liger-kernel-nightly 0.6.2.dev20250919191028__py3-none-any.whl → 0.6.4.dev20251202054858__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (67) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  3. liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
  4. liger_kernel/chunked_loss/grpo_loss.py +8 -5
  5. liger_kernel/chunked_loss/jsd_loss.py +18 -5
  6. liger_kernel/ops/cross_entropy.py +120 -63
  7. liger_kernel/ops/dyt.py +5 -2
  8. liger_kernel/ops/fused_add_rms_norm.py +5 -1
  9. liger_kernel/ops/fused_linear_cross_entropy.py +43 -12
  10. liger_kernel/ops/geglu.py +2 -1
  11. liger_kernel/ops/group_norm.py +2 -1
  12. liger_kernel/ops/grpo_loss.py +3 -1
  13. liger_kernel/ops/layer_norm.py +88 -70
  14. liger_kernel/ops/poly_norm.py +390 -0
  15. liger_kernel/ops/rms_norm.py +7 -2
  16. liger_kernel/ops/tiled_mlp.py +136 -0
  17. liger_kernel/ops/utils.py +2 -0
  18. liger_kernel/transformers/__init__.py +33 -0
  19. liger_kernel/transformers/cross_entropy.py +8 -3
  20. liger_kernel/transformers/functional.py +29 -6
  21. liger_kernel/transformers/fused_linear_cross_entropy.py +8 -3
  22. liger_kernel/transformers/grpo_loss.py +56 -1
  23. liger_kernel/transformers/model/falcon_h1.py +122 -0
  24. liger_kernel/transformers/model/gemma.py +19 -7
  25. liger_kernel/transformers/model/gemma2.py +22 -7
  26. liger_kernel/transformers/model/gemma3.py +52 -14
  27. liger_kernel/transformers/model/glm4.py +18 -5
  28. liger_kernel/transformers/model/glm4v.py +18 -5
  29. liger_kernel/transformers/model/glm4v_moe.py +25 -5
  30. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  31. liger_kernel/transformers/model/internvl.py +157 -0
  32. liger_kernel/transformers/model/llama.py +16 -6
  33. liger_kernel/transformers/model/llama4.py +18 -5
  34. liger_kernel/transformers/model/llava.py +18 -6
  35. liger_kernel/transformers/model/loss_utils.py +31 -3
  36. liger_kernel/transformers/model/mistral.py +17 -7
  37. liger_kernel/transformers/model/mixtral.py +24 -9
  38. liger_kernel/transformers/model/mllama.py +14 -5
  39. liger_kernel/transformers/model/olmo2.py +18 -5
  40. liger_kernel/transformers/model/olmo3.py +142 -0
  41. liger_kernel/transformers/model/output_classes.py +147 -0
  42. liger_kernel/transformers/model/paligemma.py +41 -5
  43. liger_kernel/transformers/model/phi3.py +16 -8
  44. liger_kernel/transformers/model/qwen2.py +18 -4
  45. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  46. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  47. liger_kernel/transformers/model/qwen3.py +22 -6
  48. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  49. liger_kernel/transformers/model/qwen3_next.py +146 -0
  50. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  51. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  52. liger_kernel/transformers/model/smollm3.py +17 -7
  53. liger_kernel/transformers/model/smolvlm.py +158 -0
  54. liger_kernel/transformers/monkey_patch.py +729 -4
  55. liger_kernel/transformers/poly_norm.py +42 -0
  56. liger_kernel/transformers/rms_norm.py +7 -0
  57. liger_kernel/transformers/rope.py +43 -0
  58. liger_kernel/transformers/swiglu.py +17 -0
  59. liger_kernel/transformers/tiled_mlp.py +133 -0
  60. liger_kernel/utils.py +25 -0
  61. {liger_kernel_nightly-0.6.2.dev20250919191028.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/METADATA +13 -6
  62. liger_kernel_nightly-0.6.4.dev20251202054858.dist-info/RECORD +118 -0
  63. liger_kernel_nightly-0.6.2.dev20250919191028.dist-info/RECORD +0 -105
  64. {liger_kernel_nightly-0.6.2.dev20250919191028.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/LICENSE +0 -0
  65. {liger_kernel_nightly-0.6.2.dev20250919191028.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/NOTICE +0 -0
  66. {liger_kernel_nightly-0.6.2.dev20250919191028.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/WHEEL +0 -0
  67. {liger_kernel_nightly-0.6.2.dev20250919191028.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/top_level.txt +0 -0
@@ -1,3 +1,6 @@
1
+ from typing import Tuple
2
+ from typing import Union
3
+
1
4
  import torch
2
5
  import torch.nn.functional as F
3
6
 
@@ -41,7 +44,8 @@ class LigerFusedLinearCosineSimilarityFunction(LigerFusedLinearDistillationBase)
41
44
  temperature: float = 1.0,
42
45
  compiled: bool = True,
43
46
  chunk_size: int = 1024,
44
- ):
47
+ return_soft_hard_loss: bool = False,
48
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
45
49
  return super().forward(
46
50
  cls=cls,
47
51
  ctx=ctx,
@@ -59,11 +63,12 @@ class LigerFusedLinearCosineSimilarityFunction(LigerFusedLinearDistillationBase)
59
63
  ignore_index=ignore_index,
60
64
  temperature=temperature,
61
65
  compiled=compiled,
66
+ return_soft_hard_loss=return_soft_hard_loss,
62
67
  )
63
68
 
64
69
  @staticmethod
65
- def backward(ctx, grad_output):
66
- grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output)[:6]
70
+ def backward(ctx, grad_output, *args):
71
+ grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output, *args)[:6]
67
72
 
68
73
  return (
69
74
  *grads,
@@ -75,6 +80,7 @@ class LigerFusedLinearCosineSimilarityFunction(LigerFusedLinearDistillationBase)
75
80
  None, # temperature
76
81
  None, # compiled
77
82
  None, # chunk_size
83
+ None, # return_soft_hard_loss
78
84
  )
79
85
 
80
86
 
@@ -88,6 +94,7 @@ class LigerFusedLinearCosineSimilarityLoss(torch.nn.Module):
88
94
  temperature: float = 1.0,
89
95
  compiled: bool = True,
90
96
  chunk_size: int = 1024,
97
+ return_soft_hard_loss: bool = False,
91
98
  ):
92
99
  super().__init__()
93
100
  assert temperature != 0, "Temperature cannot be 0."
@@ -98,6 +105,7 @@ class LigerFusedLinearCosineSimilarityLoss(torch.nn.Module):
98
105
  self.compiled = compiled
99
106
  self.beta = beta
100
107
  self.chunk_size = chunk_size
108
+ self.return_soft_hard_loss = return_soft_hard_loss
101
109
 
102
110
  def forward(
103
111
  self,
@@ -108,7 +116,7 @@ class LigerFusedLinearCosineSimilarityLoss(torch.nn.Module):
108
116
  true_labels: torch.LongTensor,
109
117
  student_bias: torch.Tensor = None,
110
118
  teacher_bias: torch.Tensor = None,
111
- ) -> torch.Tensor:
119
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
112
120
  return LigerFusedLinearCosineSimilarityFunction.apply(
113
121
  student_input,
114
122
  student_weight,
@@ -124,4 +132,5 @@ class LigerFusedLinearCosineSimilarityLoss(torch.nn.Module):
124
132
  self.temperature,
125
133
  self.compiled,
126
134
  self.chunk_size,
135
+ self.return_soft_hard_loss,
127
136
  )
@@ -1,5 +1,7 @@
1
1
  from abc import abstractmethod
2
2
  from functools import partial
3
+ from typing import Tuple
4
+ from typing import Union
3
5
 
4
6
  import torch
5
7
 
@@ -157,8 +159,9 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
157
159
  compute_ce_loss=True,
158
160
  temperature=1.0,
159
161
  compiled=True,
162
+ return_soft_hard_loss=False,
160
163
  **loss_kwargs,
161
- ):
164
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
162
165
  """
163
166
  Base class for fused linear layer with distillation loss.
164
167
  Only need to compute gradients for student model.
@@ -180,6 +183,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
180
183
  compute_ce_loss (bool): Whether to compute CE loss.
181
184
  temperature (float): Temperature to control the input probability distribution. Default: `1.0` (i.e. no scale)
182
185
  compiled (bool): Whether to use torch compile for chunk accumulation.
186
+ return_soft_hard_loss (bool): Whether to return soft and hard losses separately. Default: False.
183
187
  loss_kwargs (dict): Other possible arguments that a loss function might need
184
188
  """
185
189
  CHUNK_SIZE = chunk_size
@@ -187,6 +191,8 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
187
191
  grad_inputs = []
188
192
  grad_bias = torch.zeros_like(student_bias) if student_bias is not None else None
189
193
  loss_acc = torch.zeros((), device=student_input.device)
194
+ soft_loss_acc = torch.zeros((), device=student_input.device) if return_soft_hard_loss else None
195
+ hard_loss_acc = torch.zeros((), device=student_input.device) if return_soft_hard_loss else None
190
196
 
191
197
  loss_func_to_call = partial(
192
198
  LigerFusedLinearDistillationBase._compute_loss,
@@ -247,6 +253,9 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
247
253
  )
248
254
  grad_weight.add_(chunk_grad_weight)
249
255
  loss_acc.add_(chunk_loss)
256
+ if return_soft_hard_loss:
257
+ soft_loss_acc.add_(chunk_soft_loss)
258
+ hard_loss_acc.add_(chunk_hard_loss)
250
259
  return chunk_grad_input
251
260
 
252
261
  if compiled:
@@ -268,10 +277,12 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
268
277
  grad_weight,
269
278
  grad_bias,
270
279
  )
280
+ if return_soft_hard_loss:
281
+ return loss_acc, soft_loss_acc, hard_loss_acc
271
282
  return loss_acc
272
283
 
273
284
  @staticmethod
274
- def backward(ctx, grad_output):
285
+ def backward(ctx, grad_output, *args):
275
286
  grad_input, grad_weight, grad_bias = ctx.saved_tensors
276
287
  if torch.ne(grad_output, torch.tensor(1.0, device=grad_output.device)):
277
288
  grad_input = grad_input * grad_output
@@ -32,7 +32,7 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
32
32
  epsilon_low=0.2,
33
33
  epsilon_high=0.2,
34
34
  beta=0.04,
35
- loss_type="bnpo",
35
+ loss_type="dapo",
36
36
  max_completion_length=None,
37
37
  importance_sampling_level="token",
38
38
  temperature=1.0,
@@ -60,7 +60,7 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
60
60
  epsilon_low: Lower bound for clipping the importance sampling ratio
61
61
  epsilon_high: Upper bound for clipping the importance sampling ratio
62
62
  beta: Weight for the KL penalty
63
- loss_type: Type of loss calculation ("grpo", "bnpo", "dr_grpo")
63
+ loss_type: Type of loss calculation ("grpo", "bnpo", "dr_grpo", "dapo")
64
64
  max_completion_length: Maximum completion length required for "dr_grpo"
65
65
  temperature: Temperature for the logits
66
66
  compiled: Whether to use torch compile
@@ -244,6 +244,21 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
244
244
 
245
245
  return loss_acc, tuple(final_metrics)
246
246
 
247
+ @staticmethod
248
+ def _compute_dapo_normalizer(attention_mask):
249
+ """Global active tokens averaged per process."""
250
+ normalizer = attention_mask.to(torch.float32).sum()
251
+ world_size = 1
252
+ if torch.distributed.is_available() and torch.distributed.is_initialized():
253
+ import torch.distributed as dist
254
+
255
+ normalizer = normalizer.clone()
256
+ dist.all_reduce(normalizer, op=dist.ReduceOp.SUM)
257
+ world_size = dist.get_world_size()
258
+
259
+ normalizer = normalizer / world_size
260
+ return torch.clamp(normalizer, min=1.0)
261
+
247
262
  @staticmethod
248
263
  def _compute_chunk_loss(
249
264
  input_chunk,
@@ -261,7 +276,7 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
261
276
  epsilon_low=0.2,
262
277
  epsilon_high=0.2,
263
278
  beta=0.04,
264
- loss_type="bnpo",
279
+ loss_type="dapo",
265
280
  max_completion_length=None,
266
281
  importance_sampling_level="token",
267
282
  temperature=1.0,
@@ -341,10 +356,11 @@ class LigerFusedLinearPPOBase(torch.autograd.Function):
341
356
  None, # grad_epsilon_low
342
357
  None, # grad_epsilon_high
343
358
  None, # grad_beta
359
+ None, # grad_loss_type
360
+ None, # grad_max_completion_length
361
+ None, # grad_importance_sampling_level
344
362
  None, # grad_temperature
345
363
  None, # grad_compiled
346
364
  None, # grad_use_ref_model
347
365
  None, # grad_chunk_size
348
- None, # grad_loss_type
349
- None, # grad_max_completion_length
350
366
  )
@@ -29,7 +29,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
29
29
  epsilon_low=0.2,
30
30
  epsilon_high=0.2,
31
31
  beta=0.04,
32
- loss_type="bnpo", # ["grpo", "bnpo", "dr_grpo"]
32
+ loss_type="dapo", # ["grpo", "bnpo", "dr_grpo", "dapo"]
33
33
  max_completion_length=None, # Required for dr_grpo
34
34
  importance_sampling_level="token", # ["token", "sequence"] - new parameter for GSPO
35
35
  **kwargs,
@@ -94,6 +94,9 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
94
94
  if max_completion_length is None:
95
95
  raise ValueError("max_completion_length must be provided for loss_type 'dr_grpo'")
96
96
  loss = (per_token_loss * attention_mask).sum() / (full_attention_mask.shape[0] * max_completion_length)
97
+ elif loss_type == "dapo":
98
+ loss_normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(full_attention_mask)
99
+ loss = (per_token_loss * attention_mask).sum() / loss_normalizer
97
100
  else:
98
101
  raise ValueError(f"Unknown loss type: {loss_type}")
99
102
 
@@ -135,7 +138,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
135
138
  beta=0.04,
136
139
  epsilon_low=0.2,
137
140
  epsilon_high=0.2,
138
- loss_type="bnpo",
141
+ loss_type="dapo",
139
142
  max_completion_length=None,
140
143
  importance_sampling_level="token",
141
144
  temperature=1.0,
@@ -157,7 +160,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearPPOBase):
157
160
  ref_weight (torch.Tensor, optional): Reference model weight tensor. Shape: (vocab_size, hidden_size)
158
161
  ref_bias (torch.Tensor, optional): Reference model bias tensor. Shape: (vocab_size,)
159
162
  beta (float): Weight for the KL penalty
160
- loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo"). Defaults to "bnpo".
163
+ loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo", "dapo"). Defaults to "dapo".
161
164
  max_completion_length (int, optional): Maximum completion length, required for "dr_grpo". Defaults to None.
162
165
  importance_sampling_level (str): Level of importance sampling ("token" or "sequence"). Defaults to "token".
163
166
  temperature (float): Temperature for the logits
@@ -235,7 +238,7 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
235
238
  chunk_size: int = 1,
236
239
  epsilon_low: float = 0.2,
237
240
  epsilon_high: float = 0.2,
238
- loss_type: str = "bnpo",
241
+ loss_type: str = "dapo",
239
242
  max_completion_length: Optional[int] = None,
240
243
  importance_sampling_level: str = "token",
241
244
  temperature: float = 1.0,
@@ -248,7 +251,7 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
248
251
  chunk_size (int): Size of chunks for processing.
249
252
  epsilon_low (float): Lower bound for the importance sampling ratio.
250
253
  epsilon_high (float): Upper bound for the importance sampling ratio.
251
- loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo"). Defaults to "bnpo".
254
+ loss_type (str): Type of loss calculation ("grpo", "bnpo", "dr_grpo", "dapo"). Defaults to "dapo".
252
255
  max_completion_length (int, optional): Maximum completion length, required for "dr_grpo". Defaults to None.
253
256
  importance_sampling_level (str): Level of importance sampling ("token" or "sequence"). Defaults to "token".
254
257
  temperature (float): Temperature for the logits.
@@ -1,5 +1,8 @@
1
1
  import math
2
2
 
3
+ from typing import Tuple
4
+ from typing import Union
5
+
3
6
  import torch
4
7
  import torch.nn.functional as F
5
8
 
@@ -56,6 +59,7 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
56
59
  temperature: float = 1.0,
57
60
  compiled: bool = True,
58
61
  chunk_size: int = 1024,
62
+ return_soft_hard_loss: bool = False,
59
63
  ):
60
64
  """
61
65
  Fused linear layer with JSD distillation loss.
@@ -72,8 +76,9 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
72
76
  temperature (float): Temperature for softening/sharpening distributions
73
77
  compiled (bool): Whether to use torch compile
74
78
  chunk_size (int): Size of chunks for processing.
79
+ return_soft_hard_loss (bool): Whether to return soft and hard losses separately. Default: False.
75
80
  Returns:
76
- torch.Tensor: Computed loss
81
+ torch.Tensor: Computed loss, or tuple (loss, soft_loss, hard_loss) if return_soft_hard_loss=True
77
82
  """
78
83
  return super().forward(
79
84
  cls=cls,
@@ -92,11 +97,12 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
92
97
  ignore_index=ignore_index,
93
98
  temperature=temperature,
94
99
  compiled=compiled,
100
+ return_soft_hard_loss=return_soft_hard_loss,
95
101
  )
96
102
 
97
103
  @staticmethod
98
- def backward(ctx, grad_output):
99
- grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output)[:6]
104
+ def backward(ctx, grad_output, *args):
105
+ grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output, *args)[:6]
100
106
 
101
107
  return (
102
108
  *grads,
@@ -108,6 +114,7 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
108
114
  None, # temperature
109
115
  None, # compiled
110
116
  None, # chunk_size
117
+ None, # return_soft_hard_loss
111
118
  )
112
119
 
113
120
 
@@ -125,6 +132,7 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
125
132
  temperature: float = 1.0,
126
133
  compiled: bool = True,
127
134
  chunk_size: int = 1024,
135
+ return_soft_hard_loss: bool = False,
128
136
  ):
129
137
  """
130
138
  Args:
@@ -135,6 +143,7 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
135
143
  compiled (bool): Whether to use torch compile
136
144
  beta (float): Coefficient beta of generalized JSD in the interval [0, 1]. Default: `0.5`.
137
145
  chunk_size (int): Size of chunks for processing.
146
+ return_soft_hard_loss (bool): Whether to return soft and hard losses separately. Default: False.
138
147
  """
139
148
  super().__init__()
140
149
  assert temperature != 0, "Temperature cannot be 0."
@@ -145,6 +154,7 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
145
154
  self.compiled = compiled
146
155
  self.beta = beta
147
156
  self.chunk_size = chunk_size
157
+ self.return_soft_hard_loss = return_soft_hard_loss
148
158
 
149
159
  def forward(
150
160
  self,
@@ -155,7 +165,7 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
155
165
  true_labels: torch.LongTensor,
156
166
  student_bias: torch.Tensor = None,
157
167
  teacher_bias: torch.Tensor = None,
158
- ) -> torch.Tensor:
168
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
159
169
  """
160
170
  Compute the JSD distillation loss.
161
171
 
@@ -167,7 +177,9 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
167
177
  true_labels (torch.LongTensor): Target labels tensor
168
178
 
169
179
  Returns:
170
- torch.Tensor: Computed loss
180
+ torch.Tensor or Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
181
+ If return_soft_hard_loss is False: Computed combined loss
182
+ If return_soft_hard_loss is True: Tuple of (combined_loss, soft_loss, hard_loss)
171
183
  """
172
184
  return LigerFusedLinearJSDFunction.apply(
173
185
  student_input,
@@ -184,4 +196,5 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
184
196
  self.temperature,
185
197
  self.compiled,
186
198
  self.chunk_size,
199
+ self.return_soft_hard_loss,
187
200
  )