liger-kernel-nightly 0.6.2.dev20250923161459__py3-none-any.whl → 0.6.2.dev20251005233549__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -38,6 +38,7 @@ if TYPE_CHECKING:
38
38
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
39
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
40
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
41
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
41
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
42
43
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
43
44
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
@@ -98,6 +99,7 @@ def __getattr__(name: str):
98
99
  "apply_liger_kernel_to_glm4v",
99
100
  "apply_liger_kernel_to_glm4v_moe",
100
101
  "apply_liger_kernel_to_granite",
102
+ "apply_liger_kernel_to_internvl",
101
103
  "apply_liger_kernel_to_llama",
102
104
  "apply_liger_kernel_to_llava",
103
105
  "apply_liger_kernel_to_llama4",
@@ -163,6 +165,7 @@ if _TRANSFORMERS_AVAILABLE:
163
165
  "apply_liger_kernel_to_glm4v",
164
166
  "apply_liger_kernel_to_glm4v_moe",
165
167
  "apply_liger_kernel_to_granite",
168
+ "apply_liger_kernel_to_internvl",
166
169
  "apply_liger_kernel_to_llama",
167
170
  "apply_liger_kernel_to_llava",
168
171
  "apply_liger_kernel_to_llama4",
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.models.internvl.modeling_internvl import InternVLCausalLMOutputWithPast
9
+ from transformers.utils import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+
14
+ # Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ pixel_values: Optional[torch.FloatTensor] = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
25
+ vision_feature_select_strategy: Optional[str] = None,
26
+ labels: Optional[torch.LongTensor] = None,
27
+ use_cache: Optional[bool] = None,
28
+ output_attentions: Optional[bool] = None,
29
+ output_hidden_states: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ cache_position: Optional[torch.LongTensor] = None,
32
+ logits_to_keep: Union[int, torch.Tensor] = 0,
33
+ image_sizes: Optional[torch.Tensor] = None,
34
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
35
+ **lm_kwargs, # renamed from kwargs
36
+ ) -> Union[Tuple, InternVLCausalLMOutputWithPast]:
37
+ r"""
38
+ Example:
39
+
40
+ ```python
41
+ >>> import torch
42
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
43
+
44
+ >>> torch_device = "cuda"
45
+ >>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
46
+ >>> model = AutoModelForImageTextToText.from_pretrained(
47
+ ... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
48
+ ... )
49
+
50
+ >>> messages = [
51
+ ... {
52
+ ... "role": "user",
53
+ ... "content": [
54
+ ... {
55
+ ... "type": "image",
56
+ ... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
57
+ ... },
58
+ ... {
59
+ ... "type": "image",
60
+ ... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
61
+ ... },
62
+ ... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
63
+ ... ],
64
+ ... },
65
+ ... ]
66
+
67
+ >>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
68
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=200)
69
+ >>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
70
+ The images depict the Statue of Liberty and the Golden Gate Bridge.
71
+ ```"""
72
+
73
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
74
+ output_hidden_states = (
75
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
76
+ )
77
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
78
+ vision_feature_layer = (
79
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
80
+ )
81
+ vision_feature_select_strategy = (
82
+ vision_feature_select_strategy
83
+ if vision_feature_select_strategy is not None
84
+ else self.config.vision_feature_select_strategy
85
+ )
86
+
87
+ outputs = self.model(
88
+ input_ids=input_ids,
89
+ pixel_values=pixel_values,
90
+ attention_mask=attention_mask,
91
+ position_ids=position_ids,
92
+ past_key_values=past_key_values,
93
+ inputs_embeds=inputs_embeds,
94
+ vision_feature_layer=vision_feature_layer,
95
+ vision_feature_select_strategy=vision_feature_select_strategy,
96
+ use_cache=use_cache,
97
+ output_attentions=output_attentions,
98
+ output_hidden_states=output_hidden_states,
99
+ return_dict=return_dict,
100
+ cache_position=cache_position,
101
+ image_sizes=image_sizes,
102
+ **lm_kwargs,
103
+ )
104
+
105
+ # Copied from llava.py
106
+ hidden_states = outputs[0]
107
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
108
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
109
+ kept_hidden_states = hidden_states[:, slice_indices, :]
110
+
111
+ shift_labels = lm_kwargs.pop("shift_labels", None)
112
+ logits = None
113
+ loss = None
114
+
115
+ if skip_logits and labels is None and shift_labels is None:
116
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
117
+
118
+ if skip_logits is None:
119
+ # By default, if in training mode, don't materialize logits
120
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
121
+
122
+ if skip_logits:
123
+ loss = LigerForCausalLMLoss(
124
+ hidden_states=kept_hidden_states,
125
+ lm_head_weight=self.lm_head.weight,
126
+ labels=labels,
127
+ shift_labels=shift_labels,
128
+ hidden_size=self.config.text_config.hidden_size,
129
+ **lm_kwargs,
130
+ )
131
+
132
+ else:
133
+ logits = self.lm_head(kept_hidden_states)
134
+ if labels is not None:
135
+ loss = self.loss_function(
136
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
137
+ )
138
+
139
+ if not return_dict:
140
+ output = (logits,) + outputs[1:]
141
+ return (loss,) + output if loss is not None else output
142
+
143
+ return InternVLCausalLMOutputWithPast(
144
+ loss=loss,
145
+ logits=logits,
146
+ past_key_values=outputs.past_key_values,
147
+ hidden_states=outputs.hidden_states,
148
+ attentions=outputs.attentions,
149
+ image_hidden_states=outputs.image_hidden_states,
150
+ )
@@ -4,6 +4,7 @@ import logging
4
4
  from functools import partial
5
5
  from types import MethodType
6
6
  from typing import Callable
7
+ from typing import Optional
7
8
 
8
9
  import transformers
9
10
 
@@ -1334,7 +1335,6 @@ def apply_liger_kernel_to_qwen2(
1334
1335
  if rms_norm:
1335
1336
  _patch_rms_norm_module(decoder_layer.input_layernorm)
1336
1337
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1337
- print("Applied Liger kernels to Qwen2")
1338
1338
 
1339
1339
 
1340
1340
  def apply_liger_kernel_to_qwen3(
@@ -2029,6 +2029,84 @@ def apply_liger_kernel_to_glm4v_moe(
2029
2029
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
2030
2030
 
2031
2031
 
2032
+ def apply_liger_kernel_to_internvl(
2033
+ cross_entropy: bool = False,
2034
+ fused_linear_cross_entropy: bool = True,
2035
+ rms_norm: bool = True,
2036
+ model: Optional[PreTrainedModel] = None,
2037
+ **kwargs,
2038
+ ) -> None:
2039
+ """
2040
+ Apply Liger kernels to replace original implementation in HuggingFace InternVL models.
2041
+ Due to the characteristics of InternVL, the model must be passed to apply Liger-Kernel's patch to other models connected to InternVL.
2042
+ However, if an LM not supported by Liger-Kernel is connected to InternVL, unexpected side effects may occur.
2043
+ NOTE: InternVL is not available in transformers<4.52.1
2044
+
2045
+ Args:
2046
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
2047
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
2048
+ fused_linear_cross_entropy (bool):
2049
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
2050
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
2051
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
2052
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
2053
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
2054
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
2055
+ loaded. Default is None.
2056
+ """
2057
+ assert not (cross_entropy and fused_linear_cross_entropy), (
2058
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
2059
+ )
2060
+
2061
+ from transformers.models.internvl import modeling_internvl
2062
+
2063
+ from liger_kernel.transformers.model.internvl import lce_forward as internvl_lce_forward
2064
+
2065
+ if cross_entropy:
2066
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
2067
+ modeling_internvl.nn.CrossEntropyLoss = LigerCrossEntropyLoss
2068
+ if fused_linear_cross_entropy:
2069
+ modeling_internvl.InternVLForConditionalGeneration.forward = internvl_lce_forward
2070
+ if rms_norm:
2071
+ modeling_internvl.InternVLVisionRMSNorm = LigerRMSNorm
2072
+
2073
+ if model is not None:
2074
+ text_model_name, vision_model_name = model.config.text_config.model_type, model.config.vision_config.model_type
2075
+ text_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(text_model_name, None)
2076
+ vision_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(vision_model_name, None)
2077
+
2078
+ kwargs = {"cross_entropy": False, "fused_linear_cross_entropy": False, **kwargs} | {"rms_norm": rms_norm}
2079
+ if text_liger_fn:
2080
+ accept_params = inspect.signature(text_liger_fn).parameters
2081
+ remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
2082
+ text_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
2083
+
2084
+ if remain_params:
2085
+ logger.warning(
2086
+ f"These parameters are not supported by {text_model_name}. Enter the remaining {list(text_kwargs.keys())} except for {list(remain_params)}\n"
2087
+ f"Parameters accepted by {text_model_name}: {list(accept_params.keys())}"
2088
+ )
2089
+ text_kwargs["model"] = model.language_model
2090
+ text_liger_fn(**text_kwargs)
2091
+ elif text_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
2092
+ logger.warning(f"{text_model_name} is not supported by Liger kernel.")
2093
+
2094
+ if vision_liger_fn:
2095
+ accept_params = inspect.signature(vision_liger_fn).parameters
2096
+ remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
2097
+ vision_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
2098
+
2099
+ if remain_params:
2100
+ logger.warning(
2101
+ f"These parameters are not supported by {vision_model_name}. Enter the remaining {list(vision_kwargs.keys())} except for {list(remain_params)}\n"
2102
+ f"Parameters accepted by {vision_model_name}: {list(accept_params.keys())}"
2103
+ )
2104
+ vision_kwargs["model"] = model.vision_tower
2105
+ vision_liger_fn(**vision_kwargs)
2106
+ elif vision_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
2107
+ logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
2108
+
2109
+
2032
2110
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
2033
2111
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
2034
2112
  "gemma": apply_liger_kernel_to_gemma,
@@ -2038,6 +2116,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
2038
2116
  "glm4": apply_liger_kernel_to_glm4,
2039
2117
  "glm4v": apply_liger_kernel_to_glm4v,
2040
2118
  "glm4v_moe": apply_liger_kernel_to_glm4v_moe,
2119
+ "internvl": apply_liger_kernel_to_internvl,
2041
2120
  "llama": apply_liger_kernel_to_llama,
2042
2121
  "llama4_text": apply_liger_kernel_to_llama4,
2043
2122
  "llama4": apply_liger_kernel_to_llama4,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20250923161459
3
+ Version: 0.6.2.dev20251005233549
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -311,6 +311,7 @@ loss.backward()
311
311
  | Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
312
312
  | OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
313
313
  | GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
314
+ | InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
314
315
 
315
316
 
316
317
  ## Low-level APIs
@@ -41,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
41
41
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
42
42
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
43
43
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
44
- liger_kernel/transformers/__init__.py,sha256=GA4GdoP0VKKGzXoLN51DacuTtNuwciS96ZAblkDYl3w,8631
44
+ liger_kernel/transformers/__init__.py,sha256=1HPWpJGAZl4TmPzG5kgvNMR7g9Ifvj5usTP4x-RsJ38,8819
45
45
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
46
46
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
47
47
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=DpYF1mVjmErtkFgnxi20rnyeXr7bvVSg3BR166cMF5I,98472
61
+ liger_kernel/transformers/monkey_patch.py,sha256=kGytMCLZdn-hPiNB_FhwojgBye0wmEKK6ZqsyKyCVAo,102745
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -77,6 +77,7 @@ liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2Ghir
77
77
  liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
78
78
  liger_kernel/transformers/model/glm4v.py,sha256=dE9rRx1bOIr4T9xSXj58dtukaR80szeuclbgX0A0ovg,5951
79
79
  liger_kernel/transformers/model/glm4v_moe.py,sha256=Nij7tIYGkcBhJUMvQhYoFd1tVT4pbkxc2k4MSvN2pak,6166
80
+ liger_kernel/transformers/model/internvl.py,sha256=Uv8KGXOz9NhiKVZDeRNzAJH5kRuMZikUbswWM9u5KM0,6069
80
81
  liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
81
82
  liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
82
83
  liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
@@ -97,9 +98,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
97
98
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
98
99
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
99
100
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
100
- liger_kernel_nightly-0.6.2.dev20250923161459.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
101
- liger_kernel_nightly-0.6.2.dev20250923161459.dist-info/METADATA,sha256=ScJ0c8iO8yq9LAogFifNlHxfKPMtx3gBKdBg52iuUIY,24629
102
- liger_kernel_nightly-0.6.2.dev20250923161459.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
103
- liger_kernel_nightly-0.6.2.dev20250923161459.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
104
- liger_kernel_nightly-0.6.2.dev20250923161459.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
105
- liger_kernel_nightly-0.6.2.dev20250923161459.dist-info/RECORD,,
101
+ liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
102
+ liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/METADATA,sha256=a9HNSwKTdwQwsiF67WLIuJaD2Lt7R91GwAK1H9nRE-M,24777
103
+ liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
104
+ liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
105
+ liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
106
+ liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/RECORD,,