liger-kernel-nightly 0.6.2.dev20250903164435__py3-none-any.whl → 0.6.2.dev20250905160847__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -36,6 +36,7 @@ if TYPE_CHECKING:
36
36
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
37
37
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
38
38
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
39
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
39
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
40
41
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
41
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
@@ -95,6 +96,7 @@ def __getattr__(name: str):
95
96
  "apply_liger_kernel_to_gemma3_text",
96
97
  "apply_liger_kernel_to_glm4",
97
98
  "apply_liger_kernel_to_glm4v",
99
+ "apply_liger_kernel_to_glm4v_moe",
98
100
  "apply_liger_kernel_to_granite",
99
101
  "apply_liger_kernel_to_llama",
100
102
  "apply_liger_kernel_to_llava",
@@ -159,6 +161,7 @@ if _TRANSFORMERS_AVAILABLE:
159
161
  "apply_liger_kernel_to_gemma3_text",
160
162
  "apply_liger_kernel_to_glm4",
161
163
  "apply_liger_kernel_to_glm4v",
164
+ "apply_liger_kernel_to_glm4v_moe",
162
165
  "apply_liger_kernel_to_granite",
163
166
  "apply_liger_kernel_to_llama",
164
167
  "apply_liger_kernel_to_llava",
@@ -0,0 +1,152 @@
1
+ from typing import Optional
2
+ from typing import Tuple
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeCausalLMOutputWithPast
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+
12
+
13
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
14
+ def lce_forward(
15
+ self,
16
+ input_ids: torch.LongTensor = None,
17
+ attention_mask: Optional[torch.Tensor] = None,
18
+ position_ids: Optional[torch.LongTensor] = None,
19
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
20
+ inputs_embeds: Optional[torch.FloatTensor] = None,
21
+ labels: Optional[torch.LongTensor] = None,
22
+ pixel_values: Optional[torch.Tensor] = None,
23
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
24
+ image_grid_thw: Optional[torch.LongTensor] = None,
25
+ video_grid_thw: Optional[torch.LongTensor] = None,
26
+ rope_deltas: Optional[torch.LongTensor] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> Union[Tuple, Glm4vMoeCausalLMOutputWithPast]:
32
+ r"""
33
+ Args:
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
39
+ The temporal, height and width of feature shape of each image in LLM.
40
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
41
+ The temporal, height and width of feature shape of each video in LLM.
42
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
43
+ The rope index difference between sequence length and multimodal rope.
44
+
45
+
46
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
47
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
48
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
49
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
50
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
51
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
52
+
53
+ Example:
54
+
55
+ ```python
56
+ >>> from transformers import AutoProcessor, Glm4vMoeForConditionalGeneration
57
+ >>> import torch
58
+
59
+ >>> MODEL_PATH = "zai-org/GLM-4.5V"
60
+ >>> messages = [
61
+ {
62
+ "role": "user",
63
+ "content": [
64
+ {
65
+ "type": "image",
66
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
67
+ },
68
+ {
69
+ "type": "text",
70
+ "text": "describe this image"
71
+ }
72
+ ],
73
+ }
74
+ ]
75
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH)
76
+ >>> model = Glm4vMoeForConditionalGeneration.from_pretrained(
77
+ pretrained_model_name_or_path=MODEL_PATH,
78
+ torch_dtype="auto",
79
+ device_map="auto",
80
+ )
81
+ >>> inputs = processor.apply_chat_template(
82
+ messages,
83
+ tokenize=True,
84
+ add_generation_prompt=True,
85
+ return_dict=True,
86
+ return_tensors="pt"
87
+ ).to(model.device)
88
+ >>> inputs.pop("token_type_ids", None)
89
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
90
+ >>> output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
91
+ ```
92
+ """
93
+
94
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
95
+ outputs = self.model(
96
+ input_ids=input_ids,
97
+ pixel_values=pixel_values,
98
+ pixel_values_videos=pixel_values_videos,
99
+ image_grid_thw=image_grid_thw,
100
+ video_grid_thw=video_grid_thw,
101
+ position_ids=position_ids,
102
+ attention_mask=attention_mask,
103
+ past_key_values=past_key_values,
104
+ inputs_embeds=inputs_embeds,
105
+ cache_position=cache_position,
106
+ **kwargs,
107
+ )
108
+
109
+ hidden_states = outputs[0]
110
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
111
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
112
+ kept_hidden_states = hidden_states[:, slice_indices, :]
113
+
114
+ shift_labels = kwargs.pop("shift_labels", None)
115
+ logits = None
116
+ loss = None
117
+
118
+ if skip_logits and labels is None and shift_labels is None:
119
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
120
+
121
+ if skip_logits is None:
122
+ # By default, if in training mode, don't materialize logits
123
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
124
+
125
+ if skip_logits:
126
+ loss = LigerForCausalLMLoss(
127
+ hidden_states=kept_hidden_states,
128
+ lm_head_weight=self.lm_head.weight,
129
+ labels=labels,
130
+ shift_labels=shift_labels,
131
+ hidden_size=self.config.hidden_size,
132
+ **kwargs,
133
+ )
134
+
135
+ else:
136
+ logits = self.lm_head(kept_hidden_states)
137
+ if labels is not None:
138
+ loss = self.loss_function(
139
+ logits=logits,
140
+ labels=labels,
141
+ vocab_size=self.config.vocab_size,
142
+ **kwargs,
143
+ )
144
+
145
+ return Glm4vMoeCausalLMOutputWithPast(
146
+ loss=loss,
147
+ logits=logits,
148
+ past_key_values=outputs.past_key_values,
149
+ hidden_states=outputs.hidden_states,
150
+ attentions=outputs.attentions,
151
+ rope_deltas=outputs.rope_deltas,
152
+ )
@@ -1928,6 +1928,107 @@ def apply_liger_kernel_to_glm4v(
1928
1928
  _patch_rms_norm_module(decoder_layer.post_mlp_layernorm)
1929
1929
 
1930
1930
 
1931
+ def apply_liger_kernel_to_glm4v_moe(
1932
+ rope: bool = False,
1933
+ cross_entropy: bool = False,
1934
+ fused_linear_cross_entropy: bool = True,
1935
+ rms_norm: bool = True,
1936
+ swiglu: bool = True,
1937
+ model: PreTrainedModel = None,
1938
+ ) -> None:
1939
+ """
1940
+ Apply Liger kernels to replace original implementation in HuggingFace GLM4v_moe models.
1941
+
1942
+ Args:
1943
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is False.
1944
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
1945
+ fused_linear_cross_entropy (bool):
1946
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
1947
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
1948
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
1949
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
1950
+ swiglu (bool): Whether to apply Liger's SwiGLUMLP. Default is True.
1951
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
1952
+ loaded. Default is None.
1953
+ """
1954
+ assert not (cross_entropy and fused_linear_cross_entropy), (
1955
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
1956
+ )
1957
+
1958
+ from transformers.models.glm4v_moe import modeling_glm4v_moe
1959
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeForConditionalGeneration
1960
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeModel
1961
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeTextModel
1962
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeVisionModel
1963
+
1964
+ from liger_kernel.transformers.model.glm4v_moe import lce_forward as glm4v_moe_lce_forward
1965
+ from liger_kernel.transformers.rms_norm import LigerRMSNormForGlm4
1966
+
1967
+ if rope:
1968
+ raise NotImplementedError("liger_rotary_pos_emb is not available for Glm4 models.")
1969
+ if rms_norm:
1970
+ modeling_glm4v_moe.Glm4vRMSNorm = LigerRMSNormForGlm4
1971
+ if cross_entropy:
1972
+ from transformers.loss.loss_utils import nn
1973
+
1974
+ nn.functional.cross_entropy = liger_cross_entropy
1975
+ if fused_linear_cross_entropy:
1976
+ if model is not None:
1977
+ model.forward = MethodType(glm4v_moe_lce_forward, model)
1978
+ else:
1979
+ modeling_glm4v_moe.Glm4vMoeForConditionalGeneration.forward = glm4v_moe_lce_forward
1980
+
1981
+ if model is not None:
1982
+ # The model instance already exists, so we need to additionally patch the
1983
+ # instance variables that reference already-instantiated modules
1984
+ if isinstance(model, (Glm4vMoeForConditionalGeneration, Glm4vMoeModel)):
1985
+ # Note: language_model and visual properties can be accessed throught conditional class for BC.
1986
+ # Not sure if it is subject to changes in the future.
1987
+ # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4v_moe/modeling_glm4v_moe.py#L337
1988
+ text_model: Glm4vMoeTextModel = model.language_model
1989
+ vision_model: Glm4vMoeVisionModel = model.visual
1990
+ Glm4vMoeTextMoE = modeling_glm4v_moe.Glm4vMoeTextMoE
1991
+ elif isinstance(model, Glm4vMoeTextModel):
1992
+ text_model: Glm4vMoeTextModel = model
1993
+ vision_model = None
1994
+ else:
1995
+ # Note: Currently there's no support for patching vision model only. Feel free to raise an issue if needed.
1996
+ raise TypeError(
1997
+ f"Unsupported glm4v_moe model type. `model` must be `Glm4vMoeForConditionalGeneration`, `Glm4vMoeVisionModel` or `Glm4vMoeTextModel`. Got: {type(model)}"
1998
+ )
1999
+
2000
+ if vision_model is not None:
2001
+ _patch_rms_norm_module(vision_model.post_conv_layernorm)
2002
+ _patch_rms_norm_module(vision_model.post_layernorm)
2003
+ for vision_block in vision_model.blocks:
2004
+ if rms_norm:
2005
+ _patch_rms_norm_module(vision_block.norm1)
2006
+ _patch_rms_norm_module(vision_block.norm2)
2007
+ if swiglu:
2008
+ _patch_swiglu_module(vision_block.mlp, LigerSwiGLUMLP)
2009
+
2010
+ if text_model is not None:
2011
+ if rms_norm:
2012
+ _patch_rms_norm_module(text_model.norm)
2013
+ for decoder_layer in text_model.layers:
2014
+ if swiglu:
2015
+ decoder_layer.mlp = _patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
2016
+ if rms_norm:
2017
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
2018
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
2019
+ if isinstance(Glm4vMoeTextMoE, type) and isinstance(decoder_layer.mlp, Glm4vMoeTextMoE):
2020
+ experts = getattr(decoder_layer.mlp, "experts", None)
2021
+ if experts is not None:
2022
+ for expert in experts:
2023
+ _patch_swiglu_module(expert, LigerSwiGLUMLP)
2024
+ if decoder_layer.mlp.shared_experts is not None:
2025
+ _patch_swiglu_module(decoder_layer.mlp.shared_experts, LigerSwiGLUMLP)
2026
+ for decoder_layer in text_model.layers:
2027
+ if rms_norm:
2028
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
2029
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
2030
+
2031
+
1931
2032
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
1932
2033
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
1933
2034
  "gemma": apply_liger_kernel_to_gemma,
@@ -1936,6 +2037,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
1936
2037
  "gemma3": apply_liger_kernel_to_gemma3,
1937
2038
  "glm4": apply_liger_kernel_to_glm4,
1938
2039
  "glm4v": apply_liger_kernel_to_glm4v,
2040
+ "glm4v_moe": apply_liger_kernel_to_glm4v_moe,
1939
2041
  "llama": apply_liger_kernel_to_llama,
1940
2042
  "llama4_text": apply_liger_kernel_to_llama4,
1941
2043
  "llama4": apply_liger_kernel_to_llama4,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.2.dev20250903164435
3
+ Version: 0.6.2.dev20250905160847
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -41,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
41
41
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
42
42
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
43
43
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
44
- liger_kernel/transformers/__init__.py,sha256=jkokP69dbCzUDTz-H6QowB5xNEflmgQ7Zv-_4MVuxpY,8440
44
+ liger_kernel/transformers/__init__.py,sha256=GA4GdoP0VKKGzXoLN51DacuTtNuwciS96ZAblkDYl3w,8631
45
45
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
46
46
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
47
47
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=pG3Yf0fMg4_0pAncc2wLtpdfXvmC5CROpNJ43-MmElM,93075
61
+ liger_kernel/transformers/monkey_patch.py,sha256=DpYF1mVjmErtkFgnxi20rnyeXr7bvVSg3BR166cMF5I,98472
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -76,6 +76,7 @@ liger_kernel/transformers/model/gemma2.py,sha256=R_JFPyWTk7RyA7D05ZiIaNO5pX8gWcv
76
76
  liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2GhirHm4tpCf9ApAc,12785
77
77
  liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
78
78
  liger_kernel/transformers/model/glm4v.py,sha256=zbV3agptEYpGAD0eeCRwIpJAhJUviTT5xQbbLlgpVnc,5957
79
+ liger_kernel/transformers/model/glm4v_moe.py,sha256=xTPjRqI3E_--0gbqM8MYlBYvVecGkx9iU_2AnFRhfmQ,6172
79
80
  liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
80
81
  liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
81
82
  liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
@@ -96,9 +97,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
96
97
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
97
98
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
98
99
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
99
- liger_kernel_nightly-0.6.2.dev20250903164435.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
100
- liger_kernel_nightly-0.6.2.dev20250903164435.dist-info/METADATA,sha256=BgiSTSMznb0cvZyFqU68T0sEIAOBcf9hvuO6jIPCcC8,24504
101
- liger_kernel_nightly-0.6.2.dev20250903164435.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
102
- liger_kernel_nightly-0.6.2.dev20250903164435.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
103
- liger_kernel_nightly-0.6.2.dev20250903164435.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
104
- liger_kernel_nightly-0.6.2.dev20250903164435.dist-info/RECORD,,
100
+ liger_kernel_nightly-0.6.2.dev20250905160847.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
101
+ liger_kernel_nightly-0.6.2.dev20250905160847.dist-info/METADATA,sha256=ZT_kFAHJGPOpzAY_080s6ydKarfS0SlYjsMQXuLd9ao,24504
102
+ liger_kernel_nightly-0.6.2.dev20250905160847.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
103
+ liger_kernel_nightly-0.6.2.dev20250905160847.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
104
+ liger_kernel_nightly-0.6.2.dev20250905160847.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
105
+ liger_kernel_nightly-0.6.2.dev20250905160847.dist-info/RECORD,,