liger-kernel-nightly 0.6.2.dev20250923161459__py3-none-any.whl → 0.6.2.dev20251005233549__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/model/internvl.py +150 -0
- liger_kernel/transformers/monkey_patch.py +80 -1
- {liger_kernel_nightly-0.6.2.dev20250923161459.dist-info → liger_kernel_nightly-0.6.2.dev20251005233549.dist-info}/METADATA +2 -1
- {liger_kernel_nightly-0.6.2.dev20250923161459.dist-info → liger_kernel_nightly-0.6.2.dev20251005233549.dist-info}/RECORD +9 -8
- {liger_kernel_nightly-0.6.2.dev20250923161459.dist-info → liger_kernel_nightly-0.6.2.dev20251005233549.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20250923161459.dist-info → liger_kernel_nightly-0.6.2.dev20251005233549.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20250923161459.dist-info → liger_kernel_nightly-0.6.2.dev20251005233549.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20250923161459.dist-info → liger_kernel_nightly-0.6.2.dev20251005233549.dist-info}/top_level.txt +0 -0
|
@@ -38,6 +38,7 @@ if TYPE_CHECKING:
|
|
|
38
38
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
39
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
40
40
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
41
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
41
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
42
43
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
43
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
@@ -98,6 +99,7 @@ def __getattr__(name: str):
|
|
|
98
99
|
"apply_liger_kernel_to_glm4v",
|
|
99
100
|
"apply_liger_kernel_to_glm4v_moe",
|
|
100
101
|
"apply_liger_kernel_to_granite",
|
|
102
|
+
"apply_liger_kernel_to_internvl",
|
|
101
103
|
"apply_liger_kernel_to_llama",
|
|
102
104
|
"apply_liger_kernel_to_llava",
|
|
103
105
|
"apply_liger_kernel_to_llama4",
|
|
@@ -163,6 +165,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
163
165
|
"apply_liger_kernel_to_glm4v",
|
|
164
166
|
"apply_liger_kernel_to_glm4v_moe",
|
|
165
167
|
"apply_liger_kernel_to_granite",
|
|
168
|
+
"apply_liger_kernel_to_internvl",
|
|
166
169
|
"apply_liger_kernel_to_llama",
|
|
167
170
|
"apply_liger_kernel_to_llava",
|
|
168
171
|
"apply_liger_kernel_to_llama4",
|
|
@@ -0,0 +1,150 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.models.internvl.modeling_internvl import InternVLCausalLMOutputWithPast
|
|
9
|
+
from transformers.utils import can_return_tuple
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
# Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
|
|
15
|
+
@can_return_tuple
|
|
16
|
+
def lce_forward(
|
|
17
|
+
self,
|
|
18
|
+
input_ids: torch.LongTensor = None,
|
|
19
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
20
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
21
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
22
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
23
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
24
|
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
|
25
|
+
vision_feature_select_strategy: Optional[str] = None,
|
|
26
|
+
labels: Optional[torch.LongTensor] = None,
|
|
27
|
+
use_cache: Optional[bool] = None,
|
|
28
|
+
output_attentions: Optional[bool] = None,
|
|
29
|
+
output_hidden_states: Optional[bool] = None,
|
|
30
|
+
return_dict: Optional[bool] = None,
|
|
31
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
32
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
33
|
+
image_sizes: Optional[torch.Tensor] = None,
|
|
34
|
+
skip_logits: Optional[bool] = None, # Added argument for liger-kernel
|
|
35
|
+
**lm_kwargs, # renamed from kwargs
|
|
36
|
+
) -> Union[Tuple, InternVLCausalLMOutputWithPast]:
|
|
37
|
+
r"""
|
|
38
|
+
Example:
|
|
39
|
+
|
|
40
|
+
```python
|
|
41
|
+
>>> import torch
|
|
42
|
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
43
|
+
|
|
44
|
+
>>> torch_device = "cuda"
|
|
45
|
+
>>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
|
|
46
|
+
>>> model = AutoModelForImageTextToText.from_pretrained(
|
|
47
|
+
... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
|
|
48
|
+
... )
|
|
49
|
+
|
|
50
|
+
>>> messages = [
|
|
51
|
+
... {
|
|
52
|
+
... "role": "user",
|
|
53
|
+
... "content": [
|
|
54
|
+
... {
|
|
55
|
+
... "type": "image",
|
|
56
|
+
... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
|
|
57
|
+
... },
|
|
58
|
+
... {
|
|
59
|
+
... "type": "image",
|
|
60
|
+
... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
|
|
61
|
+
... },
|
|
62
|
+
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
|
|
63
|
+
... ],
|
|
64
|
+
... },
|
|
65
|
+
... ]
|
|
66
|
+
|
|
67
|
+
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
|
|
68
|
+
>>> generate_ids = model.generate(**inputs, max_new_tokens=200)
|
|
69
|
+
>>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
|
|
70
|
+
The images depict the Statue of Liberty and the Golden Gate Bridge.
|
|
71
|
+
```"""
|
|
72
|
+
|
|
73
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
74
|
+
output_hidden_states = (
|
|
75
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
76
|
+
)
|
|
77
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
78
|
+
vision_feature_layer = (
|
|
79
|
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
|
80
|
+
)
|
|
81
|
+
vision_feature_select_strategy = (
|
|
82
|
+
vision_feature_select_strategy
|
|
83
|
+
if vision_feature_select_strategy is not None
|
|
84
|
+
else self.config.vision_feature_select_strategy
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
outputs = self.model(
|
|
88
|
+
input_ids=input_ids,
|
|
89
|
+
pixel_values=pixel_values,
|
|
90
|
+
attention_mask=attention_mask,
|
|
91
|
+
position_ids=position_ids,
|
|
92
|
+
past_key_values=past_key_values,
|
|
93
|
+
inputs_embeds=inputs_embeds,
|
|
94
|
+
vision_feature_layer=vision_feature_layer,
|
|
95
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
96
|
+
use_cache=use_cache,
|
|
97
|
+
output_attentions=output_attentions,
|
|
98
|
+
output_hidden_states=output_hidden_states,
|
|
99
|
+
return_dict=return_dict,
|
|
100
|
+
cache_position=cache_position,
|
|
101
|
+
image_sizes=image_sizes,
|
|
102
|
+
**lm_kwargs,
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
# Copied from llava.py
|
|
106
|
+
hidden_states = outputs[0]
|
|
107
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
108
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
109
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
110
|
+
|
|
111
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
112
|
+
logits = None
|
|
113
|
+
loss = None
|
|
114
|
+
|
|
115
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
116
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
117
|
+
|
|
118
|
+
if skip_logits is None:
|
|
119
|
+
# By default, if in training mode, don't materialize logits
|
|
120
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
121
|
+
|
|
122
|
+
if skip_logits:
|
|
123
|
+
loss = LigerForCausalLMLoss(
|
|
124
|
+
hidden_states=kept_hidden_states,
|
|
125
|
+
lm_head_weight=self.lm_head.weight,
|
|
126
|
+
labels=labels,
|
|
127
|
+
shift_labels=shift_labels,
|
|
128
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
129
|
+
**lm_kwargs,
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
else:
|
|
133
|
+
logits = self.lm_head(kept_hidden_states)
|
|
134
|
+
if labels is not None:
|
|
135
|
+
loss = self.loss_function(
|
|
136
|
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
if not return_dict:
|
|
140
|
+
output = (logits,) + outputs[1:]
|
|
141
|
+
return (loss,) + output if loss is not None else output
|
|
142
|
+
|
|
143
|
+
return InternVLCausalLMOutputWithPast(
|
|
144
|
+
loss=loss,
|
|
145
|
+
logits=logits,
|
|
146
|
+
past_key_values=outputs.past_key_values,
|
|
147
|
+
hidden_states=outputs.hidden_states,
|
|
148
|
+
attentions=outputs.attentions,
|
|
149
|
+
image_hidden_states=outputs.image_hidden_states,
|
|
150
|
+
)
|
|
@@ -4,6 +4,7 @@ import logging
|
|
|
4
4
|
from functools import partial
|
|
5
5
|
from types import MethodType
|
|
6
6
|
from typing import Callable
|
|
7
|
+
from typing import Optional
|
|
7
8
|
|
|
8
9
|
import transformers
|
|
9
10
|
|
|
@@ -1334,7 +1335,6 @@ def apply_liger_kernel_to_qwen2(
|
|
|
1334
1335
|
if rms_norm:
|
|
1335
1336
|
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
1336
1337
|
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
1337
|
-
print("Applied Liger kernels to Qwen2")
|
|
1338
1338
|
|
|
1339
1339
|
|
|
1340
1340
|
def apply_liger_kernel_to_qwen3(
|
|
@@ -2029,6 +2029,84 @@ def apply_liger_kernel_to_glm4v_moe(
|
|
|
2029
2029
|
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
2030
2030
|
|
|
2031
2031
|
|
|
2032
|
+
def apply_liger_kernel_to_internvl(
|
|
2033
|
+
cross_entropy: bool = False,
|
|
2034
|
+
fused_linear_cross_entropy: bool = True,
|
|
2035
|
+
rms_norm: bool = True,
|
|
2036
|
+
model: Optional[PreTrainedModel] = None,
|
|
2037
|
+
**kwargs,
|
|
2038
|
+
) -> None:
|
|
2039
|
+
"""
|
|
2040
|
+
Apply Liger kernels to replace original implementation in HuggingFace InternVL models.
|
|
2041
|
+
Due to the characteristics of InternVL, the model must be passed to apply Liger-Kernel's patch to other models connected to InternVL.
|
|
2042
|
+
However, if an LM not supported by Liger-Kernel is connected to InternVL, unexpected side effects may occur.
|
|
2043
|
+
NOTE: InternVL is not available in transformers<4.52.1
|
|
2044
|
+
|
|
2045
|
+
Args:
|
|
2046
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
2047
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
2048
|
+
fused_linear_cross_entropy (bool):
|
|
2049
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
2050
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
2051
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
2052
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
2053
|
+
swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
|
|
2054
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
2055
|
+
loaded. Default is None.
|
|
2056
|
+
"""
|
|
2057
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
2058
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
2059
|
+
)
|
|
2060
|
+
|
|
2061
|
+
from transformers.models.internvl import modeling_internvl
|
|
2062
|
+
|
|
2063
|
+
from liger_kernel.transformers.model.internvl import lce_forward as internvl_lce_forward
|
|
2064
|
+
|
|
2065
|
+
if cross_entropy:
|
|
2066
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
2067
|
+
modeling_internvl.nn.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
2068
|
+
if fused_linear_cross_entropy:
|
|
2069
|
+
modeling_internvl.InternVLForConditionalGeneration.forward = internvl_lce_forward
|
|
2070
|
+
if rms_norm:
|
|
2071
|
+
modeling_internvl.InternVLVisionRMSNorm = LigerRMSNorm
|
|
2072
|
+
|
|
2073
|
+
if model is not None:
|
|
2074
|
+
text_model_name, vision_model_name = model.config.text_config.model_type, model.config.vision_config.model_type
|
|
2075
|
+
text_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(text_model_name, None)
|
|
2076
|
+
vision_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN.get(vision_model_name, None)
|
|
2077
|
+
|
|
2078
|
+
kwargs = {"cross_entropy": False, "fused_linear_cross_entropy": False, **kwargs} | {"rms_norm": rms_norm}
|
|
2079
|
+
if text_liger_fn:
|
|
2080
|
+
accept_params = inspect.signature(text_liger_fn).parameters
|
|
2081
|
+
remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
|
|
2082
|
+
text_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
|
|
2083
|
+
|
|
2084
|
+
if remain_params:
|
|
2085
|
+
logger.warning(
|
|
2086
|
+
f"These parameters are not supported by {text_model_name}. Enter the remaining {list(text_kwargs.keys())} except for {list(remain_params)}\n"
|
|
2087
|
+
f"Parameters accepted by {text_model_name}: {list(accept_params.keys())}"
|
|
2088
|
+
)
|
|
2089
|
+
text_kwargs["model"] = model.language_model
|
|
2090
|
+
text_liger_fn(**text_kwargs)
|
|
2091
|
+
elif text_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
|
|
2092
|
+
logger.warning(f"{text_model_name} is not supported by Liger kernel.")
|
|
2093
|
+
|
|
2094
|
+
if vision_liger_fn:
|
|
2095
|
+
accept_params = inspect.signature(vision_liger_fn).parameters
|
|
2096
|
+
remain_params = set(kwargs) - (set(accept_params) & set(kwargs))
|
|
2097
|
+
vision_kwargs = {k: v for k, v in kwargs.items() if k not in remain_params}
|
|
2098
|
+
|
|
2099
|
+
if remain_params:
|
|
2100
|
+
logger.warning(
|
|
2101
|
+
f"These parameters are not supported by {vision_model_name}. Enter the remaining {list(vision_kwargs.keys())} except for {list(remain_params)}\n"
|
|
2102
|
+
f"Parameters accepted by {vision_model_name}: {list(accept_params.keys())}"
|
|
2103
|
+
)
|
|
2104
|
+
vision_kwargs["model"] = model.vision_tower
|
|
2105
|
+
vision_liger_fn(**vision_kwargs)
|
|
2106
|
+
elif vision_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
|
|
2107
|
+
logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
|
|
2108
|
+
|
|
2109
|
+
|
|
2032
2110
|
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
2033
2111
|
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
2034
2112
|
"gemma": apply_liger_kernel_to_gemma,
|
|
@@ -2038,6 +2116,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
2038
2116
|
"glm4": apply_liger_kernel_to_glm4,
|
|
2039
2117
|
"glm4v": apply_liger_kernel_to_glm4v,
|
|
2040
2118
|
"glm4v_moe": apply_liger_kernel_to_glm4v_moe,
|
|
2119
|
+
"internvl": apply_liger_kernel_to_internvl,
|
|
2041
2120
|
"llama": apply_liger_kernel_to_llama,
|
|
2042
2121
|
"llama4_text": apply_liger_kernel_to_llama4,
|
|
2043
2122
|
"llama4": apply_liger_kernel_to_llama4,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel_nightly
|
|
3
|
-
Version: 0.6.2.
|
|
3
|
+
Version: 0.6.2.dev20251005233549
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -311,6 +311,7 @@ loss.backward()
|
|
|
311
311
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
312
312
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
313
|
| GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
314
|
+
| InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
314
315
|
|
|
315
316
|
|
|
316
317
|
## Low-level APIs
|
|
@@ -41,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
|
41
41
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
|
42
42
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
|
43
43
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
|
44
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
44
|
+
liger_kernel/transformers/__init__.py,sha256=1HPWpJGAZl4TmPzG5kgvNMR7g9Ifvj5usTP4x-RsJ38,8819
|
|
45
45
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
|
46
46
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
|
47
47
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
|
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
|
|
|
58
58
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
|
59
59
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
|
60
60
|
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
|
61
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
61
|
+
liger_kernel/transformers/monkey_patch.py,sha256=kGytMCLZdn-hPiNB_FhwojgBye0wmEKK6ZqsyKyCVAo,102745
|
|
62
62
|
liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
|
|
63
63
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
|
64
64
|
liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
|
|
@@ -77,6 +77,7 @@ liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2Ghir
|
|
|
77
77
|
liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
|
|
78
78
|
liger_kernel/transformers/model/glm4v.py,sha256=dE9rRx1bOIr4T9xSXj58dtukaR80szeuclbgX0A0ovg,5951
|
|
79
79
|
liger_kernel/transformers/model/glm4v_moe.py,sha256=Nij7tIYGkcBhJUMvQhYoFd1tVT4pbkxc2k4MSvN2pak,6166
|
|
80
|
+
liger_kernel/transformers/model/internvl.py,sha256=Uv8KGXOz9NhiKVZDeRNzAJH5kRuMZikUbswWM9u5KM0,6069
|
|
80
81
|
liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
|
|
81
82
|
liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
|
|
82
83
|
liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
|
|
@@ -97,9 +98,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
|
97
98
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
|
98
99
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
|
99
100
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
|
100
|
-
liger_kernel_nightly-0.6.2.
|
|
101
|
-
liger_kernel_nightly-0.6.2.
|
|
102
|
-
liger_kernel_nightly-0.6.2.
|
|
103
|
-
liger_kernel_nightly-0.6.2.
|
|
104
|
-
liger_kernel_nightly-0.6.2.
|
|
105
|
-
liger_kernel_nightly-0.6.2.
|
|
101
|
+
liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
102
|
+
liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/METADATA,sha256=a9HNSwKTdwQwsiF67WLIuJaD2Lt7R91GwAK1H9nRE-M,24777
|
|
103
|
+
liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
104
|
+
liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
|
105
|
+
liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
106
|
+
liger_kernel_nightly-0.6.2.dev20251005233549.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|