mask is not None:
292
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
293
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
294
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
295
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
296
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
297
+ else:
298
+ shift_logits = shift_logits.contiguous()
299
+ shift_labels = shift_labels.contiguous()
300
+ # Flatten the tokens
301
+ loss_fct = nn.CrossEntropyLoss()
302
+
278
303
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
279
304
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
280
305
  loss = loss_fct(flat_logits, flat_labels)
@@ -111,10 +111,11 @@ def lce_forward(
111
111
 
112
112
  else:
113
113
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
114
+ if labels is not None or shift_labels is not None:
115
115
  loss = self.loss_function(
116
116
  logits=logits,
117
117
  labels=labels,
118
+ shift_labels=shift_labels,
118
119
  vocab_size=self.config.vocab_size,
119
120
  **kwargs,
120
121
  )
@@ -133,10 +133,11 @@ def lce_forward(
133
133
 
134
134
  else:
135
135
  logits = self.lm_head(kept_hidden_states)
136
- if labels is not None:
136
+ if labels is not None or shift_labels is not None:
137
137
  loss = self.loss_function(
138
138
  logits=logits,
139
139
  labels=labels,
140
+ shift_labels=shift_labels,
140
141
  vocab_size=self.config.vocab_size,
141
142
  **kwargs,
142
143
  )
@@ -134,10 +134,11 @@ def lce_forward(
134
134
 
135
135
  else:
136
136
  logits = self.lm_head(kept_hidden_states)
137
- if labels is not None:
137
+ if labels is not None or shift_labels is not None:
138
138
  loss = self.loss_function(
139
139
  logits=logits,
140
140
  labels=labels,
141
+ shift_labels=shift_labels,
141
142
  vocab_size=self.config.vocab_size,
142
143
  **kwargs,
143
144
  )
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.models.internvl.modeling_internvl import InternVLCausalLMOutputWithPast
9
+ from transformers.utils import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+
14
+ # Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ pixel_values: Optional[torch.FloatTensor] = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
25
+ vision_feature_select_strategy: Optional[str] = None,
26
+ labels: Optional[torch.LongTensor] = None,
27
+ use_cache: Optional[bool] = None,
28
+ output_attentions: Optional[bool] = None,
29
+ output_hidden_states: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ cache_position: Optional[torch.LongTensor] = None,
32
+ logits_to_keep: Union[int, torch.Tensor] = 0,
33
+ image_sizes: Optional[torch.Tensor] = None,
34
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
35
+ **lm_kwargs, # renamed from kwargs
36
+ ) -> Union[Tuple, InternVLCausalLMOutputWithPast]:
37
+ r"""
38
+ Example:
39
+
40
+ ```python
41
+ >>> import torch
42
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
43
+
44
+ >>> torch_device = "cuda"
45
+ >>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
46
+ >>> model = AutoModelForImageTextToText.from_pretrained(
47
+ ... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
48
+ ... )
49
+
50
+ >>> messages = [
51
+ ... {
52
+ ... "role": "user",
53
+ ... "content": [
54
+ ... {
55
+ ... "type": "image",
56
+ ... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
57
+ ... },
58
+ ... {
59
+ ... "type": "image",
60
+ ... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
61
+ ... },
62
+ ... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
63
+ ... ],
64
+ ... },
65
+ ... ]
66
+
67
+ >>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
68
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=200)
69
+ >>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
70
+ The images depict the Statue of Liberty and the Golden Gate Bridge.
71
+ ```"""
72
+
73
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
74
+ output_hidden_states = (
75
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
76
+ )
77
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
78
+ vision_feature_layer = (
79
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
80
+ )
81
+ vision_feature_select_strategy = (
82
+ vision_feature_select_strategy
83
+ if vision_feature_select_strategy is not None
84
+ else self.config.vision_feature_select_strategy
85
+ )
86
+
87
+ outputs = self.model(
88
+ input_ids=input_ids,
89
+ pixel_values=pixel_values,
90
+ attention_mask=attention_mask,
91
+ position_ids=position_ids,
92
+ past_key_values=past_key_values,
93
+ inputs_embeds=inputs_embeds,
94
+ vision_feature_layer=vision_feature_layer,
95
+ vision_feature_select_strategy=vision_feature_select_strategy,
96
+ use_cache=use_cache,
97
+ output_attentions=output_attentions,
98
+ output_hidden_states=output_hidden_states,
99
+ return_dict=return_dict,
100
+ cache_position=cache_position,
101
+ image_sizes=image_sizes,
102
+ **lm_kwargs,
103
+ )
104
+
105
+ # Copied from llava.py
106
+ hidden_states = outputs[0]
107
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
108
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
109
+ kept_hidden_states = hidden_states[:, slice_indices, :]
110
+
111
+ shift_labels = lm_kwargs.pop("shift_labels", None)
112
+ logits = None
113
+ loss = None
114
+
115
+ if skip_logits and labels is None and shift_labels is None:
116
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
117
+
118
+ if skip_logits is None:
119
+ # By default, if in training mode, don't materialize logits
120
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
121
+
122
+ if skip_logits:
123
+ loss = LigerForCausalLMLoss(
124
+ hidden_states=kept_hidden_states,
125
+ lm_head_weight=self.lm_head.weight,
126
+ labels=labels,
127
+ shift_labels=shift_labels,
128
+ hidden_size=self.config.text_config.hidden_size,
129
+ **lm_kwargs,
130
+ )
131
+
132
+ else:
133
+ logits = self.lm_head(kept_hidden_states)
134
+ if labels is not None:
135
+ loss = self.loss_function(
136
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
137
+ )
138
+
139
+ if not return_dict:
140
+ output = (logits,) + outputs[1:]
141
+ return (loss,) + output if loss is not None else output
142
+
143
+ return InternVLCausalLMOutputWithPast(
144
+ loss=loss,
145
+ logits=logits,
146
+ past_key_values=outputs.past_key_values,
147
+ hidden_states=outputs.hidden_states,
148
+ attentions=outputs.attentions,
149
+ image_hidden_states=outputs.image_hidden_states,
150
+ )
@@ -248,10 +248,11 @@ def lce_forward(
248
248
 
249
249
  else:
250
250
  logits = self.lm_head(kept_hidden_states)
251
- if labels is not None:
251
+ if labels is not None or shift_labels is not None:
252
252
  loss = self.loss_function(
253
253
  logits=logits,
254
254
  labels=labels,
255
+ shift_labels=shift_labels,
255
256
  vocab_size=self.config.vocab_size,
256
257
  **kwargs,
257
258
  )
@@ -91,10 +91,11 @@ def lce_forward(
91
91
 
92
92
  else: # if in inference mode materialize logits
93
93
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
95
95
  loss = self.loss_function(
96
96
  logits=logits,
97
97
  labels=labels,
98
+ shift_labels=shift_labels,
98
99
  vocab_size=self.config.vocab_size,
99
100
  **kwargs,
100
101
  )
@@ -313,9 +313,13 @@ def lce_forward(
313
313
 
314
314
  else:
315
315
  logits = self.lm_head(kept_hidden_states)
316
- if labels is not None:
316
+ if labels is not None or shift_labels is not None:
317
317
  loss = self.loss_function(
318
- logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
318
+ logits=logits,
319
+ labels=labels,
320
+ shift_labels=shift_labels,
321
+ vocab_size=self.config.text_config.vocab_size,
322
+ **lm_kwargs,
319
323
  )
320
324
 
321
325
  if not return_dict:
@@ -115,10 +115,11 @@ def lce_forward(
115
115
  logits = self.lm_head(kept_hidden_states)
116
116
 
117
117
  loss = None
118
- if labels is not None:
118
+ if labels is not None or shift_labels is not None:
119
119
  loss = self.loss_function(
120
120
  logits=logits,
121
121
  labels=labels,
122
+ shift_labels=shift_labels,
122
123
  vocab_size=self.config.vocab_size,
123
124
  **kwargs,
124
125
  )
@@ -248,8 +248,14 @@ def lce_forward(
248
248
  logits = self.lm_head(kept_hidden_states)
249
249
 
250
250
  loss = None
251
- if labels is not None:
252
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
251
+ if labels is not None or shift_labels is not None:
252
+ loss = self.loss_function(
253
+ logits=logits,
254
+ labels=labels,
255
+ shift_labels=shift_labels,
256
+ vocab_size=self.vocab_size,
257
+ **kwargs,
258
+ )
253
259
  aux_loss = None
254
260
  if output_router_logits:
255
261
  aux_loss = load_balancing_loss_func(
@@ -239,10 +239,11 @@ def lce_forward(
239
239
 
240
240
  else:
241
241
  logits = self.lm_head(kept_hidden_states)
242
- if labels is not None:
242
+ if labels is not None or shift_labels is not None:
243
243
  loss = self.loss_function(
244
244
  logits=logits,
245
245
  labels=labels,
246
+ shift_labels=shift_labels,
246
247
  vocab_size=self.config.vocab_size,
247
248
  **kwargs,
248
249
  )
@@ -111,10 +111,11 @@ def lce_forward(
111
111
 
112
112
  else:
113
113
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
114
+ if labels is not None or shift_labels is not None:
115
115
  loss = self.loss_function(
116
116
  logits=logits,
117
117
  labels=labels,
118
+ shift_labels=shift_labels,
118
119
  vocab_size=self.config.vocab_size,
119
120
  **kwargs,
120
121
  )
@@ -379,6 +379,25 @@ def lce_forward(
379
379
  # Flatten the tokens
380
380
  loss_fct = CrossEntropyLoss()
381
381
 
382
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
+ loss = loss_fct(flat_logits, flat_labels)
385
+ elif shift_labels is not None:
386
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
387
+ logits = logits.float()
388
+ shift_logits = logits[..., :-1, :]
389
+ if attention_mask is not None:
390
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
391
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
392
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
393
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
394
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
395
+ else:
396
+ shift_logits = shift_logits.contiguous()
397
+ shift_labels = shift_labels.contiguous()
398
+ # Flatten the tokens
399
+ loss_fct = CrossEntropyLoss()
400
+
382
401
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
402
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
403
  loss = loss_fct(flat_logits, flat_labels)
@@ -91,10 +91,11 @@ def lce_forward(
91
91
 
92
92
  else:
93
93
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
95
95
  loss = self.loss_function(
96
96
  logits=logits,
97
97
  labels=labels,
98
+ shift_labels=shift_labels,
98
99
  vocab_size=self.config.vocab_size,
99
100
  **kwargs,
100
101
  )
@@ -228,10 +228,11 @@ def lce_forward(
228
228
 
229
229
  else:
230
230
  logits = self.lm_head(kept_hidden_states)
231
- if labels is not None:
231
+ if labels is not None or shift_labels is not None:
232
232
  loss = self.loss_function(
233
233
  logits=logits,
234
234
  labels=labels,
235
+ shift_labels=shift_labels,
235
236
  vocab_size=self.config.vocab_size,
236
237
  **kwargs,
237
238
  )
@@ -133,8 +133,13 @@ def lce_forward(
133
133
  logits = self.lm_head(hidden_states)
134
134
 
135
135
  loss = None
136
- if labels is not None:
137
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
136
+ if labels is not None or shift_labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ shift_labels=shift_labels,
141
+ vocab_size=self.config.vocab_size,
142
+ )
138
143
 
139
144
  if not return_dict:
140
145
  output = (logits,) + outputs[1:]
@@ -129,8 +129,13 @@ def lce_forward(
129
129
  logits = self.lm_head(hidden_states)
130
130
 
131
131
  loss = None
132
- if labels is not None:
133
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
132
+ if labels is not None or shift_labels is not None:
133
+ loss = self.loss_function(
134
+ logits=logits,
135
+ labels=labels,
136
+ shift_labels=shift_labels,
137
+ vocab_size=self.config.vocab_size,
138
+ )
134
139
 
135
140
  return Qwen2VLCausalLMOutputWithPast(
136
141
  loss=loss,
@@ -103,10 +103,11 @@ def lce_forward(
103
103
 
104
104
  else:
105
105
  logits = self.lm_head(kept_hidden_states)
106
- if labels is not None:
106
+ if labels is not None or shift_labels is not None:
107
107
  loss = self.loss_function(
108
108
  logits=logits,
109
109
  labels=labels,
110
+ shift_labels=shift_labels,
110
111
  vocab_size=self.config.vocab_size,
111
112
  **kwargs,
112
113
  )
@@ -107,8 +107,14 @@ def lce_forward(
107
107
  )
108
108
  else: # if in inference model materialize logits
109
109
  logits = self.lm_head(kept_hidden_states)
110
- if labels is not None:
111
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
110
+ if labels is not None or shift_labels is not None:
111
+ loss = self.loss_function(
112
+ logits=logits,
113
+ labels=labels,
114
+ shift_labels=shift_labels,
115
+ vocab_size=self.vocab_size,
116
+ **kwargs,
117
+ )
112
118
 
113
119
  aux_loss = None
114
120
  if output_router_logits:
@@ -121,10 +121,11 @@ def lce_forward(
121
121
 
122
122
  else:
123
123
  logits = self.lm_head(kept_hidden_states)
124
- if labels is not None:
124
+ if labels is not None or shift_labels is not None:
125
125
  loss = self.loss_function(
126
126
  logits=logits,
127
127
  labels=labels,
128
+ shift_labels=shift_labels,
128
129
  vocab_size=self.config.vocab_size,
129
130
  **kwargs,
130
131
  )
@@ -4,6 +4,7 @@ import logging
4
4
  from functools import partial
5
5
  from types import MethodType
6
6
  from typing import Callable
7
+ from typing import Optional
7
8
 
8
9
  import transformers
9
10
 
@@ -1334,7 +1335,6 @@ def apply_liger_kernel_to_qwen2(
1334
1335
  if rms_norm:
1335
1336
  _patch_rms_norm_module(decoder_layer.input_layernorm)
1336
1337
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1337
- print("Applied Liger kernels to Qwen2")
1338
1338
 
1339
1339
 
1340
1340
  def apply_liger_kernel_to_qwen3(
@@ -2029,6 +2029,84 @@ def apply_liger_kernel_to_glm4v_moe(
2029
2029
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
2030
2030
 
2031
2031
 
2032
+ def apply_liger_kernel_to_internvl(
2033
+ cross_entropy: bool = False,
2034
+ fused_linear_cross_entropy: bool = True,
2035
+ rms_norm: bool = True,
2036
+ model: Optional[PreTrainedModel] = None,
2037
+ **kwargs,
2038
+ ) -> None:
2039
+ """
2040
+ Apply Liger kernels to replace original implementation in HuggingFace InternVL models.
2041
+ Due to the characteristics of InternVL, the model must be passed to apply Liger-Kernel's patch to other models connected to InternVL.
2042
+ However, if an LM not supported by Liger-Kernel is connected to InternVL, unexpected side effects may occur.
2043
+ NOTE: InternVL is not available in transformers<4.52.1
2044
+
2045
+ Args:
2046
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
2047
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
2048
+ fused_linear_cross_entropy (bool):
2049
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
2050
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
2051
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
2052
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
2053
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
2054
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
2055
+ loaded. Default is None.
2056
+ """
2057
+ assert not (cross_entropy and fused_linear_cross_entropy), (
2058
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
2059
+ )
2060
+
2061
+ from transformers.models.internvl import modeling_internvl
2062
+
2063
+ from liger_kernel.transformers.model.internvl import lce_forward as internvl_lce_forward
2064
+
2065
+ if cross_entropy:
2066
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
2067
+ modeling_internvl.nn.CrossEntropyLoss = LigerCrossEntropyLoss
2068
+ if fused_linear_cross_entropy:
2069
+ modeling_internvl.InternVLForConditionalGeneration.forward = internvl_lce_forward
2070
+ if rms_norm:
2071
+ modeling_internvl.InternVLVisionRMSNorm = LigerRMSNorm
2072
+
2073
+ if model is not None:
2074
+ text_model_name, vision_model_name = model.config.text_config.model_type, model.config.vision_config.model_type
2075
+ text_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(text_model_name, None)
2076
+ vision_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(vision_model_name, None)
2077
+
2078
+ kwargs = {"cross_entropy": False, "fused_linear_cross_entropy": False, **kwargs} | {"rms_norm": rms_norm}
2079
+ if text_liger_fn:
2080
+ accept_params = inspect.signature(text_liger_fn).parameters
2081
+ remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
2082
+ text_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
2083
+
2084
+ if remain_params:
2085
+ logger.warning(
2086
+ f"These parameters are not supported by {text_model_name}. Enter the remaining {list(text_kwargs.keys())} except for {list(remain_params)}\n"
2087
+ f"Parameters accepted by {text_model_name}: {list(accept_params.keys())}"
2088
+ )
2089
+ text_kwargs["model"] = model.language_model
2090
+ text_liger_fn(**text_kwargs)
2091
+ elif text_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
2092
+ logger.warning(f"{text_model_name} is not supported by Liger kernel.")
2093
+
2094
+ if vision_liger_fn:
2095
+ accept_params = inspect.signature(vision_liger_fn).parameters
2096
+ remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
2097
+ vision_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
2098
+
2099
+ if remain_params:
2100
+ logger.warning(
2101
+ f"These parameters are not supported by {vision_model_name}. Enter the remaining {list(vision_kwargs.keys())} except for {list(remain_params)}\n"
2102
+ f"Parameters accepted by {vision_model_name}: {list(accept_params.keys())}"
2103
+ )
2104
+ vision_kwargs["model"] = model.vision_tower
2105
+ vision_liger_fn(**vision_kwargs)
2106
+ elif vision_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
2107
+ logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
2108
+
2109
+
2032
2110
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
2033
2111
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
2034
2112
  "gemma": apply_liger_kernel_to_gemma,
@@ -2038,6 +2116,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
2038
2116
  "glm4": apply_liger_kernel_to_glm4,
2039
2117
  "glm4v": apply_liger_kernel_to_glm4v,
2040
2118
  "glm4v_moe": apply_liger_kernel_to_glm4v_moe,
2119
+ "internvl": apply_liger_kernel_to_internvl,
2041
2120
  "llama": apply_liger_kernel_to_llama,
2042
2121
  "llama4_text": apply_liger_kernel_to_llama4,
2043
2122
  "llama4": apply_liger_kernel_to_llama4,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20250923161735
3
+ Version: 0.6.2.dev20251008084122
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -311,6 +311,7 @@ loss.backward()
311
311
  | Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
312
312
  | OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
313
313
  | GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
314
+ | InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
314
315
 
315
316
 
316
317
  ## Low-level APIs
@@ -41,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
41
41
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
42
42
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
43
43
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
44
- liger_kernel/transformers/__init__.py,sha256=GA4GdoP0VKKGzXoLN51DacuTtNuwciS96ZAblkDYl3w,8631
44
+ liger_kernel/transformers/__init__.py,sha256=1HPWpJGAZl4TmPzG5kgvNMR7g9Ifvj5usTP4x-RsJ38,8819
45
45
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
46
46
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
47
47
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=DpYF1mVjmErtkFgnxi20rnyeXr7bvVSg3BR166cMF5I,98472
61
+ liger_kernel/transformers/monkey_patch.py,sha256=kGytMCLZdn-hPiNB_FhwojgBye0wmEKK6ZqsyKyCVAo,102745
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -71,35 +71,36 @@ liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_J
71
71
  liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
72
72
  liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
73
73
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
- liger_kernel/transformers/model/gemma.py,sha256=mNX-mIwV6jI4zfbrUHp0C468pOmjzsL7mjXipGt-eS0,10007
75
- liger_kernel/transformers/model/gemma2.py,sha256=R_JFPyWTk7RyA7D05ZiIaNO5pX8gWcvfWf-6rdCRMxs,11296
76
- liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2GhirHm4tpCf9ApAc,12785
77
- liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
78
- liger_kernel/transformers/model/glm4v.py,sha256=dE9rRx1bOIr4T9xSXj58dtukaR80szeuclbgX0A0ovg,5951
79
- liger_kernel/transformers/model/glm4v_moe.py,sha256=Nij7tIYGkcBhJUMvQhYoFd1tVT4pbkxc2k4MSvN2pak,6166
80
- liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
81
- liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
82
- liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
74
+ liger_kernel/transformers/model/gemma.py,sha256=WryzpVmCm2H_XgLKNu3jJ6gVawjQDjapTetg4WHlbR4,10078
75
+ liger_kernel/transformers/model/gemma2.py,sha256=eOQEfJBKezJNNrirhkPSagGxr9qj_y4lENOZgjUZKpE,11471
76
+ liger_kernel/transformers/model/gemma3.py,sha256=-tvZw88S-STqmvdim-xrZZRJ17KLWoge_73ilIvhpIU,14157
77
+ liger_kernel/transformers/model/glm4.py,sha256=2TBM5-4URpj6uX96G1AZ_DrjAmQtgLwXGzBvaXtfwdk,5328
78
+ liger_kernel/transformers/model/glm4v.py,sha256=nlgEMOBjFEOu7a-cwwp9mWhTFqIs3QrOvcxW-uaPq-s,6022
79
+ liger_kernel/transformers/model/glm4v_moe.py,sha256=q3-R_FoQPayS85AriJWWebblXB6Ix9fvxhSrI3mHiz4,6237
80
+ liger_kernel/transformers/model/internvl.py,sha256=Uv8KGXOz9NhiKVZDeRNzAJH5kRuMZikUbswWM9u5KM0,6069
81
+ liger_kernel/transformers/model/llama.py,sha256=L_VuaxxFJpzEmpLnaqwBbI5-Q14Qgfj-ufhLydCWgdk,12903
82
+ liger_kernel/transformers/model/llama4.py,sha256=epEO_VD1gJCDovabSIQLxxncoh-TQTBfj-UgIlR5c7U,4281
83
+ liger_kernel/transformers/model/llava.py,sha256=t6kMiyBkteVam-ltiod2f1mevj8l8ZHxYDvfu9C_lEk,15196
83
84
  liger_kernel/transformers/model/loss_utils.py,sha256=02RVkPI7Qs4ZP4yU_udCAvD_2hgIaHmxremRKe3N7EE,1885
84
- liger_kernel/transformers/model/mistral.py,sha256=syYNL8dLThX2-4uC13Lu0krEZ5zw3InviDUR3AJmc-I,5500
85
- liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjYfr1xwRYtsHX0o,11396
86
- liger_kernel/transformers/model/mllama.py,sha256=NhJtlXiuszJHo5YSJOvSGYH47ly7Hse8r-5BKznBg9s,11522
87
- liger_kernel/transformers/model/olmo2.py,sha256=6L_bo-ZUgO1lYppdJneOtYxNIylQKS6BiGp13g7Uq9E,5259
88
- liger_kernel/transformers/model/paligemma.py,sha256=xuIx3oOwTgftU3jqLfWOxUxgCLBNJh0yNC21an9qDjo,18773
89
- liger_kernel/transformers/model/phi3.py,sha256=AwScxUe3LjmHHyQg4gW9bMoUI7uA6fUEMXJ3YhBiHtQ,4046
90
- liger_kernel/transformers/model/qwen2.py,sha256=3fpOTEOkniQmkCfN1KUa3KhseHJVzhj2Ht9FdYPUy-E,9962
91
- liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSWrwW4B9dYY2uOZDwg,6331
92
- liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
93
- liger_kernel/transformers/model/qwen3.py,sha256=w2jBHuK9kK9EmOr5dnEIXNQXUgUSV_sJUkXSEwxLPHs,4885
94
- liger_kernel/transformers/model/qwen3_moe.py,sha256=BkpfFH3fOH0yRfA7LF-AoHTLut2GV0Y4MOlkiIYewfU,5511
95
- liger_kernel/transformers/model/smollm3.py,sha256=mqayvpwpMbp2yd_Ue7IPzy-dA4KHSDi_ROZW5vHCHfQ,7596
85
+ liger_kernel/transformers/model/mistral.py,sha256=XmM4N21RIOkJ9PJ4PZ3DcRUhGUczn_lbx0plf1zeHb0,5571
86
+ liger_kernel/transformers/model/mixtral.py,sha256=SLdLO81AZL7zror0LXLkn2PHqKzjwMMs4kALNqoaT00,11571
87
+ liger_kernel/transformers/model/mllama.py,sha256=5q8q2BxQR_8hNZ83XrJIbndw-l6T7ZyFLM7OCv_uPK0,11593
88
+ liger_kernel/transformers/model/olmo2.py,sha256=9O1Cze2B6ON-i1jgjQwjpS_WsDEK0PzL003s-MkevWA,5330
89
+ liger_kernel/transformers/model/paligemma.py,sha256=mnTnSmEDla_bbVmPFmqhNVT__Cuf-TM-KLGFUa1sU-4,19967
90
+ liger_kernel/transformers/model/phi3.py,sha256=L4gG8htOABmaxzcmHph0bBFCACRvL9r6wuDVFXi2o7Q,4117
91
+ liger_kernel/transformers/model/qwen2.py,sha256=lgn0X6EzAZUhOv17ZDD9choIDdaPVIAsIrrdvwzWXqs,10033
92
+ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=Ea3zvL1FJfjlaerpeXCq-1zmorrajwNsR-XsgWr4fFQ,6465
93
+ liger_kernel/transformers/model/qwen2_vl.py,sha256=ZeasFPGs-bxm2Y_E15mo0YNx5wwtKYDV-bjVKjkLPBk,6018
94
+ liger_kernel/transformers/model/qwen3.py,sha256=Q2aOg5erPrgVgRcqJm8sefLSDtvU1AD5B7aJnP7mRMM,4956
95
+ liger_kernel/transformers/model/qwen3_moe.py,sha256=1CwTMCNFDYsjGoa_aHFBagtC5HuJTV-s0__5UvcjD3A,5686
96
+ liger_kernel/transformers/model/smollm3.py,sha256=0KWVkDtXbjsBKhJnaquV6vUUYyLtfmNwYH0sxJt-qTk,7667
96
97
  liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
97
98
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
98
99
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
99
100
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
100
- liger_kernel_nightly-0.6.2.dev20250923161735.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
101
- liger_kernel_nightly-0.6.2.dev20250923161735.dist-info/METADATA,sha256=Zqk8XfPYutZA2NQgoD6XKfMFbCEwY8sEKDbM_2LwLRs,24629
102
- liger_kernel_nightly-0.6.2.dev20250923161735.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
103
- liger_kernel_nightly-0.6.2.dev20250923161735.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
104
- liger_kernel_nightly-0.6.2.dev20250923161735.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
105
- liger_kernel_nightly-0.6.2.dev20250923161735.dist-info/RECORD,,
101
+ liger_kernel_nightly-0.6.2.dev20251008084122.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
102
+ liger_kernel_nightly-0.6.2.dev20251008084122.dist-info/METADATA,sha256=Uk7nue5xFD5LoCoKeAD8zHpI2-c-taOdvk1KyBdBUXE,24777
103
+ liger_kernel_nightly-0.6.2.dev20251008084122.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
104
+ liger_kernel_nightly-0.6.2.dev20251008084122.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
105
+ liger_kernel_nightly-0.6.2.dev20251008084122.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
106
+ liger_kernel_nightly-0.6.2.dev20251008084122.dist-info/RECORD,,